Skip to main content
Erschienen in: European Radiology 2/2022

04.09.2021 | Imaging Informatics and Artificial Intelligence

Diagnosing autism spectrum disorder in children using conventional MRI and apparent diffusion coefficient based deep learning algorithms

verfasst von: Xiang Guo, Jiehuan Wang, Xiaoqiang Wang, Wenjing Liu, Hao Yu, Li Xu, Hengyan Li, Jiangfen Wu, Mengxing Dong, Weixiong Tan, Weijian Chen, Yunjun Yang, Yueqin Chen

Erschienen in: European Radiology | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Objective

To develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion coefficient (ADC) images.

Methods

A total of 151 ASD children and 151 age-matched typically developing (TD) controls were included in this study. The data from these subjects were assigned to training and validation datasets. An additional 20 ASD children and 25 TD controls were acquired, whose data were utilized in an independent test set. All subjects underwent cMRI and diffusion-weighted imaging examination of the brain. We developed a series of DL models to separate ASD from TD based on the cMRI and ADC data. The seven models used include five single-sequence models (SSMs), one dominant-sequence model (DSM), and one all-sequence model (ASM). To enhance the feature detection of the models, we embed an attention mechanism module.

Results

The highest AUC (0.824 ~ 0.850) was achieved when applying the SSM based on either FLAIR or ADC to the validation and independent test sets. A DSM using the combination of FLAIR and ADC showed an improved AUC in the validation (0.873) and independent test sets (0.876). The ASM also showed better diagnostic value in the validation (AUC = 0.838) and independent test sets (AUC = 0.836) compared to the SSMs. Among the models with attention mechanism, the DSM achieved the highest diagnostic performance with an AUC, accuracy, sensitivity, and specificity of 0.898, 84.4%, 85.0%, and 84.0% respectively.

Conclusions

This study established the potential of DL models to distinguish ASD cases from TD controls based on cMRI and ADC images.

