Skip to main content
Erschienen in: Critical Care 1/2015

Open Access 01.12.2015 | Research

Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study

verfasst von: Jostein S Hagemo, Sarah C Christiaans, Simon J Stanworth, Karim Brohi, Pär I Johansson, J Carel Goslings, Paal A Naess, Christine Gaarder

Erschienen in: Critical Care | Ausgabe 1/2015

Abstract

Introduction

The purpose of this study was to re-evaluate the findings of a smaller cohort study on the functional definition and characteristics of acute traumatic coagulopathy (ATC). We also aimed to identify the threshold values for the most accurate identification of ATC and prediction of massive transfusion (MT) using rotational thromboelastometry (ROTEM) assays.

Methods

In this prospective international multicentre cohort study, adult trauma patients who met the local criteria for full trauma team activation from four major trauma centres were included. Blood was collected on arrival to the emergency department and analyzed with laboratory international normalized ratio (INR), fibrinogen concentration and two ROTEM assays (EXTEM and FIBTEM). ATC was defined as laboratory INR >1.2. Transfusion requirements of ≥10 units of packed red blood cells within 24 hours were defined as MT. Performance of the tests were evaluated by receiver operating characteristic curves, and calculation of area under the curve (AUC). Optimal cutoff points were estimated based on Youden index.

Results

In total, 808 patients were included in the study. Among the ROTEM parameters, the largest AUCs were found for the clot amplitude (CA) 5 value in both the EXTEM and FIBTEM assays. EXTEM CA5 threshold value of ≤37 mm had a detection rate of 66.3% for ATC. An EXTEM CA5 threshold value of ≤40 mm predicted MT in 72.7%. FIBTEM CA5 threshold value of ≤8 mm detected ATC in 67.5%, and a FIBTEM CA5 threshold value ≤9 mm predicted MT in 77.5%. Fibrinogen concentration ≤1.6 g/L detected ATC in 73.6% and a fibrinogen concentration ≤1.90 g/L predicted MT in 77.8%. Patients with either an EXTEM or FIBTEM CA5 below the optimum detection threshold for ATC received significantly more packed red blood cells and plasma.

Conclusions

This study confirms previous findings of ROTEM CA5 as a valid marker for ATC and predictor for MT. With optimum threshold for EXTEM CA5 ≤ 40 mm and FIBTEM CA5 ≤ 9 mm, sensitivity is 72.7% and 77.5% respectively. Future investigations should evaluate the role of repeated viscoelastic testing in guiding haemostatic resuscitation in trauma.
Hinweise

Competing interests

Authors declare no non-financial competing interests. The research group has received unrestricted support from TEM International for this study, in the form of reagents for the analyses, and leasing of devices at reduced prices.

Authors’ contributions

JSH, SCC, SJS, KB, JCG, PIJ, PAN and CG all made substantial contributions to conception and design of the study. JSH, SJS, KB, PIJ contributed to acquisition of data. JSH performed the statistical analyses. JSH, SCC, SJS, KB, JCG, PIJ, PAN and CG authors contributed to interpretation of the data. JSH and SCC wrote the manuscript, and SJS, KB, JCG, PIJ, PAN and CG contributed to revising the manuscript for important intellectual content. JSH, SCC, SJS, KB, JCG, PIJ, PAN and CG and have given final approval for the version to be published. All authors read and approved the final manuscript.
Abkürzungen
ANOVA
analysis of variance
aPTT
activated partial thromboplastin time
ATC
acute traumatic coagulopathy
AUC
area under the curve
CA
clot amplitude
CCT
conventional coagulation tests
CFT
clot formation time
CT
clotting time
ED
emergency department
INR
international normalized ratio
ISS
Injury Severity Score
MCF
maximum clot firmness
MT
massive transfusion
PRBC
packed red blood cells
PT
prothrombin time
ROC
receiver operating characteristics
ROTEM
rotational thromboelastometry
TEG
thromboelastography
TF
tissue factor
VHA
viscoelastic haemostatic assay

