Skip to main content
Erschienen in: Intensive Care Medicine 8/2020

Open Access 25.06.2020 | COVID-19 | Letter

Rapidly scalable mechanical ventilator for the COVID-19 pandemic

verfasst von: Albert H. Kwon, Alexander H. Slocum Jr, Dirk Varelmann, Christoph G. S. Nabzdyk, on behalf of the MIT E-Vent Team

Erschienen in: Intensive Care Medicine | Ausgabe 8/2020

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Begleitmaterial
Supplementary file2 (MOV 29738 kb)
Supplementary file3 (MOV 18400 kb)
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00134-020-06113-3) contains supplementary material, which is available to authorized users.
Albert H. Kwon and Alexander H. Slocum Jr they have contributed equally to this work.
The MIT E-Vent Team group details are listed in the acknowledgement section.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The SARS-CoV-2 pandemic is straining healthcare systems worldwide, and a global ventilator shortage is fueling the dire situation. As a response, the MIT E-Vent Team (S1) manufactured a scalable ventilator prototype for mass production and demonstrated basic clinical feasibility.
MIT E-Vent engineering information and capabilities, but also missing safety features are provided on the MIT E-Vent website (https://​e-vent.​mit.​edu/​) and in the attachments (Fig. 1a, S2). Pressure-based alarms were implemented including in the `Spiro Wave’ device that is based on the MIT E-vent and was just authorized for emergency use by the US FDA. In brief, the MIT E-Vent houses a manual resuscitator, an external compression mechanism, and a control system for adjusting tidal volumes, inspiration-to-expiration ratio, and respiratory rate (Fig. 1a, S3, S4). The MIT E-Vent is equipped with a pressure relief and a positive end-expiratory pressure (PEEP) valve. It delivers unassisted (Fig. 1b) and assisted (not shown) volume control ventilation (VCV). As a proof of concept, a pig was ventilated with the MIT E-Vent or a standard mechanical ventilator (SMV) at distinct settings and arterial blood gases, ventilator waveforms, and flow-volume loops were obtained.
The MIT E-Vent performed similar to a SMV at identical respiratory settings. After 36 h of usage including at high demand settings (TV 600 cc, RR 30, PEEP 20), no signs of device failure were noted (S5).
Tidal volume delivery
MIT E-Vent waveforms showed a smooth tidal volume delivery (Fig. 1b). It revealed similar flow-volume loops when compared to manual ventilation using a manual resuscitator (Fig. 1c).
Gas exchange
MIT E-Vent settings were changed to achieve ‘low’ and ‘high’ minute ventilation, and ‘low’ and ‘high’ FiO2 states as reflected in the ABGs (Fig. 1d, e).
The MIT E-Vent provides (un-)assisted VCV, variable MV, and PEEP with airway pressure profiles comparable to a SMV. The MIT E-Vent is not equipped to provide pressure control ventilation (PCV), which may make it unsuitable for awake and the most complex ARDS patients. However, this device is meant as a bridging tool when a conventional ventilator is not available, to serve as ‘destination ventilator device’ in the absence of any alternatives, or to help free up SMV in certain cases.
The MIT E-Vent Team was determined to equip the MIT E-Vent with comprehensive safety features including oxygen and flow sensors, but due to widespread hardware supply shortages, this became impossible. Omitting these safety features was deemed necessary to provide a rapidly scalable prototype. Consequently, increased clinical monitoring is required to provide adequate safety during the use of the MIT E-Vent (S2). Despite these limitations, the MIT-E Vent offers basic mechanical ventilation for selected patients during this ventilator shortage.
The MIT E-Vent Team invites the global community to improve and distribute a version of this scalable, low-cost ventilator during this COVID-19 pandemic.
Oxygenation and ventilation capabilities of a scalable, low-cost ventilator were demonstrated. MIT E-Vent engineering documentation was made public to rapidly implement the MIT E-Vent into the clinical care of patients requiring invasive mechanical ventilation.

