Skip to main content
Erschienen in: Molecular Imaging and Biology 4/2020

06.01.2020 | Research Article

Glutamate-Weighted CEST Contrast After Removal of Magnetization Transfer Effect in Human Brain and Rat Brain with Tumor

verfasst von: Ayan Debnath, Hari Hariharan, Ravi Prakash Reddy Nanga, Ravinder Reddy, Anup Singh

Erschienen in: Molecular Imaging and Biology | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To mitigate the effect of magnetization transfer (MT) from glutamate-weighted chemical exchange saturation transfer (GluCEST) contrast in healthy human brain and its demonstration in a rat brain tumor model.

Procedures

GluCEST data was acquired from six healthy human volunteers at 7T and on a rat brain with tumor at 9.4 T. Single voxel proton magnetic resonance spectroscopy (1HMRS) data was acquired from three human volunteers. The magnetic resonance imaging protocol included CEST data acquisition at multiple frequencies for generating Z-spectra, B0 and B1 map. Partial Z-spectra at offset frequencies from ± 100 to ± 14 ppm were fitted to model semi-solid MT component by Lorentzian, Gaussian, super-Lorentzian, and 6th degree polynomial function lineshapes. Average residual errors per pixel was calculated. The MT effect of the Z-spectra was removed by subtracting fitted MT component from Z-spectra. GluCEST was computed as GluCESTNeg (normalized with signal at − 3 ppm) and GluCESTM0 (normalized with unsaturated signal). The difference between GluCEST maps before and after MT removal was compared using T test.

Results

Better accuracy of fitting off-resonance Z-spectra was achieved with super-Lorentzian (σ = 0.0009) and Lorentzian (σ = 0.0017) compared to other lineshapes. There was significant (p < 0.01) increase in GluCESTM0 and decrease in GluCESTNeg contrast after MT removal. GluCESTNeg and GluCESTM0 maps after MT removal using Lorentzian lineshape showed gray matter (GM) to white matter (WM) contrast ratio of 1.47 and 1.52 respectively. These ratios are close to glutamate concentration ratio in GM/WM as observed from 1HMRS data. Thus, the quantity of the MT removed from Z-spectra is appropriate using Lorentzian lineshape due to preservation of GluCEST contrast-ratio in GM/WM. The amount of MT removed from Z-spectra is overestimated using super-Lorentzian and underestimated using Gaussian and polynomial lineshapes. Tumor tissue showed unexpected increase in GluCEST contrast compared to contra-lesional tissue, which represents normal appearing tissue in the brain on contra-lateral side of tumor region, due to decrease in MT component.

