Skip to main content
Erschienen in: The Cerebellum 5/2014

01.10.2014 | Original Paper

Glutamate and GABA-Metabolizing Enzymes in Post-mortem Cerebellum in Alzheimer’s Disease: Phosphate-Activated Glutaminase and Glutamic Acid Decarboxylase

verfasst von: G. Sh. Burbaeva, I. S. Boksha, E. B. Tereshkina, O. K. Savushkina, T. A. Prokhorova, E. A. Vorobyeva

Erschienen in: The Cerebellum | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer’s disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.
Literatur
1.
Zurück zum Zitat Fujiwara T, Morimoto K. A compound CP-31398 suppresses excitotoxicity-induced neurodegeneration. Biochem Biophys Res Commun. 2013;440(3):359–63.PubMedCrossRef Fujiwara T, Morimoto K. A compound CP-31398 suppresses excitotoxicity-induced neurodegeneration. Biochem Biophys Res Commun. 2013;440(3):359–63.PubMedCrossRef
3.
Zurück zum Zitat Wang ZC, Zhao J, Li S. Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-β. Neurosci Bull. 2013;29(6):752–60.PubMedCrossRef Wang ZC, Zhao J, Li S. Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-β. Neurosci Bull. 2013;29(6):752–60.PubMedCrossRef
4.
Zurück zum Zitat Majláth Z, Toldi J, Vécsei L. The potential role of kynurenines in Alzheimer’s disease: pathomechanism and therapeutic possibilities by influencing the glutamate receptors. J Neural Transm. 2013. doi:10.1007/s00702-013-1135-5.PubMed Majláth Z, Toldi J, Vécsei L. The potential role of kynurenines in Alzheimer’s disease: pathomechanism and therapeutic possibilities by influencing the glutamate receptors. J Neural Transm. 2013. doi:10.​1007/​s00702-013-1135-5.PubMed
5.
Zurück zum Zitat Jones RS, Waldman AD. 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia. Neurol Res. 2004;26(5):488–95.PubMedCrossRef Jones RS, Waldman AD. 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia. Neurol Res. 2004;26(5):488–95.PubMedCrossRef
6.
Zurück zum Zitat Boksha IS. Coupling between neuronal and glial cells via glutamate metabolism in brain of healthy persons and patients with mental disorders. Biochemistry (Mosc). 2004;69(7):705–19.CrossRef Boksha IS. Coupling between neuronal and glial cells via glutamate metabolism in brain of healthy persons and patients with mental disorders. Biochemistry (Mosc). 2004;69(7):705–19.CrossRef
7.
Zurück zum Zitat Burbaeva GS, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS. Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res. 2005;30(11):1443–51.PubMedCrossRef Burbaeva GS, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS. Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res. 2005;30(11):1443–51.PubMedCrossRef
8.
Zurück zum Zitat Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener. 2011;6:55–63.PubMedCentralPubMedCrossRef Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ. Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener. 2011;6:55–63.PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61(11):1495–511.PubMedCrossRef Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61(11):1495–511.PubMedCrossRef
10.
Zurück zum Zitat Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology. 2006;44(4):788–94.PubMedCrossRef Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology. 2006;44(4):788–94.PubMedCrossRef
11.
Zurück zum Zitat Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A. Glutamine in the central nervous system: function and dysfunction. Front Biosci. 2007;1(12):332–43.CrossRef Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A. Glutamine in the central nervous system: function and dysfunction. Front Biosci. 2007;1(12):332–43.CrossRef
12.
Zurück zum Zitat Bae N, Wang Y, Li L, Rayport S, Lubec G. Network of brain protein level changes in glutaminase deficient fetal mice. J Proteomics. 2013;27(80):236–49.CrossRef Bae N, Wang Y, Li L, Rayport S, Lubec G. Network of brain protein level changes in glutaminase deficient fetal mice. J Proteomics. 2013;27(80):236–49.CrossRef
13.