Introduction

Haemorrhagic shock following injury has been shown to induce coagulopathy [1-3]. Acute traumatic coagulopathy (ATC) may potentiate bleeding and is associated with multiple organ failure and increased mortality [2,4,5]. Early detection of coagulopathy is important in order to counteract the haemostatic disturbances. Standard tests such as prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen concentration and platelet count are widely used to guide resuscitation in trauma patients [6,7]. However, the conventional coagulation tests (CCTs) focus on selected aspects of coagulation, which may not be appropriate for ATC [8]. Full blood viscoelastic haemostatic assays (VHA), such as rotational thromboelastometry (ROTEM) and thromboelastography (TEG), may provide a more complete assessment of haemostasis and as point-of-care devices should be able to provide results in a more clinically useful time frame for targeted therapy [9-11].
In a previous prospective cohort study, the tissue factor (TF)-activated ROTEM assay (EXTEM) was used to characterize ATC and the need for transfusions [12]. This study suggested that coagulopathy could be identified using the clot amplitude five minutes after the initiation of clot build-up (CA5). Thus, the CA5 value potentially may be used as a diagnostic tool for detecting ATC and the need for massive transfusion.
The objective of our study was to re-evaluate the previous findings in a larger international multi-centre setting. Specifically, we aimed to identify the threshold values that most accurately identify ATC and the need for massive transfusion, using the EXTEM assay, as well as the platelet-inhibited FIBTEM assay.

Methods

Design and patient selection

This multi-centre observational cohort study was conducted as a part of the Activation of Coagulation and Inflammation in Trauma study (ACIT) 3, led by the International Trauma Research Network (INTRN) collaboration. Patients were non-consecutively recruited at four major trauma centers in three different countries: UK, Denmark and Norway. The inclusion period was from January 2007 to November 2011, thereby also including a cohort previously studied [12]. Patients 18 years or older requiring full trauma team activation were eligible for inclusion. Patients who received more than 2,000 mL of fluids before arrival or who arrived in the emergency department (ED) more than two hours from time of injury were excluded. Additional exclusion criteria comprised patients who were pregnant, had known liver failure, bleeding disorders or were taking oral anticoagulant medications other than acetyl salicylic acid.
Informed consent was obtained from participating patients or their next of kin where appropriate. The study was performed in accordance with local ethical regulations and approved by local ethical authorities as specified under acknowledgements.

Sampling techniques and measurements

Blood samples were collected within 20 minutes of arrival in hospital. Samples for ROTEM and CCTs were collected in citrated tubes, whereas samples for blood gas analyses were collected in heparinized syringes in accordance with local routines. ROTEM assays were performed within one hour by dedicated study personnel using the ROTEM Delta (TEM; TEM International, Munich, Germany). The assays used were the EXTEM assay, where the citrated sample is recalcified before it is activated by TF, and the FIBTEM assay, where the platelet inhibitor cytochalasin D was added for platelet inhibition, to isolate the fibrin component of the clot.
The clotting time (CT) of the ROTEM trace is the time from initiation of the test to first detectable rotational resistance. Clot formation time (CFT) is the time from first detectable resistance to trace amplitude of 20 mm. The alpha angle is the angle of increase at the point where 20 mm amplitude is reached. Maximum clot firmness (MCF) is the maximum clot amplitude detected. The clot amplitude (CA) after 5 (CA5) and 10 (CA10) minutes were also recorded. Due to the fact that the FIBTEM trace rarely reaches amplitude of 20 mm, the CFT and alpha angle was omitted for the FIBTEM assays in this study.
CCTs and blood gas analyses were performed with the shortest possible delay. The CCTs included in this study were PT, fibrinogen concentration and platelet count. PT was converted to international normalized ratio (INR) in accordance with the specific reagents and device characteristics in the respective laboratories. Fibrinogen was measured by the Clauss method [13].

Data collection and statistical analyses

Patient data on demographics, time of injury, pre-hospital fluid administration and vital signs were collected prospectively. The total amount of packed red blood cell (PRBC) and plasma units required within the first 24 hours were recorded. Mechanism of injury and Injury Severity Score (ISS) were retrieved from the respective institutional trauma registries. ATC was defined as an INR value >1.2, consistent with the previous study [12]. We defined massive transfusion (MT) as the administration of 10 or more units of PRBC within 24 hours.
Groups with ATC and need for MT were compared to normal groups by Student’s t test or Mann-Whitney U test as appropriate. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to compare test accuracy. Optimal threshold for best sensitivity and specificity was defined using the Youden index. One-way analysis of variance (ANOVA) was used for detection of differences in transfusion requirements between groups. Statistical calculations were made using SPSS 21.0 (IBM Corp Armonk, NY, USA) and MedCalc 3.0 (MedCalc Software, Ostende, Belgium). A P value <0.05 was considered statistically significant. Values are given as mean (standard deviation) unless stated otherwise.

