Skip to main content
Erschienen in: Journal of Neuroinflammation 1/2018

Open Access 01.12.2018 | Research

Curcumin attenuates collagen-induced inflammatory response through the “gut-brain axis”

verfasst von: Yannong Dou, Jinque Luo, Xin Wu, Zhifeng Wei, Bei Tong, Juntao Yu, Ting Wang, Xinyu Zhang, Yan Yang, Xusheng Yuan, Peng Zhao, Yufeng Xia, Huijuan Hu, Yue Dai

Erschienen in: Journal of Neuroinflammation | Ausgabe 1/2018

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin.

Methods

The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund’s adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording.

Results

Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA.

Conclusions

Our results demonstrate that curcumin attenuates CIA through the “gut-brain axis” by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.
Abkürzungen
AI
Arthritis index
ANS
Autonomic nervous system
CHT1
Choline transporter 1
CIA
Collagen-induced arthritis
H&E
Hematoxylin and eosin
HRV
Heart rate variability
IBD
Inflammatory bowel disease
PNS
Parasympathetic nervous system
qPCR
Quantitative PCR
RA
Rheumatoid arthritis
SNS
Sympathetic nervous system
VGX
Unilateral cervical vagotomy
α7 nAChR
α7 nicotinic ACh receptor

Background

Rheumatoid arthritis (RA) is a serious autoimmune disease and affects 0.5–1.0% of adults worldwide [1]. Increasing evidence indicates that the autonomic nervous system (ANS) plays an important role in the regulation of an abnormal immune response and inhibition of inflammation [2, 3]. The ANS modulates cytokine production mainly through the cholinergic anti-inflammatory pathway [4] in which the efferent vagus nerve, the neurotransmitter ACh, and its receptors (especially α7 nicotinic ACh receptor, α7 nAChR) are indispensable [57].
Curcumin has been used historically as a spice and medicinal herb in India and China [8]. Considerable evidence has suggested that curcumin possesses diverse bioactivities [912]. In recent years, numerous studies have shown that oral administration of curcumin significantly ameliorated collagen-induced arthritis (CIA) [13, 14]. A clinical trial has shown that curcumin is a safe and effective agent for RA patients [15]. However, pharmacokinetic studies have shown that its bioavailability is very poor which raise questions about how curcumin produces an anti-inflammatory effect [1618].
Previous studies in our laboratory have suggested that curcumin exerts such effects in a gut-dependent manner [19]. The gut, as a sensory organ, senses luminal content including ingestion of food, microorganisms, gastrointestinal secretions, and pharmaceuticals. The signals arising from the lumen are transmitted though enteric and vagal pathways to the central nervous system, which in turn sends efferent signals to peripheral tissues or organs [20]. Previous studies strongly suggest that the vagus nerve mediates the direct gut-brain-peripheral communication [21, 22]. Anti-inflammatory responses initiated by vagal nerve activation were followed by release of ACh. The released ACh subsequently led to activation of the α7 nAChR on macrophages or immune cells, which are located in the RA joint or in the spleen [2124]. It has been reported that curcumin could improve cholinergic system dysfunction by downregulating AChE activity and increasing ChAT activity, subsequently exerting anti-inflammatory and neuroprotective effects in the brain [2527]. Based on these previous reports, we hypothesized that increasing cholinergic tone might be a potential anti-arthritic mechanism of curcumin. The present study demonstrated that oral administration of curcumin increased heart rate variability, enhanced ACh biosynthesis and release in the gut, brain, and synovium, and increased excitability of nodose ganglion neurons. These findings indicate that curcumin produces anti-CIA effects through the “gut-brain axis” and reveal a novel approach for the treatment of patients with RA and with other immune-mediated inflammatory diseases such as inflammatory bowel disease (IBD). The present study also provides an intriguing paradigm for mechanistic studies of anti-inflammatory compounds with low oral absorption and bioavailability.

Methods

Animals

Female Wistar rats, 6–8 weeks, weighing 150 ± 20 g, were purchased from Shanghai Super B&K Laboratory Animal Corp. Ltd. (Shanghai, China) and Charles River (MA, USA). They were maintained in standard laboratory chow with tap water ad libitum and under climate-controlled environment. All in vivo studies were carried out in compliance with China Pharmaceutical University Animal Care and Use Committee guidelines. All in vitro studies were carried out in compliance with the Drexel University College of Medicine Animal Care and Use Committee guidelines.

Collagen II (CII)-induced arthritis (CIA) in rats and curcumin treatment

Arthritis was induced in rats by immunization with an emulsion of chicken type II collagen (CII, Sigma-Aldrich Co., St. Louis, MO, USA) and complete Freund’s adjuvant (CFA, Becton Drive Co., NJ, USA) as previously reported [28]. Briefly, rats were intradermally injected with 200 μl of this emulsion at the base of the tail on day 0. Seven days after the primary immunization, rats were boosted with an emulsion of CII and incomplete Freund’s adjuvant (IFA, Becton Drive). On day 14, rats were randomly assigned to normal group, model group, and curcumin group (100 mg/kg, Nanjing Zelang Medical Technology Co., Nanjing, China). Curcumin was suspended in 0.5% sodium carboxymethyl cellulose (CMC-Na) and orally administered daily 2 weeks. Normal and model group rats were orally administered vehicle according to the same schedule.

Unilateral cervical vagotomy (VGX) and induction of CIA in rats

A VGX operation was performed 4 days before the induction of CIA [29]. In brief, rats were anesthetized and a ventral cervical midline incision was made to expose the left cervical vagus trunk, which was next ligated with 4–0 silk sutures and divided. The skin was closed with three sutures. The left nerve trunk of sham rats was exposed and isolated from surrounding tissue without being transected. After 4 days, CIA was induced as described above and the day of immunization was marked as day 0. Seven days later, rats were boosted with the second injection. On day 14, sham rats were divided into the following groups: sham group, model group, curcumin (100 mg/kg) group, leflunomide (2 mg/kg, Suzhou Changzheng-Xinkai Pharmaceutical Co., Suzhou, China) group, and nicotine (300 μg/kg, Nanjing Zelang Medical Technology) group. VGX rats were divided into VGX group, V-model group, and V-curcumin (100 mg/kg) group. Curcumin and leflunomide were orally administered, and nicotine was intraperitoneally injected for consecutive 2 weeks. Other groups were given an equal volume of vehicle with the same schedule and route of administration.