Key Points

• Deep learning models based on conventional MRI and ADC can be used to diagnose ASD.
• The model (DSM) based on the FLAIR and ADC sequence achieved the best diagnostic performance with an AUC of 0.836 in the independent test sets.
• The attention mechanism further improved the diagnostic performance of the models.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Global Research on Developmental Disabilities Collaborators (2018) Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Glob Health 6:e1100–e1121 Global Research on Developmental Disabilities Collaborators (2018) Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Glob Health 6:e1100–e1121
2.
Zurück zum Zitat Maenner MJ, Shaw KA, Baio J et al (2020) Prevalence of autism spectrum disorder among children aged 8 years - Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016. MMWR Surveill Summ 69:1–12PubMedPubMedCentral Maenner MJ, Shaw KA, Baio J et al (2020) Prevalence of autism spectrum disorder among children aged 8 years - Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016. MMWR Surveill Summ 69:1–12PubMedPubMedCentral
3.
Zurück zum Zitat Lyall K, Croen L, Daniels J et al (2017) The changing epidemiology of autism spectrum disorders. Annu Rev Public Health 38:81–102PubMed Lyall K, Croen L, Daniels J et al (2017) The changing epidemiology of autism spectrum disorders. Annu Rev Public Health 38:81–102PubMed
4.
Zurück zum Zitat Charman T, Baron-Cohen S, Swettenham J, Baird G, Drew A, Cox A (2003) Predicting language outcome in infants with autism and pervasive developmental disorder. Int J Lang Commun Disord 38:265–285PubMed Charman T, Baron-Cohen S, Swettenham J, Baird G, Drew A, Cox A (2003) Predicting language outcome in infants with autism and pervasive developmental disorder. Int J Lang Commun Disord 38:265–285PubMed
5.
Zurück zum Zitat Woods JJ, Wetherby AM (2003) Early identification of and intervention for infants and toddlers who are at risk for autism spectrum disorder. Lang Speech Hear Serv Sch 34:180–193PubMed Woods JJ, Wetherby AM (2003) Early identification of and intervention for infants and toddlers who are at risk for autism spectrum disorder. Lang Speech Hear Serv Sch 34:180–193PubMed
6.
Zurück zum Zitat (SIGN) SIGN (2016) Assessment, diagnosis and interventions for autism spectrum disorders: a national clinical guideline. Edinburgh: SIGN; 2016 (SIGN publication no 145) (SIGN) SIGN (2016) Assessment, diagnosis and interventions for autism spectrum disorders: a national clinical guideline. Edinburgh: SIGN; 2016 (SIGN publication no 145)
7.
Zurück zum Zitat Zwaigenbaum L, Bauman ML, Choueiri R et al (2015) Early identification and interventions for autism spectrum disorder: executive summary. Pediatrics 136(Suppl 1):S1-9PubMed Zwaigenbaum L, Bauman ML, Choueiri R et al (2015) Early identification and interventions for autism spectrum disorder: executive summary. Pediatrics 136(Suppl 1):S1-9PubMed
8.
Zurück zum Zitat Nylander L, Holmqvist M, Gustafson L, Gillberg C (2013) Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in adult psychiatry. A 20-year register study. Nord J Psychiatry 67:344–350PubMed Nylander L, Holmqvist M, Gustafson L, Gillberg C (2013) Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in adult psychiatry. A 20-year register study. Nord J Psychiatry 67:344–350PubMed
9.
Zurück zum Zitat Mandell DS, Ittenbach RF, Levy SE, Pinto-Martin JA (2007) Disparities in diagnoses received prior to a diagnosis of autism spectrum disorder. J Autism Dev Disord 37:1795–1802PubMed Mandell DS, Ittenbach RF, Levy SE, Pinto-Martin JA (2007) Disparities in diagnoses received prior to a diagnosis of autism spectrum disorder. J Autism Dev Disord 37:1795–1802PubMed
10.
Zurück zum Zitat Ecker C, Bookheimer SY, Murphy DG (2015) Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol 14:1121–1134PubMed Ecker C, Bookheimer SY, Murphy DG (2015) Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol 14:1121–1134PubMed
11.