MIT E-Vent Team

MIT E-Vent Engineering: Brandon Araki – PhD Candidate, Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT Murad Abu-Kalaf, PhD – Research Scientist, Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT Mike Detienne, BS – MIT Alum (Electrical Engineering) David Hagan, PhD – CEO, QuantAQ; MIT Alum, (Atmospheric Physics & Chemistry) Nevan Hanumara, PhD – Research Scientist, Mechanical Engineering, MIT (Alum) Kimberly Jung, MS, MBA – MIT Alum (Mechanical Engineering) Teddy Ort – PhD Candidate, Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT Aaron Ramirez – PhD Candidate, Mechanical Engineering, MIT Folkers Rojas, PhD – Founder, Raptor Designs; MIT Alum (Mechanical Engineering) Daniela Rus, PhD – Director, Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT Amelia Servi, PhD – R&D Engineer, Creare, LLC; MIT Alum (Mechanical Engineering) Shakti Shaligram, MS – Research Scientist, IDM; MIT Alum (Integrated Design and Management) Alexander Slocum, PhD – Professor of Mechanical Engineering, MIT Jonathan Slocum, ScD – MIT Alum (Mechanical Engineering) Alexander Slocum, Jr, MD PhD – Department of Plastic & Reconstructive Surgery, Medical College of Wisconsin; MIT Alum (Mechanical Engineering) Coby Unger, BS; MIT Hobby Shop. MIT E-Vent Clinical Team: Jay Connor, MD – Orthopaedic Surgery, Mt Auburn Hospital Bon Ku, MD – Assistant Dean for Medical Education and Associate Professor of Emergency Medicine, Thomas Jefferson University, Sidney Kimmel Medical College Albert Kwon, MD – Assistant Professor of Anesthesiology, Department of Anesthesiology, Westchester Medical Center, New York Medical College Christoph Nabzdyk, MD – Assistant Professor of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester Alexander Slocum, Jr, MD PhD – Department of Plastic & Reconstructive Surgery, Medical College of Wisconsin Dirk Varelmann, MD – Assistant Professor of Anesthesiology, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School. Clinical Advisors: John Callahan, MD - Internal Medicine, St. Joseph’s Hospital Health Center & Veterans Administration Hospital, Syracuse Sergey Karamnov, MD - Instructor of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School Keith G Lurie, MD – Professor of Emergency Medicine, University of Minnesota Niels Olson, Lt Cmdr, MD – Laboratory Medical Director, US Naval Hospital, Guam; Professor, Uniformed Services University Neil Ray, MD – Anesthesiologist; Founder & CEO, Raydiant Oximetry Mark Rosen, MD – Professor of Anesthesiology (Ret), University of California, San Francisco; CMO, Raydiant Oximetry Steven Shafer, MD – Professor of Anesthesiology, Perioperative and Pain Medicine, Stanford University Scott Sparks, Lt Col, MD – Anesthesiologist, US Naval Hospital, Guam. Manuscript Composition and Editing Leena: Pradhan-Nabzdyk, PhD, MBA - Assistant Professor of Surgery, Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School. 2010 2.75 Project Team: Amelia Servi, PhD – R&D Engineering, Creare, LLC Abdul Mohsen Al Husseini, PhD – Co-Founder & Chief Strategy Officer, Analytical Space, Inc. Justin Negrete, MS – Thermal Engineer, Ford Motor Company, Inc. Stephen Powelson, BS – Senior Mechanical Engineer, Rani Therapeutics, LLC Heon Ju Lee, PhD - Executive Director, Kyperion Co. Ltd.

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Anästhesiologie

Kombi-Abonnement

Mit e.Med Anästhesiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes AINS, den Premium-Inhalten der AINS-Fachzeitschriften, inklusive einer gedruckten AINS-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Supplementary file2 (MOV 29738 kb)
Supplementary file3 (MOV 18400 kb)
Metadaten
Titel
Rapidly scalable mechanical ventilator for the COVID-19 pandemic
verfasst von
Albert H. Kwon
Alexander H. Slocum Jr
Dirk Varelmann
Christoph G. S. Nabzdyk
on behalf of the MIT E-Vent Team
Publikationsdatum
25.06.2020
Verlag
Springer Berlin Heidelberg
Schlagwort
COVID-19
Erschienen in
Intensive Care Medicine / Ausgabe 8/2020
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-020-06113-3

Weitere Artikel der Ausgabe 8/2020

Intensive Care Medicine 8/2020 Zur Ausgabe

From the Inside

Hands

Less is more in Intensive Care

ICU beds: less is more? Yes

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.