Effects of pretreatment with nicotinic ACh receptor (nAChR) antagonists on curcumin-treated CIA rats

CIA was induced as describe above. Two weeks after the first immunization, rats were randomly assigned to the following groups: (1) normal group, model group, curcumin (100 mg/kg) group, mecamylamine (1 mg/kg, Sigma) group, curcumin (100 mg/kg) + mecamylamine (1 mg/kg) group, hexamethonium (4 mg/kg, Sigma) group, curcumin (100 mg/kg) + hexamethonium (4 mg/kg) group, and leflunomide (2 mg/kg) group; (2) normal group, model group, curcumin (100 mg/kg) group, α-bungarotoxin (1 μg/kg, Abcam Inc., Cambridge, UK) group, curcumin (100 mg/kg) + α-bungarotoxin (1 μg/kg) group, and nicotine (300 μg/kg) group. Curcumin and leflunomide were suspended in 0.5% CMC-Na and orally administered daily 2 weeks. Antagonists were dissolved in 0.9% NaCl solution and intraperitoneally injected 10 min before curcumin administration. Nicotine was dissolved in 0.9% NaCl solution and intraperitoneally injected. Normal and model group rats were orally administered 0.5% CMC-Na in the same schedule.

Assessment of CIA

CIA was assessed by body weight, paw swelling, and arthritis index (AI) scores. A plethysmometer was used to measure the volumes of paws. The clinical scores were evaluated blindly as follows: 0 point: no arthritis; 1 point: swelling in one type of joint; 2 points: swelling in two types of joint; 3 points: swelling in three types of joint; and 4 points: swelling of the entire paw. The AI scores was the sum of four paws, with the maximum score of 16 for each rat. The ankles of rats were photographed immediately after rats were sacrificed with ether anesthesia. After continuous treatment for 2 weeks, the hind paws were photographed to evaluate the morphological changes in the ankle of rats. On the same day, the representative radiographs of the hind paws of the CIA rats were obtained to examine the bone erosion and joint destruction.

Histological analysis

The right ankles were fixed in 10% buffered formalin for 48 h. The joints were then decalcified in 10% EDTA, embedded in paraffin, cut into 5-μm serial sections, and stained with hematoxylin and eosin (H&E). The histopathological changes in the joints were examined using an optical microscope and graded on a scale of 0–3 (0 = none changes, 1 = mild changes, 2 = moderate changes, and 3 = severe changes) by a pathologist blinded to the experimental groups [28].

Heart rate (HR), blood pressure, and heart rate variability (HRV) analysis

Heart rate (HR), blood pressure, and HRV summary variables in time and frequency domain were assessed on day 27. Blood pressure was first measured using BP-6 Animal Non-Invasive Blood Pressure Measuring System (Chengdu Tme Technology Co, Ltd., Chengdu, China). Systolic (SP) and diastolic pressures (DP) were recorded, and mean arterial pressure (MP) was calculated according to the following formula: MP = (SP + 2 × DP)/3. Rats were then anesthetized by intraperitoneal injection of 10% urethane and placed in the supine position on a temperature-controlled cushion and allowed to breathe spontaneously. The mean HR and HRV parameters were obtained from electrocardiogram (ECG) by BL420S biological signal acquisition system (Chengdu Tme Technology Co, Ltd.). The needle electrodes were subcutaneously inserted in rat left forelimb and both hind limbs, respectively. ECG was measured for 10 min before and 1 h after treatment to obtain the HRV parameters. The time domain includes standard deviation of all R-R intervals (SDNN) and square root of the mean of the sum of the squares of differences between adjacent R-R intervals (RMSSD). The frequency domain data collected from each period of 10 min underwent spectral analysis by using a fast Fourier transform algorithm to determine the high-frequency power (HF) and low-frequency power (LF) components. The range for HF was 0.15–0.4 Hz and the range for LF was 0.04–0.15 Hz.

Assessment of ChAT and AChE activities

The synovium tissues were weighed, and an adequate amount of 0.9% NaCl solution was added to obtain 10% (w/v) homogenates. Blood samples were collected from rats under ether anesthesia using orbital eye bleeds. Then, after clotting for 20 min at room temperature, blood was centrifuged for 20 min at a speed of 3000 rpm at 4 °C, and the serum was collected. The enzymatic activities of ChAT and AChE were measured by kits according to the manufacturer’s instructions (Bioswap Biotech Co., Wuhan, China). Activities were expressed as units per gram weight of synovium tissue and units per liter of serum, respectively.

Quantitative PCR (qPCR)

Total RNAs from the small intestine, brain, and synovium were isolated using TRIzol reagent (Invitrogen, CA, USA) according to the manufacturer’s instructions. RNA was reversely transcribed to cDNA using HiScript RT SuperMix (Vazyme Biotech Co., Nanjing, China) and then analyzed for the expressions of high-affinity choline transporter 1 (CHT1), ChAT, and VAChT by Ace qPCR SYBR Green Master Mix (Vazyme Biotech) using MyiQ2 Detection System (Bio-Rad Laboratories, Hercules, CA) [19]. The following primers (Sangon Biotech Co., Shanghai, China) were used: for CHT1, 5′-CTACATTCCCCTACGTGGTCC-3′ (sense) and 5′-AGGCCGATGGCATAAGAGAAG-3′ (antisense); for ChAT, 5′-CCAGTTCTTTGTCTTGGATGTT-3′ (sense) and 5′-GGACGCCATTTTGACTATCTTT-3′ (antisense); for VAChT, 5′-GTGCCCATTGTTCCCGACTA-3′ (sense) and 5′-CTTTCTGTGGGGTAGCGAGG-3′ (antisense); and for β-actin, 5′-CCCATCTATGAGGGTTACGC-3′ (sense) and 5′-TTTAATGTCACGCACGATTTC-3′ (antisense). All values were expressed relative to the expression of the reference gene, β-actin, and the relative expression of each gene was determined according to the 2-ΔΔCt method.