Zurück zum Zitat Zeglam AM, Al-Ogab MF, Al-Shaftery T (2015) MRI or not to MRI! Should brain MRI be a routine investigation in children with autistic spectrum disorders? Acta Neurol Belg 115:351–354PubMed Zeglam AM, Al-Ogab MF, Al-Shaftery T (2015) MRI or not to MRI! Should brain MRI be a routine investigation in children with autistic spectrum disorders? Acta Neurol Belg 115:351–354PubMed
12.
Zurück zum Zitat Boddaert N, Zilbovicius M, Philipe A et al (2009) MRI findings in 77 children with non-syndromic autistic disorder. PLoS One 4:e4415PubMedPubMedCentral Boddaert N, Zilbovicius M, Philipe A et al (2009) MRI findings in 77 children with non-syndromic autistic disorder. PLoS One 4:e4415PubMedPubMedCentral
14.
Zurück zum Zitat Wegiel J, Flory M, Kaczmarski W et al (2017) Partial agenesis and hypoplasia of the corpus callosum in idiopathic autism. J Neuropathol Exp Neurol 76:225–237PubMedPubMedCentral Wegiel J, Flory M, Kaczmarski W et al (2017) Partial agenesis and hypoplasia of the corpus callosum in idiopathic autism. J Neuropathol Exp Neurol 76:225–237PubMedPubMedCentral
15.
Zurück zum Zitat Paul LK, Corsello C, Kennedy DP, Adolphs R (2014) Agenesis of the corpus callosum and autism: a comprehensive comparison. Brain 137:1813–1829PubMedPubMedCentral Paul LK, Corsello C, Kennedy DP, Adolphs R (2014) Agenesis of the corpus callosum and autism: a comprehensive comparison. Brain 137:1813–1829PubMedPubMedCentral
16.
Zurück zum Zitat Numis AL, Major P, Montenegro MA, Muzykewicz DA, Pulsifer MB, Thiele EA (2011) Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology 76:981–987PubMedPubMedCentral Numis AL, Major P, Montenegro MA, Muzykewicz DA, Pulsifer MB, Thiele EA (2011) Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology 76:981–987PubMedPubMedCentral
17.
Zurück zum Zitat Abdel Razek A, Mazroa J, Baz H (2014) Assessment of white matter integrity of autistic preschool children with diffusion weighted MR imaging. Brain Dev 36:28–34PubMed Abdel Razek A, Mazroa J, Baz H (2014) Assessment of white matter integrity of autistic preschool children with diffusion weighted MR imaging. Brain Dev 36:28–34PubMed
18.
Zurück zum Zitat Mengotti P, D’Agostini S, Terlevic R et al (2011) Altered white matter integrity and development in children with autism: a combined voxel-based morphometry and diffusion imaging study. Brain Res Bull 84:189–195PubMed Mengotti P, D’Agostini S, Terlevic R et al (2011) Altered white matter integrity and development in children with autism: a combined voxel-based morphometry and diffusion imaging study. Brain Res Bull 84:189–195PubMed
19.
Zurück zum Zitat Ben Bashat D, Kronfeld-Duenias V, Zachor DA et al (2007) Accelerated maturation of white matter in young children with autism: a high b value DWI study. Neuroimage 37:40–47PubMed Ben Bashat D, Kronfeld-Duenias V, Zachor DA et al (2007) Accelerated maturation of white matter in young children with autism: a high b value DWI study. Neuroimage 37:40–47PubMed
20.
Zurück zum Zitat Schaefer GB, Mendelsohn NJ (2013) Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med 15:399–407PubMed Schaefer GB, Mendelsohn NJ (2013) Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med 15:399–407PubMed
21.
Zurück zum Zitat Pinaya WHL, Mechelli A, Sato JR (2019) Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum Brain Mapp 40:944–954PubMed Pinaya WHL, Mechelli A, Sato JR (2019) Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study. Hum Brain Mapp 40:944–954PubMed
22.
Zurück zum Zitat Akhavan Aghdam M, Sharifi A (2018) Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging 31:895–903PubMedPubMedCentral Akhavan Aghdam M, Sharifi A (2018) Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging 31:895–903PubMedPubMedCentral
23.
Zurück zum Zitat Chen T, Chen Y, Yuan M et al (2020) The development of a practical artificial intelligence tool for diagnosing and evaluating autism spectrum disorder: multicenter study. JMIR Med Inform 8:e15767PubMedPubMedCentral Chen T, Chen Y, Yuan M et al (2020) The development of a practical artificial intelligence tool for diagnosing and evaluating autism spectrum disorder: multicenter study. JMIR Med Inform 8:e15767PubMedPubMedCentral