Zurück zum Zitat Dumanis SB, DiBattista AM, Miessau M, Moussa CE, Rebeck GW. APOE genotype affects the pre-synaptic compartment of glutamatergic nerve terminals. J Neurochem. 2013;124(1):4–14.PubMedCentralPubMedCrossRef Dumanis SB, DiBattista AM, Miessau M, Moussa CE, Rebeck GW. APOE genotype affects the pre-synaptic compartment of glutamatergic nerve terminals. J Neurochem. 2013;124(1):4–14.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Vermeiren Y, Van Dam D, Aerts T, Engelborghs S, De Deyn PP. Brain region-specific monoaminergic correlates of neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimer’s Dis. 2014 Mar 31. Vermeiren Y, Van Dam D, Aerts T, Engelborghs S, De Deyn PP. Brain region-specific monoaminergic correlates of neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimer’s Dis. 2014 Mar 31.
15.
Zurück zum Zitat O’Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neuropsychol. 2012;34(1):35–56.PubMedCrossRef O’Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neuropsychol. 2012;34(1):35–56.PubMedCrossRef
16.
Zurück zum Zitat Holten AT, Gundersen V. Glutamine as a precursor for transmitter glutamate, aspartate and GABA in the cerebellum: a role for phosphate-activated glutaminase. J Neurochem. 2008;104(4):1032–42.PubMedCrossRef Holten AT, Gundersen V. Glutamine as a precursor for transmitter glutamate, aspartate and GABA in the cerebellum: a role for phosphate-activated glutaminase. J Neurochem. 2008;104(4):1032–42.PubMedCrossRef
17.
Zurück zum Zitat Burbaeva GS, Savushkina OK, Dmitriev AD. Brain isoforms of creatine kinase in health and mental diseases: Alzheimer’s disease and schizophrenia. Vestn Ross Akad Med Nauk. 1999;1:20–4 [Russian].PubMed Burbaeva GS, Savushkina OK, Dmitriev AD. Brain isoforms of creatine kinase in health and mental diseases: Alzheimer’s disease and schizophrenia. Vestn Ross Akad Med Nauk. 1999;1:20–4 [Russian].PubMed
18.
Zurück zum Zitat Burbaeva GSh, Savushkina OK, Boksha IS. Comparative study of creatine kinase BB decrease in brain of patients with Alzheimer’s disease and schizophrenia. In: Kekelidze T, Holtzman D, editors. Creatine kinase and brain energy metabolism. NATO Science Series, 342, Netherlands: IOS Press; 2003. p. 125–132. Burbaeva GSh, Savushkina OK, Boksha IS. Comparative study of creatine kinase BB decrease in brain of patients with Alzheimer’s disease and schizophrenia. In: Kekelidze T, Holtzman D, editors. Creatine kinase and brain energy metabolism. NATO Science Series, 342, Netherlands: IOS Press; 2003. p. 125–132.
19.
Zurück zum Zitat Burbaeva GS, Turishcheva MS, Vorobyeva EB, Savushkina OK, Tereshkina EB, Boksha IS. Diversity of glutamate dehydrogenase in human brain. Prog Neuropsyhopharmacol Biol Psychiatry. 2002;26(3):427–35.CrossRef Burbaeva GS, Turishcheva MS, Vorobyeva EB, Savushkina OK, Tereshkina EB, Boksha IS. Diversity of glutamate dehydrogenase in human brain. Prog Neuropsyhopharmacol Biol Psychiatry. 2002;26(3):427–35.CrossRef
20.
Zurück zum Zitat Buddhala C, Suarez M, Modi J, Prentice H, Ma Z, Tao R, et al. Calpain cleavage of brain glutamic acid decarboxylase 65 is pathological and impairs GABA neurotransmission. PLoS One. 2012;7(3):e33002.PubMedCentralPubMedCrossRef Buddhala C, Suarez M, Modi J, Prentice H, Ma Z, Tao R, et al. Calpain cleavage of brain glutamic acid decarboxylase 65 is pathological and impairs GABA neurotransmission. PLoS One. 2012;7(3):e33002.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Kaneko T, Itoh K, Shigemoto R, Mizuno N. Glutaminase-like immunoreactivity in the lower brain stem and cerebellum of the adult rat. Neuroscience. 1989;32(1):79–98.PubMedCrossRef Kaneko T, Itoh K, Shigemoto R, Mizuno N. Glutaminase-like immunoreactivity in the lower brain stem and cerebellum of the adult rat. Neuroscience. 1989;32(1):79–98.PubMedCrossRef
22.