Immunohistochemistry

Small intestines, brains, and synovium tissues were harvested, fixed in 10% formalin, and then embedded in paraffin and sliced into 5-μm-thick sections (Reichert HistoSTAT, USA). The sections were incubated with the first primary antibodies against ChAT and VAChT overnight at 4 °C, and examined with DAB Envision System (Dako, Glostrup, Denmark) according to the manufacturer’s instructions.

Measurement of cytokines in serum

The concentrations of TNF-α, IL-1β, IL-6, IL-17A, IFN-γ, IL-4, IL-10, and TGF-β in serum were detected using enzyme-linked immunosorbent assay (ELISA) kits (Dakewe Biotech Co., Shenzhen, China) according to the manufacturer’s instructions. The absorbance was measured at 450 nm.

Cell culture

Primary nodose ganglion neuronal cultures were prepared from adult female rats as described previously with some modifications [30]. Briefly, rats were deeply anesthetized with overdose of isoflurane. The nodose ganglia of the vagus nerve were carefully removed and washed in Hank’s balanced saline solution (HBSS) (Invitrogen) (in mM: 137 NaCl, 5.4 KCl, 0.4 KH2PO4, 1 CaCl2, 0.5 MgCl2, 0.4 MgSO4, 4.2 NaHCO3, 0.3 Na2HPO4, and 5.6 glucose). The ganglia were then incubated on an incubator shaker (New Brunswick Scientific, NJ, USA) for 30 min at a speed of 135 rpm at 37 °C in HBSS containing papain (15 U/ml, Worthington Biochemical, NJ, USA) and collagenase from clostridium histolyticum (5 × 10−4 g/ml, Sigma), rinsed three times with HBSS, and placed in culture medium containing Neurobasal A (Invitrogen), 2% B-27 (Life Technologies, NY, USA), 2% heat-inactivated horse serum, 2% fetal calf serum, 0.2 mM L-glutamax, 100 U/ml penicillin, and 100 μg/ml streptomycin (Invitrogen). The fragments were mechanically dissociated by gently triturating with a pipette. The dispersed cells were seeded onto 12-mm poly-D-lysine and laminin (Sigma)-coated coverslips at a density of 3000 cells per well. Neurons were cultured at 37 °C in a humidified atmosphere containing 5% CO2.

Electrophysiological recordings

Standard whole-cell recordings were performed at room temperature using an EPC 10 amplifier and PatchMaster software (HEKA Elektronik, Lambrecht, Germany) as described previously [31]. Electrode resistances ranged between 3 and 6 MΩ with series resistances of 6–15 MΩ and were compensated to the maximal current amplitude. For current-clamp recordings, the membrane voltage was held at − 65 mV; the bath solution was Tyrode’s solution containing (in mM) 140 NaCl, 5 KCl, 2 CaCl2, 1MgCl2, 10 HEPES, and 5.6 glucose, pH adjusted to 7.36 with NaOH (osmolality ~ 292 mmol/kg). The intracellular solution contained (in mM) 140 KMeSO4, 2MgCl2, 1 EGTA, 10HEPES, 3 Na2ATP, and 0.3 Na2GTP, pH adjusted to 7.4 with KOH (osmolality ~ 292 mmol/kg). Action potentials were recorded in the current-clamp mode at a membrane potential around − 65 mV. A current injection was used to evoke 2 to 3 action potentials and remained constant throughout the recording. Only one neuron was recorded from each coverslip.

Electrophysiological data analysis

Off-line data analysis was processed using PatchMaster (HEKA) and Origin 8.1 software (OriginLab, Northampton, USA).

Statistical analysis

Data were presented as mean ± S.E.M.. Statistical significance was assessed by one-way analysis of variance (ANOVA) followed by post hoc Tukey’s test. An 0.05 (p < 0.05) was considered statistically significant. The data and statistical analysis comply with the recommendations on experimental design and analysis in pharmacology.

Results

Curcumin attenuated CIA in rats

We and others have shown that curcumin produces an anti-arthritic effect in a mouse model of CIA and in a rat model of adjuvant-induced arthritis [13, 19]. To confirm the effect of curcumin in the CIA model in rats, we generated a rat model of CIA. Following the development of CIA, the body weight, arthritis index (AI) scores, and hind paw swelling were measured to evaluate the severity of arthritis. After treatment for 2 weeks, rat ankles in each group were removed to evaluate pathomorphological changes. We observed that the CIA rats developed arthritis, showing body weight loss, erythema, swelling of all fours, joint stiffness, and deformed paws and ankles (Fig. 1a–c). Histological analysis demonstrated marked inflammatory cell infiltration, synovial hyperplasia, and cartilage and bone erosion in ankle joints (Fig. 1d, e). Curcumin 100 mg/kg (an effective dose used in our previous study) [19] drastically attenuated CIA, as illustrated by the notable amelioration of the paw swelling, AI scores, and histological changes (Fig. 1). These results confirmed our previous findings that curcumin has anti-arthritic effects.

Curcumin increases the cholinergic function in CIA rats

A recent clinical study demonstrated that vagus nerve stimulation attenuates cytokine production and rheumatoid arthritis (RA), suggesting a therapeutic potential for vagus nerve stimulation in RA [32, 33]. To explore whether the autonomic nervous system (ANS) is involved in the anti-arthritic effect of curcumin, electrocardiographic recordings were performed. We measured cardiovascular reflex (heart rate (HR), blood pressure) that is associated with sympathetic nervous activity, and heart rate variability (HRV), which is related to vagus nerve activity [34]. CIA rats showed a reduced parasympathetic and increased sympathetic tone, but no changes in HR and blood pressure (Fig. 2a, b), which was in line with the previous clinical report [2]. Interestingly, curcumin had no significant influence on HR and blood pressure (Fig. 2a, b). However, it markedly increased HRV of CIA rats, restored the imbalance between sympathetic and parasympathetic tones by enhancing SDNN, RMSSD, and normalized high-frequency power (HF) (Fig. 2c, d). These results suggest an increase in vagus nerve activity. Since vagus nerve function is directly correlated with the activity of the cholinergic anti-inflammatory pathway, these data suggest that curcumin ameliorated the cholinergic system function in CIA rats.