24.
Zurück zum Zitat Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ (2017) Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front Neurosci 11:460PubMedPubMedCentral Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ (2017) Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front Neurosci 11:460PubMedPubMedCentral
25.
Zurück zum Zitat Hazlett HC, Gu H, Munsell BC et al (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature 542:348–351PubMedPubMedCentral Hazlett HC, Gu H, Munsell BC et al (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature 542:348–351PubMedPubMedCentral
26.
Zurück zum Zitat Barber AD, Srinivasan P, Joel SE, Caffo BS, Pekar JJ, Mostofsky SH (2012) Motor “dexterity”?: evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cereb Cortex 22:51–59PubMed Barber AD, Srinivasan P, Joel SE, Caffo BS, Pekar JJ, Mostofsky SH (2012) Motor “dexterity”?: evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cereb Cortex 22:51–59PubMed
27.
Zurück zum Zitat Nebel MB, Joel SE, Muschelli J et al (2014) Disruption of functional organization within the primary motor cortex in children with autism. Hum Brain Mapp 35:567–580PubMed Nebel MB, Joel SE, Muschelli J et al (2014) Disruption of functional organization within the primary motor cortex in children with autism. Hum Brain Mapp 35:567–580PubMed
28.
Zurück zum Zitat Sanghyun Woo JP, Joon-Young Lee, In So Kweon (2018) CBAM: Convolutional Block Attention Module. arXiv:180706521v2 Sanghyun Woo JP, Joon-Young Lee, In So Kweon (2018) CBAM: Convolutional Block Attention Module. arXiv:180706521v2
29.
Zurück zum Zitat Du Tran LB, Rob Fergus, Lorenzo Torresani, Manohar Paluri (2014) Learning spatiotemporal features with 3D convolutional networks. arXiv:14120767 Du Tran LB, Rob Fergus, Lorenzo Torresani, Manohar Paluri (2014) Learning spatiotemporal features with 3D convolutional networks. arXiv:14120767
31.
Zurück zum Zitat Diederik P, Kingma JB (2014) Adam: a method for stochastic optimization. arXiv:14126980 [cs.LG] Diederik P, Kingma JB (2014) Adam: a method for stochastic optimization. arXiv:14126980 [cs.LG]
32.
Zurück zum Zitat Sujit SJ, Coronado I, Kamali A, Narayana PA, Gabr RE (2019) Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. J Magn Reson Imaging 50:1260–1267PubMedPubMedCentral Sujit SJ, Coronado I, Kamali A, Narayana PA, Gabr RE (2019) Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. J Magn Reson Imaging 50:1260–1267PubMedPubMedCentral
33.
Zurück zum Zitat Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin 17:16–23 Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin 17:16–23
34.
Zurück zum Zitat Zielinski BA, Prigge MB, Nielsen JA et al (2014) Longitudinal changes in cortical thickness in autism and typical development. Brain 137:1799–1812PubMedPubMedCentral Zielinski BA, Prigge MB, Nielsen JA et al (2014) Longitudinal changes in cortical thickness in autism and typical development. Brain 137:1799–1812PubMedPubMedCentral
35.
Zurück zum Zitat Alexander AL, Lee JE, Lazar M et al (2007) Diffusion tensor imaging of the corpus callosum in autism. Neuroimage 34:61–73PubMed Alexander AL, Lee JE, Lazar M et al (2007) Diffusion tensor imaging of the corpus callosum in autism. Neuroimage 34:61–73PubMed
36.
Zurück zum Zitat Aghdam MA, Sharifi A (2019) Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. J Digit Imaging 32:899–918PubMedPubMedCentral Aghdam MA, Sharifi A (2019) Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. J Digit Imaging 32:899–918PubMedPubMedCentral
37.
Zurück zum Zitat Sundaram SK, Kumar A, Makki MI, Behen ME, Chugani HT, Chugani DC (2008) Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cereb Cortex 18:2659–2665PubMedPubMedCentral Sundaram SK, Kumar A, Makki MI, Behen ME, Chugani HT, Chugani DC (2008) Diffusion tensor imaging of frontal lobe in autism spectrum disorder. Cereb Cortex 18:2659–2665PubMedPubMedCentral