Conclusions

Removal of MT effect from Z-spectra using Lorentzian lineshape increased the specificity of GluCEST contrast to glutamate in healthy human brain and was demonstrated in rat brain tumor model.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Marsman A, Van Den Heuvel MP, Klomp DWJ et al (2013) Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophrenia Bull 39:120–129 Marsman A, Van Den Heuvel MP, Klomp DWJ et al (2013) Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophrenia Bull 39:120–129
2.
Zurück zum Zitat Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R (2011) Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging 32:802–810PubMed Rupsingh R, Borrie M, Smith M, Wells JL, Bartha R (2011) Reduced hippocampal glutamate in Alzheimer disease. Neurobiol Aging 32:802–810PubMed
3.
Zurück zum Zitat Srinivasan R, Sailasuta N, Hurd R et al (2005) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 28:1016–1025 Srinivasan R, Sailasuta N, Hurd R et al (2005) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 28:1016–1025
4.
Zurück zum Zitat Ramadan S, Lin A, Stanwell P (2013) Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed 26:1630–1646PubMed Ramadan S, Lin A, Stanwell P (2013) Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed 26:1630–1646PubMed
5.
Zurück zum Zitat De La FSC, León-Ortiz P, Azcárraga M et al (2013) Striatal glutamate and the conversion to psychosis: a prospective 1H-MRS imaging study. Int J Neuropsychopharmacol 16:471–475 De La FSC, León-Ortiz P, Azcárraga M et al (2013) Striatal glutamate and the conversion to psychosis: a prospective 1H-MRS imaging study. Int J Neuropsychopharmacol 16:471–475
6.
Zurück zum Zitat Horder J, Lavender T, Mendez MA et al (2013) Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [1H]MRS study. Transl Psychiatry 3:7–9 Horder J, Lavender T, Mendez MA et al (2013) Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [1H]MRS study. Transl Psychiatry 3:7–9
7.
Zurück zum Zitat Nils K, Paul K, Valerie F et al (2007) Glutamate measurement in Parkinson’s disease using MRS at 3 T field strength. NMR Biomed 20:448–467 Nils K, Paul K, Valerie F et al (2007) Glutamate measurement in Parkinson’s disease using MRS at 3 T field strength. NMR Biomed 20:448–467
8.
Zurück zum Zitat Bejjani A, O’Neill J, Kim JA et al (2012) Elevated glutamatergic compounds in pregenual anterior cingulate in pediatric autism spectrum disorder demonstrated by 1H MRS and 1H MRSI. PLoS ONE 7:e38786PubMedPubMedCentral Bejjani A, O’Neill J, Kim JA et al (2012) Elevated glutamatergic compounds in pregenual anterior cingulate in pediatric autism spectrum disorder demonstrated by 1H MRS and 1H MRSI. PLoS ONE 7:e38786PubMedPubMedCentral
9.
Zurück zum Zitat Smith GS, Schloesser R, Brodie JD et al (1998) Glutamate modulation of dopamine measured in vivo with positron emission tomography (PET) and 11C-raclopride in normal human subjects. Neuropsychopharmacol 18:18–25 Smith GS, Schloesser R, Brodie JD et al (1998) Glutamate modulation of dopamine measured in vivo with positron emission tomography (PET) and 11C-raclopride in normal human subjects. Neuropsychopharmacol 18:18–25
10.
Zurück zum Zitat Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, Detre JA, Reddy R (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306PubMedPubMedCentral Cai K, Haris M, Singh A, Kogan F, Greenberg JH, Hariharan H, Detre JA, Reddy R (2012) Magnetic resonance imaging of glutamate. Nat Med 18:302–306PubMedPubMedCentral
11.
Zurück zum Zitat Kogan F, Singh A, Debrosse C, Haris M, Cai K, Nanga RP, Elliott M, Hariharan H, Reddy R (2013) Imaging of glutamate in the spinal cord using GluCEST. NeuroImage 77:262–267PubMedPubMedCentral Kogan F, Singh A, Debrosse C, Haris M, Cai K, Nanga RP, Elliott M, Hariharan H, Reddy R (2013) Imaging of glutamate in the spinal cord using GluCEST. NeuroImage 77:262–267PubMedPubMedCentral
12.
Zurück zum Zitat Davis KA, Nanga RPR, Das S et al (2015) Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med 7:1–7 Davis KA, Nanga RPR, Das S et al (2015) Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med 7:1–7
13.