Zurück zum Zitat Levi G, Gallo V. Glutamate as a putative transmitter in the cerebellum: stimulation by GABA of glutamic acid release from specific pools. J Neurochem. 1981;37(1):22–31.PubMedCrossRef Levi G, Gallo V. Glutamate as a putative transmitter in the cerebellum: stimulation by GABA of glutamic acid release from specific pools. J Neurochem. 1981;37(1):22–31.PubMedCrossRef
23.
Zurück zum Zitat Kvamme E, Roberg B, Torgner IA. Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res. 2000;25(9–10):1407–19.PubMedCrossRef Kvamme E, Roberg B, Torgner IA. Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochem Res. 2000;25(9–10):1407–19.PubMedCrossRef
24.
Zurück zum Zitat Kvamme E, Torgner IA, Roberg B. Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res. 2001;66(5):951–8.PubMedCrossRef Kvamme E, Torgner IA, Roberg B. Kinetics and localization of brain phosphate activated glutaminase. J Neurosci Res. 2001;66(5):951–8.PubMedCrossRef
25.
Zurück zum Zitat Roberg B, Torgner IA, Laake J, Takumi Y, Ottersen OP, Kvamme E. Properties and submitochondrial localization of pig and rat renal phosphate-activated glutaminase. Am J Physiol Cell Physiol. 2000;279(3):C648–57.PubMed Roberg B, Torgner IA, Laake J, Takumi Y, Ottersen OP, Kvamme E. Properties and submitochondrial localization of pig and rat renal phosphate-activated glutaminase. Am J Physiol Cell Physiol. 2000;279(3):C648–57.PubMed
26.
Zurück zum Zitat Kvamme E, Nissen-Meyer LS, Roberg BA, Torgner IA. Novel form of phosphate activated glutaminase in cultured astrocytes and human neuroblastoma cells, PAG in brain pathology and localization in the mitochondria. Neurochem Res. 2008;33(7):1341–5.PubMedCrossRef Kvamme E, Nissen-Meyer LS, Roberg BA, Torgner IA. Novel form of phosphate activated glutaminase in cultured astrocytes and human neuroblastoma cells, PAG in brain pathology and localization in the mitochondria. Neurochem Res. 2008;33(7):1341–5.PubMedCrossRef
27.
Zurück zum Zitat Shimmura C, Suzuki K, Iwata Y, Tsuchiya KJ, Ohno K, Matsuzaki H, et al. Enzymes in the glutamate glutamine cycle in the anterior cingulate cortex in postmortem brain of subjects with autism. Mol Autism. 2013;4(1):6–13.PubMedCentralPubMedCrossRef Shimmura C, Suzuki K, Iwata Y, Tsuchiya KJ, Ohno K, Matsuzaki H, et al. Enzymes in the glutamate glutamine cycle in the anterior cingulate cortex in postmortem brain of subjects with autism. Mol Autism. 2013;4(1):6–13.PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Akiyama H, McGeer PL, Itagaki S, McGeer EG, Kaneko T. Loss of glutaminase-positive cortical neurons in Alzheimer’s disease. Neurochem Res. 1989;14(4):353–8.PubMedCrossRef Akiyama H, McGeer PL, Itagaki S, McGeer EG, Kaneko T. Loss of glutaminase-positive cortical neurons in Alzheimer’s disease. Neurochem Res. 1989;14(4):353–8.PubMedCrossRef
29.
Zurück zum Zitat Haug LS, Ostvold AC, Cowburn RF, Garlind A, Winblad B, Bogdanovich N, et al. Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer’s disease cerebral cortex: selectivity of changes and possible correlation to pathological severity. Neurodegeneration. 1996;5(2):169–76.PubMedCrossRef Haug LS, Ostvold AC, Cowburn RF, Garlind A, Winblad B, Bogdanovich N, et al. Decreased inositol (1,4,5)-trisphosphate receptor levels in Alzheimer’s disease cerebral cortex: selectivity of changes and possible correlation to pathological severity. Neurodegeneration. 1996;5(2):169–76.PubMedCrossRef
30.
Zurück zum Zitat Lynn BC, Wang J, Markesbery WR, Lovell MA. Quantitative changes in the mitochondrial proteome from subjects with mild cognitive impairment, early stage and late stage Alzheimer’s disease. J Alzheimers Dis. 2010;19(1):325–39.PubMedCentralPubMed Lynn BC, Wang J, Markesbery WR, Lovell MA. Quantitative changes in the mitochondrial proteome from subjects with mild cognitive impairment, early stage and late stage Alzheimer’s disease. J Alzheimers Dis. 2010;19(1):325–39.PubMedCentralPubMed
31.