Results

A total of 808 patients were included in this study. The patient cohort is described in Table 1. Massive transfusion was required for 49 patients (6.1%) and 89 patients (11.0%) had ATC. All ROTEM parameters and CCTs differed significantly between ATC and non-ATC groups, as well as between MT and non-MT groups (P <0.001). These differences were also significant in the subgroup of patients presenting with a BE < −5 mEq/L.
Table 1
Descriptive statistics for the study population (n = 808)
 
All (n = 808)
INR >1.2 (n = 89)
MT (n = 49)
Age
38 (28)
38 (29)
41 (33)
Male gender (%)
77.4
71.9
65.3
ISS
16 (20)
33 (22)
29 (16)
Penetrating injury (%)
17.5
17.1
12.24
Base excess (mEq/ml)
−1.90 (4.90)
−8.0 (8.7)
−9.9 (7.7)
ISS >15 (%)
52.5
89.2
93.6
Base excess < −5 (%)
19.5
63.5
78.7
INR >1.2 (%)
11.0
100
51.1
Any PRBC administered (%)
31.7
76.7
100
PRBC ≥10 administered (%)
6.1
27.9
100
Age, ISS and base excess are given as median (interquartile range). INR, international normalized ratio; MT, massively transfused (≥10 PRBC); ISS, Injury Severity Score; PRBC: packed red blood cells.
Test characteristics based on previously suggested threshold values for INR (>1.2), CA5 (<35 mm), CT (>94 seconds) and alpha angle (<65°) are presented in Table 2. The detection rate for MT requirement was found to be highest for INR and EXTEM CA5 with 51.1% and 45.5%, respectively.
Table 2
Test characteristics in predicting massive transfusion (≥10 units of packed red blood cells) based on previously suggested threshold values [12 ]
 
Detection rate
False positive rate
PPV
NPV
INR >1.2
51.1
(36.1-65.9)
8.8
(6.8-11.0)
27.3
(18.3-37.9)
96.7
(95.0-97.9)
CT >94 sec
28.9
(16.4-44.3)
8.8
(6.9-11.2)
16.5
(9.1-26.5)
95.5
(93.7-96.9)
CA5 ≤ 35 mm
45.5
(30.4-61.2)
16.1
(13.5-19.0)
14.4
(9.0-21.3)
96.3
(94.5-97.6)
Alpha angle <65°
37.2
(23.0-53.3)
12.2
(9.9-14.8)
15.1
(8.9-23.4)
96.0
(94.2-97.3)
PPV, positive predictive value; NPV, negative predictive value; INR, international normalized ratio; CT, clotting time; CA5, clotting amplitude after 5 minutes.
Table 3 summarizes test performance measured by AUC for ROTEM parameters and CCTs. All included ROTEM parameters, fibrinogen concentration, INR and platelet counts significantly predicted MT. The highest ROTEM AUC values were found for EXTEM CA5 and FIBTEM CA5, both in detecting ATC and predicting MT requirements. These AUC values did however not differ significantly from the AUC of the other ROTEM parameters. AUC for fibrinogen concentration, on the other hand, was significantly higher than any other ROTEM parameter in detecting ATC.
Table 3
ROC analyses of parameters predicting acute traumatic coagulopathy (ATC) and massive transfusion (MT)
 