Curcumin enhances ACh biosynthesis and transport in CIA rats

Synthetic enzyme, ChAT, and hydrolytic enzyme, AChE, have been used as markers of cholinergic system activity. Activation of parasympathetic nerves leads to the release of the cholinergic transmitter ACh, which is rapidly hydrolyzed into choline and acetic acid after release from nerve endings. The choline is taken up by the high-affinity choline transporter 1 (CHT1) into the pre-synaptic nerve where it combines with acetyl-CoA through the catalytic action of ChAT to subsequently synthesize ACh. The newly synthetized ACh is loaded by the vesicular acetylcholine transporter (VAChT) into secretory synaptic vesicles for ACh release [4, 35]. We first measured the activities of ChAT and AChE in the knee joint synovium tissues and serum and examined the mRNA and protein expression of CHT1, ChAT, and VAChT in the gut, brain, and synovium. Curcumin markedly enhanced ChAT activity and increased expression of ChAT and VAChT (Fig. 3a, c, and d). However, curcumin had no effect on AChE activity and CHT1 expression (Fig. 3b–d), suggesting that curcumin promoted the biosynthesis and transport of ACh without affecting the hydrolyzation of ACh and uptake of choline in the gut and brain. However, the oral bioavailability of curcumin is poor. Previous studies in our laboratory have shown that even when curcumin (100 mg/kg) was orally administrated continuously to arthritis rats for 14 days, the Cmax was still very low (about 0.03 μM), but curcumin shows obvious accumulation in the gut (about 70 μM) [19]. These results indicate a possible pathway that the gut might be the initial site of action.

Vagus nerve integrity is required for curcumin-induced anti-CIA effect

It has been reported that the vagus nerve mediates the anti-inflammatory action of pharmacological agents [36, 37]. To investigate the involvement of the cholinergic system in the anti-arthritic effects of curcumin, rats were subjected to unilateral cervical vagotomy (VGX) before CIA was induced. The arthritic symptoms in V-Model (VGX-CIA) rats were slightly exacerbated, as illustrated by an increase of 7.5% in paw swelling compared with Model (sham-CIA) rats. Curcumin (100 mg/kg) produced a protective effect on ongoing CIA (Fig. 4a–e). However, in V-model (VGX-CIA) rats, curcumin failed to suppress the paw swelling and histological scores (Fig. 4a–e). These data demonstrate that the anti-arthritic effect of curcumin (100 mg/kg) was markedly diminished after VGX, indicating that the integrity of the peripheral cholinergic nerve is essential for the curcumin-induced protective effects observed in CIA rats.
Pro-inflammatory or T cell-related cytokines participate in the pathological process of RA. Increased cytokine levels might exacerbate systemic inflammatory responses and aggravate arthritis symptoms. To further investigate the effects of VGX on the anti-arthritic actions of curcumin, we measured serum levels of inflammatory cytokines using ELISA kits. Curcumin (100 mg/kg) decreased TNF-α, IL-1β, IL-6, and IL-17A and increased IL-10 and TGF-β, suggesting that curcumin effectively attenuated inflammatory responses and modulated abnormal immune responses (Fig. 4f). Interestingly, VGX completely reversed the inhibitory effect of curcumin on levels of TNF-α, IL-1β, IL-6, and IL-17A, but had no significant effect on IFN-γ, IL-4, IL-10, and TGF-β levels (Fig. 4g).

Vagus nerve integrity is required for curcumin-induced upregulation of ChAT and VAChT

To further determine whether VGX alters the effects of curcumin on ACh biosynthesis and transport in CIA rats, qPCR and immunohistochemical staining were performed in the gut, brain, and synovium. Data showed that the effects of curcumin on ChAT and VAChT expression were markedly blunted by vagotomy (Fig. 5a–d). These results further confirm the crucial role of vagus nerve integrity and suggest the existence of a “gut-brain axis.”

Curcumin increases neuronal excitability in nodose ganglion neurons from vagus nerve

To determine whether curcumin directly stimulates the vagus nerve, we collected nodose ganglia of the vagus nerve from adult rats. Primary nodose ganglion neurons were cultured for 12 to 48 h for action potential recordings. Action potentials were generated by current injection, and the firing rate was increased when current injection increased. Curcumin (10 and 30 μM) after 5-min perfusion decreased rheobase (threshold current to firing), increased spike frequency (spike numbers in a depolarizing pulse, 1 s), decreased first spike latency (the time between initiating current injection to the occurrence of the first action potential), and increased membrane potential (depolarized the neurons) without changes on the steady-state input resistance, suggesting curcumin increases neuronal excitability (Fig. 6). These data indicate that curcumin directly activates the vagus nerve and promotes the release of ACh, which functions as an anti-inflammatory parasympathetic neurotransmitter through the cholinergic anti-inflammatory pathway.