Zurück zum Zitat Monnerie H, Le Roux PD. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABA ergic neurons: the role of cysteine proteases. Exp Neurol. 2008;213(1):145–53.PubMedCrossRef Monnerie H, Le Roux PD. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABA ergic neurons: the role of cysteine proteases. Exp Neurol. 2008;213(1):145–53.PubMedCrossRef
32.
Zurück zum Zitat Turský T, Lassánová M. Inhibition of different molecular forms of brain glutamic acid decarboxylase (GAD) with ATP. J Neurochem. 1978;30(4):903–5.PubMedCrossRef Turský T, Lassánová M. Inhibition of different molecular forms of brain glutamic acid decarboxylase (GAD) with ATP. J Neurochem. 1978;30(4):903–5.PubMedCrossRef
33.
Zurück zum Zitat Erlander MG, Tobin AJ. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res. 1991;16(3):215–26.PubMedCrossRef Erlander MG, Tobin AJ. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res. 1991;16(3):215–26.PubMedCrossRef
34.
Zurück zum Zitat Esclapez M, Tillakaratne NJK, Kaufman DL, Tobin AJ, Houser CR. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci. 1994;14(3):1834–55.PubMed Esclapez M, Tillakaratne NJK, Kaufman DL, Tobin AJ, Houser CR. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci. 1994;14(3):1834–55.PubMed
35.
Zurück zum Zitat Tian N, Petersen C, Kash S, Baekkeskov S, Copenhagen D, Nicoll R. The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc Natl Acad Sci U S A. 1999;96:12911–6.PubMedCentralPubMedCrossRef Tian N, Petersen C, Kash S, Baekkeskov S, Copenhagen D, Nicoll R. The role of the synthetic enzyme GAD65 in the control of neuronal gamma-aminobutyric acid release. Proc Natl Acad Sci U S A. 1999;96:12911–6.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Wei J, Wu J-Y. Post-translational regulation of L-glutamic acid decarboxylase in the brain. Neurochem Res. 2008;33:1459–65.PubMedCrossRef Wei J, Wu J-Y. Post-translational regulation of L-glutamic acid decarboxylase in the brain. Neurochem Res. 2008;33:1459–65.PubMedCrossRef
37.
Zurück zum Zitat Martin DL, Martin SB, Wu SJ, Espina N. Cofactor interactions and the regulation of glutamate decarboxylase activity. Neurochem Res. 1991;16(3):243–9.PubMedCrossRef Martin DL, Martin SB, Wu SJ, Espina N. Cofactor interactions and the regulation of glutamate decarboxylase activity. Neurochem Res. 1991;16(3):243–9.PubMedCrossRef
38.
Zurück zum Zitat Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, et al. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat Struct Mol Biol. 2007;14:280–6.PubMedCrossRef Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, et al. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat Struct Mol Biol. 2007;14:280–6.PubMedCrossRef
39.
Zurück zum Zitat Kaufman DL, Houser CR, Tobin A. Two forms of the aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distribution and cofactor interaction. J Neurochem. 1991;56:720–3.PubMedCrossRef Kaufman DL, Houser CR, Tobin A. Two forms of the aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distribution and cofactor interaction. J Neurochem. 1991;56:720–3.PubMedCrossRef
40.
Zurück zum Zitat Owens D, Kriegstein A. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci. 2002;3:715–27.PubMedCrossRef Owens D, Kriegstein A. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci. 2002;3:715–27.PubMedCrossRef
41.
Zurück zum Zitat Asada H, Kawamura Y, Maruyama K. Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun. 1996;229:891–5.PubMedCrossRef Asada H, Kawamura Y, Maruyama K. Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun. 1996;229:891–5.PubMedCrossRef
42.
Zurück zum Zitat Asada H, Kawamura Y, Maruyama K. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A. 1997;94(12):6496–9.PubMedCentralPubMedCrossRef Asada H, Kawamura Y, Maruyama K. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A. 1997;94(12):6496–9.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Schwab C, Yu S, Wong W, McGeer EG, McGeer PL. GAD65, GAD67, and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J Alzheimers Dis. 2013;33(4):1073–88.PubMed Schwab C, Yu S, Wong W, McGeer EG, McGeer PL. GAD65, GAD67, and GABAT immunostaining in human brain and apparent GAD65 loss in Alzheimer’s disease. J Alzheimers Dis. 2013;33(4):1073–88.PubMed
44.