ATC
 
MT
 
 
AUC
(95% CI)
AUC
(95% CI)
EXTEM CT (s)
0.73
(0.70-0.76)
0.68
(0.65-0.71)
EXTEM CA5 (mm)
0.79
(0.76-0.81)
0.75
(0.72-0.78)
EXTEM CA10 (mm)
0.78
(0.75-0.81)
0.75
(0.72-0.78)
EXTEM CFT (s)
0.77
(0.74-0.80)
0.73
(0.70-0.76)
EXTEM Alpha (°)
0.78
(0.75-0.81)
0.73
(0.69-0-76)
EXTEM MCF (mm)
0.73
(0.70-0.76)
0.70
(0.67-0.73)
FIBTEM CT (s)
0.72
(0.68-0.75)
0.65
(0.62-0.69)
FIBTEM CA5 (mm)
0.80
(0.77-0.83)
0.78
(0.74-0.81)
FIBTEM CA10 (mm)
0.79
(0.76-0.82)
0.76
(0.73-0.79)
FIBTEM MCF (mm)
0.77
(0.74-0.80)
0.76
(0.73-0.79)
Fibrinogen concentration
0.87*
(0.84-0.89)
0.81
(0.78-0.83)
INR
N/A
N/A
0.82
(0.79-0.84)
Platelet count
0.74
(0.70-0.77)
0.70
(0.66-0.73)
ATC, acute traumatic coagulopathy defined as INR >1.2. MT, massive transfusion defined as 10 or more packed red blood cells. All AUCs values are statistically different from 0.5 with a P ≤0.001. *AUC is significantly larger than the AUC of the ROTEM parameters (P = 0.002 for difference to FIBTEM CA5). ROC, receiver operating characteristics; AUC, area under the curve; CT, clotting time; CA5, clot amplitude after 5 minutes; CA10, clot amplitude after 10 minutes; CFT, clot formation time; MCF, maximum clot firmness; INR, international normalized ratio.
The optimal threshold value for specificity and sensitivity for EXTEM CA5 in detecting ATC was found to be ≤37 mm, and in predicting MT ≤40 mm (Table 4). The corresponding values for FIBTEM were ≤8 mm and ≤9 mm, respectively. The optimal threshold for fibrinogen concentration in detecting ATC was ≤1.61 g/L and ≤1.90 g/L in predicting MT.
Table 4
Optimum thresholds and respective test accuracy parameters for predicting (a) acute traumatic coagulopathy (ATC) defined as INR >1.2 and (b) massive transfusion (MT) (defined as ≥10 units of PRBC)
Test parameter
Optimum threshold
Detection rate
False positive rate
PPV
NPV
(a)
 
EXTEM CA5
≤37
(34-39)
66.3
(55.1-76.3)
18.8
(15.9-21.9)
29.9
(23.4-37.1)
95.2
(93.2-96.8)
FIBTEM CA5
≤8
(5-8)
67.5
(55.9-77.8)
20.7
(17.7-23.9)
26.9
(20.8-33.8)
95.6
(93.5-97.1)
Fibrinogen
≤1.61
(1.36-1.9)
73.6
(63.0-82.4)
11.5
(9.2-14.1)
45.1
(36.7-53.6)
96.3
(94.5-97.7)
Platelet count
≤199
(128-199)
61.7
(46.4-75.5)
29.9
(26.6-33.4)
11.9
(8.1-16.7)
96.5
(94.6-97.9)
(b)
EXTEM CA5
≤40
(32-40)
72.7
(57.2-85.0)
31.3
(28.0-34.8)
12.2
(8.5-16.8)
97.7
(96.0-98.8)
FIBTEM CA5
≤9
(6-9)
77.5
(61.5-89.2)
32.8
(29.4-36.4)
11.4
(7.9-15.8)
98.2
(96.6-99.2)
Fibrinogen
≤1.90
(1.39-2.18)
77.8
(62.9-88.8)
29.7
(26.4-30.1)
14.0
(9.9-18.9)
98.1
(96.5-99.1)
INR
≥1.13
(1.0-1.16)
70.2
(55.1-82.7)
19.0
(16.2-22.1)
19.2
(13.6-25.9)
97.7
(96.2-98.7)
Platelet count
≤174
(159-182)
52.8
(41.9-63.5)
14.8
(12.2-17.7)
32.2
(24.7-40.4)
93.1
(90.8-95.0)
INR, international normalized ratio; PRBC, packed red blood cells; PPV, positive predictive value; NPV, negative predictive value; CA5, clot amplitude after 5 minutes.
With the calculated optimal thresholds for MT, detection rate with EXTEM CA5 was 72.7%, for FIBTEM CA5 77.5%, for fibrinogen concentration 77.8% and for INR 70.2%.
The number of units PRBC and plasma transfused was significantly higher in the groups with either EXTEM CA5 or FIBTEM CA5 below the optimum threshold for ATC detection as depicted in Figure 1.