Zurück zum Zitat Roalf DR, Nanga RPR, Rupert PE, Hariharan H, Quarmley M, Calkins ME, Dress E, Prabhakaran K, Elliott MA, Moberg PJ, Gur RC, Gur RE, Reddy R, Turetsky BI (2017) Glutamate imaging (GluCEST) reveals lower brain GluCEST contrast in patients on the psychosis spectrum. Mol Psychiatry 22:1298–1305PubMedPubMedCentral Roalf DR, Nanga RPR, Rupert PE, Hariharan H, Quarmley M, Calkins ME, Dress E, Prabhakaran K, Elliott MA, Moberg PJ, Gur RC, Gur RE, Reddy R, Turetsky BI (2017) Glutamate imaging (GluCEST) reveals lower brain GluCEST contrast in patients on the psychosis spectrum. Mol Psychiatry 22:1298–1305PubMedPubMedCentral
14.
Zurück zum Zitat Neal A, Moffat BA, Stein JM et al (2019) Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. NeuroImage: Clin 22:101694 Neal A, Moffat BA, Stein JM et al (2019) Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. NeuroImage: Clin 22:101694
15.
Zurück zum Zitat Pépin J, Francelle L, Carrillo-de Sauvage MA, de Longprez L, Gipchtein P, Cambon K, Valette J, Brouillet E, Flament J (2016) In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington’s disease. NeuroImage 139:53–64PubMed Pépin J, Francelle L, Carrillo-de Sauvage MA, de Longprez L, Gipchtein P, Cambon K, Valette J, Brouillet E, Flament J (2016) In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington’s disease. NeuroImage 139:53–64PubMed
16.
Zurück zum Zitat Haris M, Nath K, Cai K, Singh A, Crescenzi R, Kogan F, Verma G, Reddy S, Hariharan H, Melhem ER, Reddy R (2013) Imaging of glutamate neurotransmitter alterations in Alzheimer’s disease. NMR Biomed 26:386–391PubMed Haris M, Nath K, Cai K, Singh A, Crescenzi R, Kogan F, Verma G, Reddy S, Hariharan H, Melhem ER, Reddy R (2013) Imaging of glutamate neurotransmitter alterations in Alzheimer’s disease. NMR Biomed 26:386–391PubMed
17.
Zurück zum Zitat Chen Y, Dai Z, Shen Z et al (2018) Imaging of glutamate in brain abscess using GLUCEST at 7T. Radiol Infect Dis 5:148–153 Chen Y, Dai Z, Shen Z et al (2018) Imaging of glutamate in brain abscess using GLUCEST at 7T. Radiol Infect Dis 5:148–153
18.
Zurück zum Zitat Lee DH, Woo CW, Kwon JI, et al. (2019) Cerebral mapping of glutamate using chemical exchange saturation transfer imaging in a rat model of stress-induced sleep disturbance at 7.0T. J Magn Reson Imaging 50:1866–1872 Lee DH, Woo CW, Kwon JI, et al. (2019) Cerebral mapping of glutamate using chemical exchange saturation transfer imaging in a rat model of stress-induced sleep disturbance at 7.0T. J Magn Reson Imaging 50:1866–1872
19.
Zurück zum Zitat Singh A, Cai K, Haris M, Hariharan H, Reddy R (2013) On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 69:818–824PubMed Singh A, Cai K, Haris M, Hariharan H, Reddy R (2013) On B1 inhomogeneity correction of in vivo human brain glutamate chemical exchange saturation transfer contrast at 7T. Magn Reson Med 69:818–824PubMed
20.
Zurück zum Zitat Bagga P, Pickup S, Crescenzi R et al (2018) In vivo GluCEST MRI: reproducibility, background contribution and source of glutamate changes in the MPTP model of Parkinson’s disease. Sci Rep 8:1–9 Bagga P, Pickup S, Crescenzi R et al (2018) In vivo GluCEST MRI: reproducibility, background contribution and source of glutamate changes in the MPTP model of Parkinson’s disease. Sci Rep 8:1–9
21.
Zurück zum Zitat Kogan F, Hariharan H, Reddy R (2014) Chemical exchange saturation transfer (CEST) imaging: description of technique and potential clinical applications. Curr Radiol Rep 5:102–114 Kogan F, Hariharan H, Reddy R (2014) Chemical exchange saturation transfer (CEST) imaging: description of technique and potential clinical applications. Curr Radiol Rep 5:102–114
22.
Zurück zum Zitat Bagga P, Crescenzi R, Krishnamoorthy G, Verma G, Nanga RP, Reddy D, Greenberg J, Detre JA, Hariharan H, Reddy R (2016) Mapping the alterations in glutamate with GluCEST MRI in a mouse model of dopamine deficiency. J Neurochem 139:432–439PubMedPubMedCentral Bagga P, Crescenzi R, Krishnamoorthy G, Verma G, Nanga RP, Reddy D, Greenberg J, Detre JA, Hariharan H, Reddy R (2016) Mapping the alterations in glutamate with GluCEST MRI in a mouse model of dopamine deficiency. J Neurochem 139:432–439PubMedPubMedCentral
23.
Zurück zum Zitat Hua J, Jones CK, Blakeley J, Smith SA, van Zijl P, Zhou J (2007) Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain. Magn Reson Med 58:786–793PubMedPubMedCentral Hua J, Jones CK, Blakeley J, Smith SA, van Zijl P, Zhou J (2007) Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain. Magn Reson Med 58:786–793PubMedPubMedCentral
24.