Zurück zum Zitat Dirkx Jr R, Thomas A, Li L, Lernmark A, Sherwin RS, De Camilli P, et al. Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J Biol Chem. 1995;270:2241–6.PubMedCrossRef Dirkx Jr R, Thomas A, Li L, Lernmark A, Sherwin RS, De Camilli P, et al. Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J Biol Chem. 1995;270:2241–6.PubMedCrossRef
45.
Zurück zum Zitat Kanaani J, Lissin D, Kash SF, Baekkeskov S. The hydrophilic isoform of glutamate decarboxylase, GAD67, is targeted to membranes and nerve terminals independent of dimerization with the hydrophobic membrane-anchored isoform, GAD65. J Biol Chem. 1999;274(52):37200–9.PubMedCrossRef Kanaani J, Lissin D, Kash SF, Baekkeskov S. The hydrophilic isoform of glutamate decarboxylase, GAD67, is targeted to membranes and nerve terminals independent of dimerization with the hydrophobic membrane-anchored isoform, GAD65. J Biol Chem. 1999;274(52):37200–9.PubMedCrossRef
46.
Zurück zum Zitat Mitew S, Kirkcaldie MT, Dickson TC, Vickers JC. Altered synapses and gliotransmission in Alzheimer’s disease and AD model mice. Neurobiol Aging. 2013;34(10):2341–51.PubMedCrossRef Mitew S, Kirkcaldie MT, Dickson TC, Vickers JC. Altered synapses and gliotransmission in Alzheimer’s disease and AD model mice. Neurobiol Aging. 2013;34(10):2341–51.PubMedCrossRef
47.
Zurück zum Zitat Krantic S, Isorce N, Mechawar N, Davoli MA, Vignault E, Albuquerque M, et al. Hippocampal GABAergic neurons are susceptible to amyloid-β toxicity in vitro and are decreased in number in the Alzheimer’s disease TgCRND8 mouse model. J Alzheimers Dis. 2012;29(2):293–308.PubMed Krantic S, Isorce N, Mechawar N, Davoli MA, Vignault E, Albuquerque M, et al. Hippocampal GABAergic neurons are susceptible to amyloid-β toxicity in vitro and are decreased in number in the Alzheimer’s disease TgCRND8 mouse model. J Alzheimers Dis. 2012;29(2):293–308.PubMed
48.
Zurück zum Zitat Sjöbeck M, Englund E. Alzheimer’s disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord. 2001;12(3):211–8.PubMedCrossRef Sjöbeck M, Englund E. Alzheimer’s disease and the cerebellum: a morphologic study on neuronal and glial changes. Dement Geriatr Cogn Disord. 2001;12(3):211–8.PubMedCrossRef
49.
Zurück zum Zitat Bowen DM, White P, Flack RH, Smith CB, Davison AN. Brain-decarboxylase activities as indices of pathological change in senile dementia. Lancet. 1974;1(7869):1247–9.PubMedCrossRef Bowen DM, White P, Flack RH, Smith CB, Davison AN. Brain-decarboxylase activities as indices of pathological change in senile dementia. Lancet. 1974;1(7869):1247–9.PubMedCrossRef
50.
Zurück zum Zitat Reinikainen KJ, Paljärvi L, Huuskonen M, Soininen H, Laakso M, Riekkinen PJ. A postmortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J Neurol Sci. 1988;84(1):101–16.PubMedCrossRef Reinikainen KJ, Paljärvi L, Huuskonen M, Soininen H, Laakso M, Riekkinen PJ. A postmortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer’s disease. J Neurol Sci. 1988;84(1):101–16.PubMedCrossRef
51.
Zurück zum Zitat Boissière F, Faucheux B, Duyckaerts C, Hauw JJ, Agid Y, Hirsch EC. Striatal expression of glutamic acid decarboxylase gene in Alzheimer’s disease. J Neurochem. 1988;71(2):767.CrossRef Boissière F, Faucheux B, Duyckaerts C, Hauw JJ, Agid Y, Hirsch EC. Striatal expression of glutamic acid decarboxylase gene in Alzheimer’s disease. J Neurochem. 1988;71(2):767.CrossRef
52.