Discussion

This study shows that the amplitude of the ROTEM assay after five minutes (EXTEM CA5) detects ATC and predicts the need for MT. The detection rate for MT of 45.5% was, however, lower in the current study compared to the predictive values previously reported (71.4%) when a threshold value of ≤35 mm was used [12]. When false positive and false negative test results were weighted equally, the threshold for best sensitivity and specificity (≤40 mm) was slightly higher in our data set than the threshold suggested by Davenport et al. With a threshold of ≤40 mm we found the detection rate for EXTEM CA5 to be 72.7%, comparable to the previous findings. This was, however, associated with an increased false positive rate in our data set (31.3% versus 15.3%). The reasons for the differences between our results and the results of the single-centre study by Davenport et al. may be due to the differences in number of massively transfused patients (11 vs. 49).
From the ROC curve analyses it appears that the platelet-inhibited assay (FIBTEM) may increase the test accuracy with respect to the need for MT. This is in accordance with the findings reported by Schöchl et al. [14]. In a retrospective single-centre study of 323 trauma patients, they found that the FIBTEM assay had a better overall test accuracy than the EXTEM assay. They identified the FIBTEM MCF as the parameter with the largest AUC, with detection rate similar to that of FIBTEM CA5 in our study. They identified an optimum threshold of FIBTEM MCF of ≤7 mm, with a sensitivity of 77.5%. In their study, fibrinogen concentration also had a large AUC, comparable to the best ROTEM parameter, and a sensitivity of 84.2%, with a threshold of 1.48 g/L.
Excellent correlation has previously been demonstrated between CA in platelet-inhibited ROTEM assays and fibrinogen measured by the Clauss method [15-17] Low fibrinogen concentration has been closely linked to mortality and need for MT in a number of studies [4,18,19]. In a study by Harr et al. [16] fibrinogen concentration was closely correlated to the clot strength (R2 = 0.87) in an assay similar to the FIBTEM assay (TEG Functional Fibrinogen assay). Adding fibrinogen in vitro increased both clot strength and the relative contribution to clot strength of fibrinogen compared to platelets. This finding is supported by animal studies, case reports and observational studies in humans demonstrating a reversal of ATC by fibrinogen concentrate [20-23]. The crucial role of fibrinogen in traumatic coagulopathy, supported by these findings, may to some extent explain why the FIBTEM assay present better test characteristics than the EXTEM assay in our study.
VHAs may benefit from several advantages compared to CCTs. Multiple repeated measurements used to evaluate the dynamic changes and to specifically direct the mode of coagulation support, has been advocated [24,25]. The ability to visualize the haemostatic process in whole blood from initiation to fibrinolysis, contrasts that of CCTs, which only assess isolated parts of the coagulation in plasma. Traditionally, the turnaround time for CCTs may be considered too long, and since the introduction of VHAs in trauma management, some researchers propose that the role of CCTs in guiding transfusion therapy is marginalized [26,27]. However, it should be noted that based on the results of several studies, INR [14,28], fibrinogen concentration [14], and haemoglobin concentration (or haematocrit) [14,29] appear to be non-inferior to VHAs when it comes to predicting MT from a single blood sample on arrival. Readily available point-of-care testing devices may, in the case of haemoglobin concentration and INR, overcome the time delay usually associated with the conventional laboratory analyses. The precision and feasibility of such diagnostics should be a target for further studies.
Limitations of our study include the fact that few patients required MT, and the confidence intervals of the test characteristics are correspondingly wide. The test results from ROTEM analyses were not blinded to clinicians in all centres and may to some extent have biased the results. In the case of such a bias this would have favoured the test performance of VHAs since they usually are available to clinicians faster than the CCTs. A survivor bias in this study cannot be excluded as some patients may have died before receiving the required amount of transfusions. This potential bias may have resulted in an underestimation of the accuracy in predicting MT in our study. Our analyses are based only on the first sample obtained shortly after arrival in the ED. The value of repeated VHA analyses to guide transfusion during the course of resuscitation was not evaluated in this study. Finally, our study is not addressing the impact of ROTEM on clinical outcomes.

Conclusions

In conclusion, this study confirms the previous finding that the ROTEM CA5 value measured on arrival is a valid marker for ATC and predicts MT requirements. An EXTEM CA5 threshold value of ≤40 mm has a detection rate of 72.7%, whereas a FIBTEM CA5 threshold value of ≤9 mm detects MT requirements in 77.5% of cases. Fibrinogen concentration was significantly better than ROTEM assays in predicting ATC, and a fibrinogen concentration ≤1.90 g/L had a detection rate of 77.8% for MT requirement. Future studies should be directed at identifying the role of repeated VHA measurements in guiding haemostatic resuscitation in trauma.