Curcumin-induced anti-CIA efficacy is mediated by nAChR

To determine whether the effect of curcumin on CIA is mediated by nAChR, different cholinergic receptor antagonists (mecamylamine, a central and peripheral neuronal nAChR antagonist; hexamethonium, a peripheral neuronal nAChR antagonist, respectively) were used [38]. Curcumin (100 mg/kg) markedly ameliorated the clinical symptoms and histological changes of CIA. Leflunomide (2 mg/kg), a commercially available immunosuppressant disease-modifying anti-rheumatic drug (DMARD) used for RA treatment, showed similar effects to those observed in the curcumin-treated group. Neither of the nAChR antagonists when administered alone had significant effects on CIA. Nevertheless, when used in combination with curcumin, hexamethonium almost completely reversed the anti-arthritic effects of curcumin while mecamylamine partially inhibited the effects (Fig. 7a–c). To investigate whether nAChR antagonists attenuate the curcumin-induced decrease in cytokine production in CIA rats, we assessed cytokine levels of TNF-α, IL-1β, IL-6, and IL-17A in serum from CIA rats. Curcumin reduced the serum concentration of inflammatory cytokines in CIA rats. However, both cholinergic receptor antagonists almost completely reversed curcumin-induced inhibition of production of TNF-α, IL-1β, and IL-6 (Fig. 7d).

Curcumin-induced anti-CIA effect is mediated by α7 nAChR

Previous studies have suggested that α7 nAChR is an important component of the cholinergic anti-inflammatory pathway [3, 5, 29]. To further determine whether α7 nAChR mediates the anti-CIA effects of curcumin, we tested the effect of α-bungarotoxin (α-BTX), a selective α7 nAChR antagonist, on the anti-arthritic effect of curcumin. α-BTX, (1 μg/kg), which had no effect on CIA, abolished anti-CIA action of curcumin (100 mg/kg) (Fig. 8).

Curcumin-induced modulation of neuronal excitability is mediated by α7 nAChR in nodose ganglion neurons

To determine whether curcumin-induced increase in neuronal excitability is also mediated by α7 nAChR, we first examined effects of α7 nAChR antagonists (α-BTX and methyllycaconitine citrate (MLA)) on action potentials. Neither of the antagonists used alone had significant effects on action potentials (Fig. 9). However, curcumin-induced modulation of action potentials was completely blocked by α-BTX (10 nM) and MLA (10 nM), respectively. These results demonstrated that α7 nAChR plays a crucial role in the activation of the vagus nerve by curcumin.

Discussion

Rheumatoid arthritis (RA) is a systemic refractory arthropathy that impacts patient quality of life. Up to now, the fundamental pathophysiology of RA has not been fully elucidated [39, 40]. However, evidence is mounting that the nervous system plays a vital role in the occurrence and development of RA [3]. The neural-endocrine-immune system constitutes a complex network and participates in maintaining homeostasis in organisms. It is well known that the nervous system is the regulating center of inflammatory and immune responses [41]. Growing evidence indicates that the immune and nervous system maintain extensive interactions. The bidirectional communication between them could regulate the inflammatory responses in diseases such as RA.
The autonomic nervous system (ANS) is divided into the sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS), which act either in synergy or in opposition to control life functions like body temperature, heart rate, blood pressure, and gastrointestinal motility to maintain homeostasis [42]. A clinical trial has demonstrated that the ANS is imbalanced in RA patients, with an increased sympathetic and reduced parasympathetic tone [43]. Moreover, recent reports have suggested that the PNS plays an important role in chronic immune-mediated inflammatory diseases. Activation of the PNS by either pharmacological or electrical stimulation of the vagus nerve attenuates inflammatory diseases [4446]. Pharmacological cholinoceptor antagonists or vagotomy attenuate these cholinoceptor agonist-induced anti-inflammatory effects [4750]. Hence, it is possible to target the neural pathways for treatments of excessive inflammation and autoimmune conditions.
Clinical studies have shown that curcumin can bring relief to osteoarthritis and RA [1315]. However, the pharmacokinetic studies have indicated that curcumin has poor bioavailability due to poor absorption, rapid metabolism, and rapid systemic elimination [1618]. This contradiction between the therapeutic efficacy and poor pharmacokinetics of curcumin has yet to be resolved and required further investigation.
We have previously demonstrated that oral administration of curcumin attenuates adjuvant-induced arthritis through a gut-dependent mechanism [19]. In the present study, we confirmed the anti-arthritic effects of curcumin and found that curcumin increases the activity of ChAT and regulates the cholinergic system function by reducing sympathetic tone and increasing parasympathetic tone. There is a great body of evidence indicating that the vagus nerve is a vital component of the inflammatory reflex. Once it is damaged, the cholinergic anti-inflammatory pathway cannot function normally [2, 3, 28, 51, 52].
Our data showed that unilateral cervical vagotomy completely abolished the anti-arthritic effects of curcumin, suggesting a critical role of an intact vagus nerve. Since the vagus nerve contains both afferent and efferent fibers, vagotomy removes both afferents and efferents. Further investigation is needed to elucidate the role of afferent fibers in anti-arthritic effect of curcumin. The electrophysiological results demonstrated that curcumin markedly increased neuronal excitability in nodose ganglion neurons, which further indicates that curcumin may exert its effect by directly activating the vagus nerve, suggesting the anti-arthritic effect of curcumin is mediated by the “gut-brain axis.” We further examined whether ACh receptors are involved in the curcumin-induced modulation of the cholinergic system function. Our results showed that the α7 nAChR antagonist markedly blocked the effects of curcumin on collagen-induced arthritis (CIA) and action potentials, suggesting that α7 nAChR mediates curcumin-induced modulation of neuronal excitability and CIA. Interestingly, recent studies have shown that curcumin exhibits regulatory effects on the gut microbiota in menopausal model, hepatic steatosis, DSS-induced colitis [5356], and that the gut microbiota is involved in the pathogenesis of arthritis [5759]. Based on these findings, it is possible that curcumin affects the cholinergic anti-inflammatory pathway through the gut-brain axis via modulation of gut microbiota.

Conclusions

In conclusion, we have demonstrated that curcumin suppressed the inflammatory response and attenuated CIA by targeting the “gut-brain axis.” Our findings therefore reveal that targeting the gut cholinergic anti-inflammatory pathway could be a promising therapeutic intervention for patients with RA and with other inflammatory disorders (such as IBD) characterized by imbalanced ANS. The present study also identified a novel mechanism of curcumin-induced anti-arthritic effects and provided an intriguing paradigm for the subsequent mechanistic studies of natural products with low oral absorption and bioavailability.