Zurück zum Zitat Ng MC, Hua J, Hu Y, Luk KD, Lam EY (2009) Magnetization transfer (MT) asymmetry around the water resonance in human cervical spinal cord. J Magn Reson Imaging 29:523–528PubMedPubMedCentral Ng MC, Hua J, Hu Y, Luk KD, Lam EY (2009) Magnetization transfer (MT) asymmetry around the water resonance in human cervical spinal cord. J Magn Reson Imaging 29:523–528PubMedPubMedCentral
25.
Zurück zum Zitat Vinogradov E, Sherry AD, Lenkinski RE (2013) CEST: from basic principles to applications, challenges and opportunities. J Magn Reson 229:155–172PubMed Vinogradov E, Sherry AD, Lenkinski RE (2013) CEST: from basic principles to applications, challenges and opportunities. J Magn Reson 229:155–172PubMed
26.
Zurück zum Zitat Singh A, Debnath A, Cai K et al (2019) Evaluating feasibility of creatine-weighted CEST MRI in human brain at 7T using Z-spectral fitting approach. NMR Biomed Singh A, Debnath A, Cai K et al (2019) Evaluating feasibility of creatine-weighted CEST MRI in human brain at 7T using Z-spectral fitting approach. NMR Biomed
27.
Zurück zum Zitat Singh A, Cai K, Haris M, et al. (2011) Modeling MT effect of bound water pool and its use in correction of CEST contrast for MT asymmetry. Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM): 19th Annual Meeting & Exhibition, May 7-13, Canada Singh A, Cai K, Haris M, et al. (2011) Modeling MT effect of bound water pool and its use in correction of CEST contrast for MT asymmetry. Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM): 19th Annual Meeting & Exhibition, May 7-13, Canada 
28.
Zurück zum Zitat McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431 McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431
29.
Zurück zum Zitat Swanson SD (1992) Proceedings of the 11th Annual Meeting of the Society of Magnetic Resonance in Medicine (SMRM), Berlin, program number 255 Swanson SD (1992) Proceedings of the 11th Annual Meeting of the Society of Magnetic Resonance in Medicine (SMRM), Berlin, program number 255
30.
Zurück zum Zitat Iino M (1994) Transition from lorentzian to gaussian line shape of magnetization transfer spectrum in bovine serum albumin solutions. Magn Reson Med 32:459–463PubMed Iino M (1994) Transition from lorentzian to gaussian line shape of magnetization transfer spectrum in bovine serum albumin solutions. Magn Reson Med 32:459–463PubMed
31.
Zurück zum Zitat Morrison C, Henkelman RM (1995) A model for magnetization transfer in tissues. Magn Reson Med 33:475–482PubMed Morrison C, Henkelman RM (1995) A model for magnetization transfer in tissues. Magn Reson Med 33:475–482PubMed
32.
Zurück zum Zitat Quesson B, Thiaudière E, Delalande C, Dousset V, Chateil JF, Canioni P (1997) Magnetization transfer imagingin vivo of the rat brain at 4.7 T: interpretation using a binary spin-bath model with a superlorentzian lineshape. Magn Reson Med 38:974–980PubMed Quesson B, Thiaudière E, Delalande C, Dousset V, Chateil JF, Canioni P (1997) Magnetization transfer imagingin vivo of the rat brain at 4.7 T: interpretation using a binary spin-bath model with a superlorentzian lineshape. Magn Reson Med 38:974–980PubMed
33.
Zurück zum Zitat Morrison C, Stanisz G, Henkelman RM (1995) Modeling magnetization transfer for biological-like systems using a semi-solid pool with a super-Lorentzian Lineshape and dipolar reservoir. J Magn Reson 108:103–113 Morrison C, Stanisz G, Henkelman RM (1995) Modeling magnetization transfer for biological-like systems using a semi-solid pool with a super-Lorentzian Lineshape and dipolar reservoir. J Magn Reson 108:103–113
34.
Zurück zum Zitat Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS (2003) Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn Reson Med 50:83–91PubMed Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS (2003) Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn Reson Med 50:83–91PubMed
35.
Zurück zum Zitat Zaiss M, Windschuh J, Paech D, Meissner JE, Burth S, Schmitt B, Kickingereder P, Wiestler B, Wick W, Bendszus M, Schlemmer HP, Ladd ME, Bachert P, Radbruch A (2015) Relaxation-compensated CEST-MRI of the human brain at 7T: unbiased insight into NOE and amide signal changes in human glioblastoma. NeuroImage 112:180–188PubMed Zaiss M, Windschuh J, Paech D, Meissner JE, Burth S, Schmitt B, Kickingereder P, Wiestler B, Wick W, Bendszus M, Schlemmer HP, Ladd ME, Bachert P, Radbruch A (2015) Relaxation-compensated CEST-MRI of the human brain at 7T: unbiased insight into NOE and amide signal changes in human glioblastoma. NeuroImage 112:180–188PubMed