Key messages

  • The ROTEM assay is a valid predictor of coagulopathy and MT.
  • Optimal cutoff value for CA5 was found at ≤40 mm for the EXTEM assay and ≤9 mm for the FIBTEM assay.
  • Using the optimal CA5 cutoff point, detection rate for massive transfusion was 72.7% and 77.5% for EXTEM and FIBTEM respectively.
  • Test performance of fibrinogen concentration measured by the Clauss method was comparable to the best ROTEM parameters.

Acknowledgements

All of the author institutes are affiliated members of the International Trauma Research Network (www.​INTRN.​org) and as such this work represents a combined output resulting from this international partnership. The authors would like to thank the Oslo University hospital Trauma Registry for providing injury scores in the study population from Oslo. Ethical approval for this study was obtained from the East London and City Ethics Committee (London and Oxford), the South East Regional Ethics Committee (Oslo) and The Scientific Ethical Committee of the Capitol Region (Copenhagen).
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

Authors declare no non-financial competing interests. The research group has received unrestricted support from TEM International for this study, in the form of reagents for the analyses, and leasing of devices at reduced prices.

Authors’ contributions

JSH, SCC, SJS, KB, JCG, PIJ, PAN and CG all made substantial contributions to conception and design of the study. JSH, SJS, KB, PIJ contributed to acquisition of data. JSH performed the statistical analyses. JSH, SCC, SJS, KB, JCG, PIJ, PAN and CG authors contributed to interpretation of the data. JSH and SCC wrote the manuscript, and SJS, KB, JCG, PIJ, PAN and CG contributed to revising the manuscript for important intellectual content. JSH, SCC, SJS, KB, JCG, PIJ, PAN and CG and have given final approval for the version to be published. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat MacLeod JBA, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55:39–44.CrossRef MacLeod JBA, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy predicts mortality in trauma. J Trauma. 2003;55:39–44.CrossRef
2.
Zurück zum Zitat Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54:1127–30.CrossRef Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54:1127–30.CrossRef
3.
Zurück zum Zitat Frith D, Golings JC, Gaarder C, Maegele M, Cohen MJ, Allard S, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost. 2010;8:1919–25.CrossRef Frith D, Golings JC, Gaarder C, Maegele M, Cohen MJ, Allard S, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost. 2010;8:1919–25.CrossRef
4.
Zurück zum Zitat Hess JR, Lindell AL, Stansbury LG, Dutton RP, Scalea TM. The prevalence of abnormal results of conventional coagulation tests on admission to a trauma center. Transfusion. 2009;49:34–9.CrossRef Hess JR, Lindell AL, Stansbury LG, Dutton RP, Scalea TM. The prevalence of abnormal results of conventional coagulation tests on admission to a trauma center. Transfusion. 2009;49:34–9.CrossRef
5.
Zurück zum Zitat Eastridge BJ, Malone D, Holcomb JB. Early predictors of transfusion and mortality after injury: a review of the data-based literature. J Trauma. 2006;60:S20–5.CrossRef Eastridge BJ, Malone D, Holcomb JB. Early predictors of transfusion and mortality after injury: a review of the data-based literature. J Trauma. 2006;60:S20–5.CrossRef
6.
Zurück zum Zitat Gaarder C, Naess PA, Frischknecht Christensen E, Hakala P, Handolin L, Heier HE, et al. Scandinavian Guidelines--"The massively bleeding patient". Scand J Surg. 2008:15–36. Gaarder C, Naess PA, Frischknecht Christensen E, Hakala P, Handolin L, Heier HE, et al. Scandinavian Guidelines--"The massively bleeding patient". Scand J Surg. 2008:15–36.
7.
Zurück zum Zitat Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17:R76.CrossRef Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17:R76.CrossRef
8.