Acknowledgements

We thank Dr. James E. Barrett and Dr. Frances M. Munoz for their critical reading and valuable comments on the manuscript.

Funding

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, College Students Innovation Project for the R&D of Novel Drugs (J1030830), Colleges and Universities in Jiangsu Province plans to graduate research and innovation (KYLX_0638) and China Scholarship Council.

Availability of data and materials

The data and materials used in this manuscript are available from the corresponding author on reasonable request.
All in vivo studies were carried out according to protocols approved by the China Pharmaceutical University Animal Care and Use Committee guidelines. All in vitro studies were carried out according to protocols approved by the Drexel University College of Medicine Animal Care and Use Committee guidelines according to international guidelines of the National Institutes of Health.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2013;376:1094–108.CrossRef Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2013;376:1094–108.CrossRef
3.
Zurück zum Zitat van Maanen MA, Vervoordeldonk MJ, Tak PP. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol. 2009;5:229–32.CrossRefPubMed van Maanen MA, Vervoordeldonk MJ, Tak PP. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol. 2009;5:229–32.CrossRefPubMed
4.
Zurück zum Zitat Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248:188–204.CrossRefPubMedPubMedCentral Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev. 2012;248:188–204.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Waldburger JM, Boyle DL, Pavlov VA, Tracey KJ, Firestein GS. Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. Arthritis Rheum. 2008;58:3439–49.CrossRefPubMedPubMedCentral Waldburger JM, Boyle DL, Pavlov VA, Tracey KJ, Firestein GS. Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. Arthritis Rheum. 2008;58:3439–49.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10:1216–21.CrossRefPubMed Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10:1216–21.CrossRefPubMed
7.
Zurück zum Zitat Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.CrossRefPubMed Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.CrossRefPubMed
8.
Zurück zum Zitat Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14:141–53.PubMed Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009;14:141–53.PubMed
9.
Zurück zum Zitat Dhouib IB, Annabi A, Doghri R, Rejeb I, Dallagi Y, Bdiri Y, et al. Neuroprotective effects of curcumin against acetamiprid-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: biochemical, histological, and behavioral changes. Environ Sci Pollut Res In. 2017; [Epub ahead of print] Dhouib IB, Annabi A, Doghri R, Rejeb I, Dallagi Y, Bdiri Y, et al. Neuroprotective effects of curcumin against acetamiprid-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: biochemical, histological, and behavioral changes. Environ Sci Pollut Res In. 2017; [Epub ahead of print]
10.
Zurück zum Zitat Lahiff C, Moss AC. Curcumin for clinical and endoscopic remission in ulcerative colitis. Inflamm Bowel Dis. 2011;17:E66.CrossRefPubMed Lahiff C, Moss AC. Curcumin for clinical and endoscopic remission in ulcerative colitis. Inflamm Bowel Dis. 2011;17:E66.CrossRefPubMed
11.
Zurück zum Zitat Choi GY, Kim HB, Hwang ES, Lee S, Kim MJ, Choi JY, et al. Curcumin alters neural plasticity and viability of intact hippocampal circuits and attenuates behavioral despair and COX-2 expression in chronically stressed rats. Mediat Inflamm. 2017;2017:6280925. Choi GY, Kim HB, Hwang ES, Lee S, Kim MJ, Choi JY, et al. Curcumin alters neural plasticity and viability of intact hippocampal circuits and attenuates behavioral despair and COX-2 expression in chronically stressed rats. Mediat Inflamm. 2017;2017:6280925.
12.
Zurück zum Zitat Xu Y, Lin D, Li S, Li G, Shyamala SG, Barish PA, et al. Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology. 2009;57:463–71.CrossRefPubMed Xu Y, Lin D, Li S, Li G, Shyamala SG, Barish PA, et al. Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology. 2009;57:463–71.CrossRefPubMed
13.
Zurück zum Zitat Mun SH, Kim HS, Kim JW, Ko NY, Kim do K, Lee BY, et al. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway. J Pharmacol Sci. 2009;111:13–21.CrossRefPubMed Mun SH, Kim HS, Kim JW, Ko NY, Kim do K, Lee BY, et al. Oral administration of curcumin suppresses production of matrix metalloproteinase (MMP)-1 and MMP-3 to ameliorate collagen-induced arthritis: inhibition of the PKCdelta/JNK/c-Jun pathway. J Pharmacol Sci. 2009;111:13–21.CrossRefPubMed
14.
Zurück zum Zitat Moon DO, Kim MO, Choi YH, Park YM, Kim GY. Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model. Int Immunopharmacol. 2010;10:605–10.CrossRefPubMed Moon DO, Kim MO, Choi YH, Park YM, Kim GY. Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model. Int Immunopharmacol. 2010;10:605–10.CrossRefPubMed
15.
Zurück zum Zitat Chandran B, Goel A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res. 2012;26:1719–25.CrossRefPubMed Chandran B, Goel A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother Res. 2012;26:1719–25.CrossRefPubMed
16.
Zurück zum Zitat Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev. 2012;66:222–307.CrossRef Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev. 2012;66:222–307.CrossRef
17.
Zurück zum Zitat Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18.CrossRefPubMed Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18.CrossRefPubMed
18.
Zurück zum Zitat Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75:787–809.CrossRefPubMed Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75:787–809.CrossRefPubMed
19.
Zurück zum Zitat Yang Y, Wu X, Wei Z, Dou Y, Zhao D, Wang T, et al. Oral curcumin has anti-arthritic efficacy through somatostatin generation via cAMP/PKA and Ca(2+)/CaMKII signaling pathways in the small intestine. Pharmacol Res. 2015;95-96:71–81.CrossRefPubMed Yang Y, Wu X, Wei Z, Dou Y, Zhao D, Wang T, et al. Oral curcumin has anti-arthritic efficacy through somatostatin generation via cAMP/PKA and Ca(2+)/CaMKII signaling pathways in the small intestine. Pharmacol Res. 2015;95-96:71–81.CrossRefPubMed