38.
Zurück zum Zitat Ajay K, Sundaram Senthil K, Lalitha S et al (2010) Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb Cortex 20:2103–13 Ajay K, Sundaram Senthil K, Lalitha S et al (2010) Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder. Cereb Cortex 20:2103–13
39.
Zurück zum Zitat Pinto Gama HP, da Rocha AJ, Braga FT et al (2006) Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis. Pediatr Radiol 36:119–125PubMed Pinto Gama HP, da Rocha AJ, Braga FT et al (2006) Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis. Pediatr Radiol 36:119–125PubMed
40.
Zurück zum Zitat Jurkiewicz E, Jozwiak S, Bekiesinska-Figatowska M, Pakula-Kosciesza I, Walecki J (2006) Cyst-like cortical tubers in patients with tuberous sclerosis complex: MR imaging with the FLAIR sequence. Pediatr Radiol 36:498–501PubMed Jurkiewicz E, Jozwiak S, Bekiesinska-Figatowska M, Pakula-Kosciesza I, Walecki J (2006) Cyst-like cortical tubers in patients with tuberous sclerosis complex: MR imaging with the FLAIR sequence. Pediatr Radiol 36:498–501PubMed
41.
Zurück zum Zitat Xu J, Wang C, Xu Z et al (2020) Specific functional connectivity patterns of middle temporal gyrus subregions in children and adults with autism spectrum disorder. Autism Res 13:410–422PubMed Xu J, Wang C, Xu Z et al (2020) Specific functional connectivity patterns of middle temporal gyrus subregions in children and adults with autism spectrum disorder. Autism Res 13:410–422PubMed
42.
Zurück zum Zitat Postema MC, van Rooij D, Anagnostou E et al (2019) Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat Commun 10:4958PubMedPubMedCentral Postema MC, van Rooij D, Anagnostou E et al (2019) Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat Commun 10:4958PubMedPubMedCentral
43.
Zurück zum Zitat Shukla DK, Keehn B, Lincoln AJ, Müller RA (2010) White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry 49(1269–1278):1278.e1261–1262 Shukla DK, Keehn B, Lincoln AJ, Müller RA (2010) White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry 49(1269–1278):1278.e1261–1262
44.
Zurück zum Zitat Sui YV, Donaldson J, Miles L, Babb JS, Castellanos FX, Lazar M (2018) Diffusional kurtosis imaging of the corpus callosum in autism. Mol Autism 9:62PubMedPubMedCentral Sui YV, Donaldson J, Miles L, Babb JS, Castellanos FX, Lazar M (2018) Diffusional kurtosis imaging of the corpus callosum in autism. Mol Autism 9:62PubMedPubMedCentral
45.
Zurück zum Zitat Adorjan I, Ahmed B, Feher V et al (2017) Calretinin interneuron density in the caudate nucleus is lower in autism spectrum disorder. Brain 140:2028–2040PubMedPubMedCentral Adorjan I, Ahmed B, Feher V et al (2017) Calretinin interneuron density in the caudate nucleus is lower in autism spectrum disorder. Brain 140:2028–2040PubMedPubMedCentral
46.
Zurück zum Zitat Langen M, Durston S, Staal WG, Palmen SJ, van Engeland H (2007) Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry 62:262–266PubMed Langen M, Durston S, Staal WG, Palmen SJ, van Engeland H (2007) Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry 62:262–266PubMed
47.
Zurück zum Zitat Hau J, Aljawad S, Baggett N, Fishman I, Carper RA, Müller RA (2019) The cingulum and cingulate U-fibers in children and adolescents with autism spectrum disorders. Hum Brain Mapp 40:3153–3164PubMedPubMedCentral Hau J, Aljawad S, Baggett N, Fishman I, Carper RA, Müller RA (2019) The cingulum and cingulate U-fibers in children and adolescents with autism spectrum disorders. Hum Brain Mapp 40:3153–3164PubMedPubMedCentral
Metadaten
Titel
Diagnosing autism spectrum disorder in children using conventional MRI and apparent diffusion coefficient based deep learning algorithms
verfasst von
Xiang Guo
Jiehuan Wang
Xiaoqiang Wang
Wenjing Liu
Hao Yu
Li Xu
Hengyan Li
Jiangfen Wu
Mengxing Dong
Weixiong Tan
Weijian Chen
Yunjun Yang
Yueqin Chen
Publikationsdatum
04.09.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08239-4

Weitere Artikel der Ausgabe 2/2022

European Radiology 2/2022 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.