Zurück zum Zitat Hoffman M, Monroe DM. A cell-based model of hemostasis. Thromb Haemost. 2001;85:958–65.CrossRef Hoffman M, Monroe DM. A cell-based model of hemostasis. Thromb Haemost. 2001;85:958–65.CrossRef
9.
Zurück zum Zitat Schochl H, Nienaber U, Hofer G, Voelckel W, Jámbor C, Scharbert G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14:1–11.CrossRef Schochl H, Nienaber U, Hofer G, Voelckel W, Jámbor C, Scharbert G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Crit Care. 2010;14:1–11.CrossRef
10.
Zurück zum Zitat Stensballe J, Ostrowski SR, Johansson PI. Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol. 2014;27:212–8.CrossRef Stensballe J, Ostrowski SR, Johansson PI. Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol. 2014;27:212–8.CrossRef
11.
Zurück zum Zitat Cotton BA, Faz G, Hatch QM, Radwan ZA, Podbielski J, Wade C, et al. Rapid thrombelastography delivers real-time results that predict transfusion within 1 hour of admission. J Trauma. 2011;71:407–17.PubMed Cotton BA, Faz G, Hatch QM, Radwan ZA, Podbielski J, Wade C, et al. Rapid thrombelastography delivers real-time results that predict transfusion within 1 hour of admission. J Trauma. 2011;71:407–17.PubMed
12.
Zurück zum Zitat Davenport R, Reddy HL, Manson J, Doane SK, DeʼAth H, Keil SD, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;1:2652–8.CrossRef Davenport R, Reddy HL, Manson J, Doane SK, DeʼAth H, Keil SD, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;1:2652–8.CrossRef
13.
Zurück zum Zitat Clauss A. Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol. 1957;17:237–46.CrossRef Clauss A. Rapid physiological coagulation method in determination of fibrinogen. Acta Haematol. 1957;17:237–46.CrossRef
14.
Zurück zum Zitat Schöchl H, Cotton B, Inaba K, Nienaber U, Fischer H, Voelckel W, et al. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care. 2011;15:R265.CrossRef Schöchl H, Cotton B, Inaba K, Nienaber U, Fischer H, Voelckel W, et al. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care. 2011;15:R265.CrossRef
15.
Zurück zum Zitat Rugeri L, Levrat A, David JS, Delecroix E, Floccard B, Gros A, et al. Diagnosis of early coagulation abnormalities in trauma patients by rotation thrombelastography. J Thromb Haemost. 2007;5:289–95.CrossRef Rugeri L, Levrat A, David JS, Delecroix E, Floccard B, Gros A, et al. Diagnosis of early coagulation abnormalities in trauma patients by rotation thrombelastography. J Thromb Haemost. 2007;5:289–95.CrossRef
16.
Zurück zum Zitat Harr JN, Moore EE, Ghasabyan A, Chin TL, Sauaia A, Banerjee A, et al. Functional fibrinogen assay indicates that fibrinogen is critical in correcting abnormal clot strength following trauma. Shock. 2013;1:45–9.CrossRef Harr JN, Moore EE, Ghasabyan A, Chin TL, Sauaia A, Banerjee A, et al. Functional fibrinogen assay indicates that fibrinogen is critical in correcting abnormal clot strength following trauma. Shock. 2013;1:45–9.CrossRef
17.
Zurück zum Zitat Meyer ASM, Ostrowski SR, Sørensen AM, Meyer ASP, Holcomb JB, Wade CE, et al. Fibrinogen in trauma, an evaluation of thrombelastography and rotational thromboelastometry fibrinogen assays. J Surg Res. 2015; doi:10.1016/j.jss.2014.11.021. Meyer ASM, Ostrowski SR, Sørensen AM, Meyer ASP, Holcomb JB, Wade CE, et al. Fibrinogen in trauma, an evaluation of thrombelastography and rotational thromboelastometry fibrinogen assays. J Surg Res. 2015; doi:10.1016/j.jss.2014.11.021.
18.
Zurück zum Zitat Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10:1342–51.CrossRef Rourke C, Curry N, Khan S, Taylor R, Raza I, Davenport R, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10:1342–51.CrossRef
19.
Zurück zum Zitat Stinger HK, Spinella PC, Perkins JG, Grathwohl KW, Salinas J, Martini WZ, et al. The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma. 2008;64:S79–85.PubMed Stinger HK, Spinella PC, Perkins JG, Grathwohl KW, Salinas J, Martini WZ, et al. The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma. 2008;64:S79–85.PubMed
20.