20.
Zurück zum Zitat Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol. 2013;10:729–40.CrossRefPubMed Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol. 2013;10:729–40.CrossRefPubMed
21.
Zurück zum Zitat Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 2013;144:36–49.CrossRefPubMed Bonaz BL, Bernstein CN. Brain-gut interactions in inflammatory bowel disease. Gastroenterology. 2013;144:36–49.CrossRefPubMed
22.
Zurück zum Zitat Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA. The gut-brain axis rewired: adding a functional vagal nicotinic “sensory synapse”. FASEB J. 2014;28:3064–74.CrossRefPubMed Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA. The gut-brain axis rewired: adding a functional vagal nicotinic “sensory synapse”. FASEB J. 2014;28:3064–74.CrossRefPubMed
23.
Zurück zum Zitat Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37:984–95.CrossRefPubMedPubMedCentral Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37:984–95.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Wolkmer P, Silva CB, Paim FC, Duarte MM, Castro V, Palma HE, et al. Pre-treatment with curcumin modulates acetylcholinesterase activity and proinflammatory cytokines in rats infected with Trypanosoma evansi. Parasitol Int. 2013;62:144–9.CrossRefPubMed Wolkmer P, Silva CB, Paim FC, Duarte MM, Castro V, Palma HE, et al. Pre-treatment with curcumin modulates acetylcholinesterase activity and proinflammatory cytokines in rats infected with Trypanosoma evansi. Parasitol Int. 2013;62:144–9.CrossRefPubMed
25.
Zurück zum Zitat Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594:5781–90.CrossRefPubMedPubMedCentral Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594:5781–90.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ishrat T, Hoda MN, Khan MB, Yousuf S, Ahmad M, Khan MM, et al. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol. 2009;19:636–47.CrossRefPubMed Ishrat T, Hoda MN, Khan MB, Yousuf S, Ahmad M, Khan MM, et al. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol. 2009;19:636–47.CrossRefPubMed
27.
Zurück zum Zitat Yadav RS, Chandravanshi LP, Shukla RK, Sankhwar ML, Ansari RW, Shukla PK, et al. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology. 2011;32:760–8.CrossRefPubMed Yadav RS, Chandravanshi LP, Shukla RK, Sankhwar ML, Ansari RW, Shukla PK, et al. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology. 2011;32:760–8.CrossRefPubMed
28.
Zurück zum Zitat Tong B, Yuan X, Dou Y, Wu X, Wang Y, Xia Y, et al. Sinomenine induces the generation of intestinal Treg cells and attenuates arthritis via activation of aryl hydrocarbon receptor. Lab Investig. 2016;96:1076–86.CrossRefPubMed Tong B, Yuan X, Dou Y, Wu X, Wang Y, Xia Y, et al. Sinomenine induces the generation of intestinal Treg cells and attenuates arthritis via activation of aryl hydrocarbon receptor. Lab Investig. 2016;96:1076–86.CrossRefPubMed
29.
Zurück zum Zitat van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, Vervoordeldonk MJ, et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 2009;60:114–22.CrossRefPubMed van Maanen MA, Lebre MC, van der Poll T, LaRosa GJ, Elbaum D, Vervoordeldonk MJ, et al. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 2009;60:114–22.CrossRefPubMed
30.
Zurück zum Zitat Matsumoto S, Yoshida S, Ikeda M, Kadoi J, Takahashi M, Tanimoto T, et al. Effects of acetazolamide on transient K+ currents and action potentials in nodose ganglion neurons of adult rats. CNS Neurosci Ther. 2011;17:66–79.CrossRefPubMedPubMedCentral Matsumoto S, Yoshida S, Ikeda M, Kadoi J, Takahashi M, Tanimoto T, et al. Effects of acetazolamide on transient K+ currents and action potentials in nodose ganglion neurons of adult rats. CNS Neurosci Ther. 2011;17:66–79.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat HJ H, Carrasquillo Y, Karim F, Jung WE, Nerbonne JM, Schwarz TL, et al. The kv4.2 potassium channel subunit is required for pain plasticity. Neuron. 2006;50:89–100.CrossRef HJ H, Carrasquillo Y, Karim F, Jung WE, Nerbonne JM, Schwarz TL, et al. The kv4.2 potassium channel subunit is required for pain plasticity. Neuron. 2006;50:89–100.CrossRef
32.
Zurück zum Zitat Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113:8284–9.CrossRefPubMedPubMedCentral Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113:8284–9.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med. 2017;282:64–75.CrossRefPubMed Koopman FA, van Maanen MA, Vervoordeldonk MJ, Tak PP. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. J Intern Med. 2017;282:64–75.CrossRefPubMed
34.
Zurück zum Zitat Huston JM, Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med. 2011;269:45–53.CrossRefPubMedPubMedCentral Huston JM, Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med. 2011;269:45–53.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Prado VF, Roy A, Kolisnyk B, Gros R, Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J. 2013;450:265–74.CrossRefPubMed Prado VF, Roy A, Kolisnyk B, Gros R, Prado MA. Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochem J. 2013;450:265–74.CrossRefPubMed
36.
Zurück zum Zitat Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4:673–84.CrossRefPubMed Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4:673–84.CrossRefPubMed
37.
Zurück zum Zitat Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med. 2002;195:781–8.CrossRefPubMedPubMedCentral Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med. 2002;195:781–8.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Zhao X, Ye J, Sun Q, Xiong Y, Li R, Jiang Y. Antinociceptive effect of spirocyclopiperazinium salt compound LXM-15 via activating peripheral α7 nAChR and M4 mAChR in mice. Neuropharmacology. 2011;60:446–52.CrossRefPubMed Zhao X, Ye J, Sun Q, Xiong Y, Li R, Jiang Y. Antinociceptive effect of spirocyclopiperazinium salt compound LXM-15 via activating peripheral α7 nAChR and M4 mAChR in mice. Neuropharmacology. 2011;60:446–52.CrossRefPubMed
39.