Zurück zum Zitat Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci. 1977;34(2):247–65.PubMedCrossRef Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci. 1977;34(2):247–65.PubMedCrossRef
53.
Zurück zum Zitat Gluck MR, Thomas RG, Davis KL, Haroutunian V. Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am J Psychiatry. 2002;159(7):1165–11673.PubMedCrossRef Gluck MR, Thomas RG, Davis KL, Haroutunian V. Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am J Psychiatry. 2002;159(7):1165–11673.PubMedCrossRef
54.
Zurück zum Zitat Yates CM, Butterworth J, Tennant MC, Gordon A. Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem. 1990;55(5):1624–30.PubMedCrossRef Yates CM, Butterworth J, Tennant MC, Gordon A. Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem. 1990;55(5):1624–30.PubMedCrossRef
55.
Zurück zum Zitat Monfort JC, Javoy-Agid F, Hauw JJ, Dubois B, Agid Y. Brain glutamate decarboxylase in Parkinson’s disease with particular reference to a premortem severity index. Brain. 1985;108(2):301–13.PubMedCrossRef Monfort JC, Javoy-Agid F, Hauw JJ, Dubois B, Agid Y. Brain glutamate decarboxylase in Parkinson’s disease with particular reference to a premortem severity index. Brain. 1985;108(2):301–13.PubMedCrossRef
56.
Zurück zum Zitat Simpson MD, Cross AJ, Slater P, Deakin JF. Loss of cortical GABA uptake sites in Alzheimer’s disease. J Neural Transm. 1988;71(3):219–26.PubMedCrossRef Simpson MD, Cross AJ, Slater P, Deakin JF. Loss of cortical GABA uptake sites in Alzheimer’s disease. J Neural Transm. 1988;71(3):219–26.PubMedCrossRef
57.
Zurück zum Zitat Bland R, Fitzsimons H. Novel glutamic acid decarboxylase (GAD) chimera and methods of use. USA Patent US8071563 B2. 2009 Bland R, Fitzsimons H. Novel glutamic acid decarboxylase (GAD) chimera and methods of use. USA Patent US8071563 B2. 2009
58.
Zurück zum Zitat Whitelaw BS, Robinson MB. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front Endocrinol (Lausanne). 2013;4:123. Whitelaw BS, Robinson MB. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front Endocrinol (Lausanne). 2013;4:123.
59.
Zurück zum Zitat Bauer DE, Jackson JG, Genda EN, Montoya MM, Yudkoff M, Robinson MB. The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem Int. 2012;61(4):566–74.PubMedCentralPubMedCrossRef Bauer DE, Jackson JG, Genda EN, Montoya MM, Yudkoff M, Robinson MB. The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem Int. 2012;61(4):566–74.PubMedCentralPubMedCrossRef
60.
Zurück zum Zitat Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMed Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMed
61.
Zurück zum Zitat Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedCrossRef Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20(3):236–60.PubMedCrossRef
62.
Zurück zum Zitat Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6(3):159–62.PubMedCrossRef Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6(3):159–62.PubMedCrossRef
63.
Zurück zum Zitat Arnsten AF, Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2012;51(4):356–67.PubMedCrossRef Arnsten AF, Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2012;51(4):356–67.PubMedCrossRef
64.
Zurück zum Zitat Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci. 2005;30(3):178–86.PubMedCentralPubMed Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci. 2005;30(3):178–86.PubMedCentralPubMed
65.
Zurück zum Zitat Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K. DNA damage and cell cycle event simplicate cerebellar dentate nucleus neurons as targets of Alzheimer’s disease. Mol Neurodegener. 2010;20(5):60–71.CrossRef Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K. DNA damage and cell cycle event simplicate cerebellar dentate nucleus neurons as targets of Alzheimer’s disease. Mol Neurodegener. 2010;20(5):60–71.CrossRef
Metadaten
Titel
Glutamate and GABA-Metabolizing Enzymes in Post-mortem Cerebellum in Alzheimer’s Disease: Phosphate-Activated Glutaminase and Glutamic Acid Decarboxylase
verfasst von
G. Sh. Burbaeva
I. S. Boksha
E. B. Tereshkina
O. K. Savushkina
T. A. Prokhorova
E. A. Vorobyeva
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 5/2014
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-014-0573-4

Weitere Artikel der Ausgabe 5/2014

The Cerebellum 5/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.