Zurück zum Zitat Fries D. Effect of fibrinogen on reversal of dilutional coagulopathy: a porcine model. Br J Anaesth. 2005;95:172–7.CrossRef Fries D. Effect of fibrinogen on reversal of dilutional coagulopathy: a porcine model. Br J Anaesth. 2005;95:172–7.CrossRef
21.
Zurück zum Zitat Mittermayr M, Nessen SC, Streif W, Eastridge BJ, Haas T, Cronk D, et al. Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg. 2007;105:905–17.CrossRef Mittermayr M, Nessen SC, Streif W, Eastridge BJ, Haas T, Cronk D, et al. Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg. 2007;105:905–17.CrossRef
22.
Zurück zum Zitat Brenni M, Worn M, Brüesch M, Spahn DR, Ganter MT. Successful rotational thromboelastometry-guided treatment of traumatic haemorrhage, hyperfibrinolysis and coagulopathy. Acta Anaesthesiol Scand. 2010;54:111–7.CrossRef Brenni M, Worn M, Brüesch M, Spahn DR, Ganter MT. Successful rotational thromboelastometry-guided treatment of traumatic haemorrhage, hyperfibrinolysis and coagulopathy. Acta Anaesthesiol Scand. 2010;54:111–7.CrossRef
23.
Zurück zum Zitat Fenger-Eriksen C, Lindberg-Larsen M, Christensen AQ, Ingerslev J, Sørensen B. Fibrinogen concentrate substitution therapy in patients with massive haemorrhage and low plasma fibrinogen concentrations. Br J Anaesth. 2008;101:769–73.CrossRef Fenger-Eriksen C, Lindberg-Larsen M, Christensen AQ, Ingerslev J, Sørensen B. Fibrinogen concentrate substitution therapy in patients with massive haemorrhage and low plasma fibrinogen concentrations. Br J Anaesth. 2008;101:769–73.CrossRef
24.
Zurück zum Zitat Ganter MT, Spahn DR. Active, personalized, and balanced coagulation management saves lives in patients with massive bleeding. Anesthesiology. 2010;113:1016–8.CrossRef Ganter MT, Spahn DR. Active, personalized, and balanced coagulation management saves lives in patients with massive bleeding. Anesthesiology. 2010;113:1016–8.CrossRef
25.
Zurück zum Zitat Schochl H, Maegele M, Solomon C, Gorlinger K, Voelckel W. Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med. 2012;20:15.CrossRef Schochl H, Maegele M, Solomon C, Gorlinger K, Voelckel W. Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med. 2012;20:15.CrossRef
26.
Zurück zum Zitat Johansson PI, Ostrowski SR, Secher NH. Management of major blood loss: an update. Acta Anaesthesiol Scand. 2010;54:1039–49.CrossRef Johansson PI, Ostrowski SR, Secher NH. Management of major blood loss: an update. Acta Anaesthesiol Scand. 2010;54:1039–49.CrossRef
27.
Zurück zum Zitat Fries D, Innerhofer P, Schobersberger W. Time for changing coagulation management in trauma-related massive bleeding. Curr Opin Anaesthesiol. 2009;22:267–74.CrossRef Fries D, Innerhofer P, Schobersberger W. Time for changing coagulation management in trauma-related massive bleeding. Curr Opin Anaesthesiol. 2009;22:267–74.CrossRef
28.
Zurück zum Zitat Holcomb JB, Minei KM, Scerbo ML, Radwan ZA, Wade CE, Kozar RA, et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department. Ann Surg. 2012;256:476–86.CrossRef Holcomb JB, Minei KM, Scerbo ML, Radwan ZA, Wade CE, Kozar RA, et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department. Ann Surg. 2012;256:476–86.CrossRef
29.
Zurück zum Zitat Leemann H, Lustenberger T, Talving P, Kobayashi L, Bukur M, Brenni M, et al. The role of rotation thromboelastometry in early prediction of massive transfusion. J Trauma. 2010;69:1403–9.PubMed Leemann H, Lustenberger T, Talving P, Kobayashi L, Bukur M, Brenni M, et al. The role of rotation thromboelastometry in early prediction of massive transfusion. J Trauma. 2010;69:1403–9.PubMed
Metadaten
Titel
Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study
verfasst von
Jostein S Hagemo
Sarah C Christiaans
Simon J Stanworth
Karim Brohi
Pär I Johansson
J Carel Goslings
Paal A Naess
Christine Gaarder
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2015
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-015-0823-y

Weitere Artikel der Ausgabe 1/2015

Critical Care 1/2015 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.