Zurück zum Zitat Liao KP, Costenbader KH. Getting them even earlier: identifying individuals before clinical presentation with rheumatoid arthritis. Arthritis Rheum. 2009;61:1620–2.CrossRefPubMedPubMedCentral Liao KP, Costenbader KH. Getting them even earlier: identifying individuals before clinical presentation with rheumatoid arthritis. Arthritis Rheum. 2009;61:1620–2.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.CrossRefPubMed McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.CrossRefPubMed
41.
Zurück zum Zitat Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004;5:575–81.CrossRefPubMed Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004;5:575–81.CrossRefPubMed
43.
Zurück zum Zitat Koopman FA, Stoof SP, Straub RH, Van Maanen MA, Vervoordeldonk MJ, Tak PP. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med. 2011;17:937–48.CrossRefPubMedPubMedCentral Koopman FA, Stoof SP, Straub RH, Van Maanen MA, Vervoordeldonk MJ, Tak PP. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med. 2011;17:937–48.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med. 2017;282:46–63.CrossRefPubMed Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med. 2017;282:46–63.CrossRefPubMed
45.
Zurück zum Zitat Bonaz B, Sinniger V, Hoffmann D, Clarençon D, Mathieu N, Dantzer C, et al. Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterol Motil. 2016;28:948–53.CrossRefPubMed Bonaz B, Sinniger V, Hoffmann D, Clarençon D, Mathieu N, Dantzer C, et al. Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterol Motil. 2016;28:948–53.CrossRefPubMed
46.
Zurück zum Zitat Jin H, Guo J, Liu J, Lyu B, Foreman RD, Yin J, et al. Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2017;313:G192–202.CrossRefPubMed Jin H, Guo J, Liu J, Lyu B, Foreman RD, Yin J, et al. Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2017;313:G192–202.CrossRefPubMed
48.
Zurück zum Zitat Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.CrossRefPubMed Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.CrossRefPubMed
49.
Zurück zum Zitat van Maanen MA, Stoof SP, Larosa GJ, Vervoordeldonk MJ, Tak PP. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor α7 subunit gene knockout mice. Ann Rheum Dis. 2010;69:1717–23.CrossRefPubMed van Maanen MA, Stoof SP, Larosa GJ, Vervoordeldonk MJ, Tak PP. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor α7 subunit gene knockout mice. Ann Rheum Dis. 2010;69:1717–23.CrossRefPubMed
50.
Zurück zum Zitat Yamakawa K, Matsumoto N, Imamura Y, Muroya T, Yamada T, Nakagawa J, et al. Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model. PLoS One. 2013;8:e56728.CrossRefPubMedPubMedCentral Yamakawa K, Matsumoto N, Imamura Y, Muroya T, Yamada T, Nakagawa J, et al. Electrical vagus nerve stimulation attenuates systemic inflammation and improves survival in a rat heatstroke model. PLoS One. 2013;8:e56728.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature. 2008;452:1012–6.CrossRefPubMed Wang PY, Caspi L, Lam CK, Chari M, Li X, Light PE, et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature. 2008;452:1012–6.CrossRefPubMed
52.
Zurück zum Zitat Duca FA, Côté CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21:506–11.CrossRefPubMed Duca FA, Côté CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21:506–11.CrossRefPubMed
53.
Zurück zum Zitat Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG, Hu J. Effect of curcumin on the diversity of gut microbiota in ovariectomized rats. Nutrients. 2017;9:1146. Zhang Z, Chen Y, Xiang L, Wang Z, Xiao GG, Hu J. Effect of curcumin on the diversity of gut microbiota in ovariectomized rats. Nutrients. 2017;9:1146.
54.
Zurück zum Zitat Shen L, Liu L, Ji HF. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res. 2017;61:1361780.CrossRefPubMedPubMedCentral Shen L, Liu L, Ji HF. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res. 2017;61:1361780.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Feng W, Wang H, Zhang P, Gao C, Tao J, Ge Z, et al. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochim Biophys Acta. 1861;2017:1801–12. Feng W, Wang H, Zhang P, Gao C, Tao J, Ge Z, et al. Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochim Biophys Acta. 1861;2017:1801–12.
56.
Zurück zum Zitat McFadden RM, Larmonier CB, Shehab KW, Midura-Kiela M, Ramalingam R, Harrison CA, et al. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis. 2015;21:2483–94.CrossRefPubMedPubMedCentral McFadden RM, Larmonier CB, Shehab KW, Midura-Kiela M, Ramalingam R, Harrison CA, et al. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis. 2015;21:2483–94.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquín AJ, Pizano-Zárate ML, García-Mena J, Ramírez-Durán N. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res. 2017;2017:4835189.CrossRefPubMedPubMedCentral Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquín AJ, Pizano-Zárate ML, García-Mena J, Ramírez-Durán N. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res. 2017;2017:4835189.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Pianta A, Arvikar S, Strle K, Drouin EE, Wang Q, Costello CE, et al. Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69(5):964–75.CrossRefPubMed Pianta A, Arvikar S, Strle K, Drouin EE, Wang Q, Costello CE, et al. Evidence of the immune relevance of Prevotella copri, a gut microbe, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69(5):964–75.CrossRefPubMed
59.
Zurück zum Zitat Maeda Y, Takeda K. Role of gut microbiota in rheumatoid arthritis. J Clin Med. 2017;6. Maeda Y, Takeda K. Role of gut microbiota in rheumatoid arthritis. J Clin Med. 2017;6.
Metadaten
Titel
Curcumin attenuates collagen-induced inflammatory response through the “gut-brain axis”
verfasst von
Yannong Dou
Jinque Luo
Xin Wu
Zhifeng Wei
Bei Tong
Juntao Yu
Ting Wang
Xinyu Zhang
Yan Yang
Xusheng Yuan
Peng Zhao
Yufeng Xia
Huijuan Hu
Yue Dai
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Neuroinflammation / Ausgabe 1/2018
Elektronische ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-017-1047-7

Weitere Artikel der Ausgabe 1/2018

Journal of Neuroinflammation 1/2018 Zur Ausgabe