36.
Zurück zum Zitat Zaiss M, Xu J, Goerke S, Khan IS, Singer RJ, Gore JC, Gochberg DF, Bachert P (2014) Inverse Z-spectrum analysis for spillover-, MT-, and T1-corrected steady-state pulsed CEST-MRI--application to pH-weighted MRI of acute stroke. NMR Biomed 27:240–252PubMedPubMedCentral Zaiss M, Xu J, Goerke S, Khan IS, Singer RJ, Gore JC, Gochberg DF, Bachert P (2014) Inverse Z-spectrum analysis for spillover-, MT-, and T1-corrected steady-state pulsed CEST-MRI--application to pH-weighted MRI of acute stroke. NMR Biomed 27:240–252PubMedPubMedCentral
37.
Zurück zum Zitat Chai JW, Chen C, Chen JH, Lee SK, Yeung HN (1996) Estimation of in vivo proton intrinsic and cross-relaxation rates in human brain. Magn Reson Med 36:147–152PubMed Chai JW, Chen C, Chen JH, Lee SK, Yeung HN (1996) Estimation of in vivo proton intrinsic and cross-relaxation rates in human brain. Magn Reson Med 36:147–152PubMed
38.
Zurück zum Zitat Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64PubMed Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14:57–64PubMed
39.
Zurück zum Zitat Li JG, Graham SJ, Henkelman RM (1997) A flexible magnetization transfer line shape derived from tissue experimental data. Magn Reson Med 37:866–871PubMed Li JG, Graham SJ, Henkelman RM (1997) A flexible magnetization transfer line shape derived from tissue experimental data. Magn Reson Med 37:866–871PubMed
40.
Zurück zum Zitat Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391PubMed Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391PubMed
41.
Zurück zum Zitat Xu J, Zaiss M, Zu Z, Li H, Xie J, Gochberg DF, Bachert P, Gore JC (2014) On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4T. NMR Biomed 27:406–416PubMedPubMedCentral Xu J, Zaiss M, Zu Z, Li H, Xie J, Gochberg DF, Bachert P, Gore JC (2014) On the origins of chemical exchange saturation transfer (CEST) contrast in tumors at 9.4T. NMR Biomed 27:406–416PubMedPubMedCentral
42.
Zurück zum Zitat Kim M, Gillen J, Landman BA et al (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61:1441–1450PubMedPubMedCentral Kim M, Gillen J, Landman BA et al (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61:1441–1450PubMedPubMedCentral
43.
Zurück zum Zitat Nanga RPR, DeBrosse C, Kumar D, Roalf D, McGeehan B, D'Aquilla K, Borthakur A, Hariharan H, Reddy D, Elliott M, Detre JA, Epperson CN, Reddy R (2018) Reproducibility of 2D GluCEST in healthy human volunteers at 7 T. Magn Reson Med 80:2033–2039PubMedPubMedCentral Nanga RPR, DeBrosse C, Kumar D, Roalf D, McGeehan B, D'Aquilla K, Borthakur A, Hariharan H, Reddy D, Elliott M, Detre JA, Epperson CN, Reddy R (2018) Reproducibility of 2D GluCEST in healthy human volunteers at 7 T. Magn Reson Med 80:2033–2039PubMedPubMedCentral
44.
Zurück zum Zitat Stephen Evans V, Torrealdea F, Rega M, et al. (2019) Optimization and repeatability of multipool chemical exchange saturation transfer MRI of the prostate at 3.0 T. J Magn Reson Imaging 50:1238–1250 Stephen Evans V, Torrealdea F, Rega M, et al. (2019) Optimization and repeatability of multipool chemical exchange saturation transfer MRI of the prostate at 3.0 T. J Magn Reson Imaging 50:1238–1250
45.
Zurück zum Zitat Zhang J, Zhu W, Tain R, Zhou XJ, Cai K (2018) Improved differentiation of low-grade and high-grade gliomas and detection of tumor proliferation using APT contrast fitted from Z-spectrum. Mol Imaging Biol 20:623–631PubMed Zhang J, Zhu W, Tain R, Zhou XJ, Cai K (2018) Improved differentiation of low-grade and high-grade gliomas and detection of tumor proliferation using APT contrast fitted from Z-spectrum. Mol Imaging Biol 20:623–631PubMed
46.
Zurück zum Zitat Purwar A, Rathore R, Gupta R, et al. (2008) A common De-scalping procedure for various different MRI protocols. Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM): 16th Annual Meeting & Exhibition, May 3-9, Canada, program number 1544 Purwar A, Rathore R, Gupta R, et al. (2008) A common De-scalping procedure for various different MRI protocols. Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM): 16th Annual Meeting & Exhibition, May 3-9, Canada, program number 1544
47.
Zurück zum Zitat Yarnykh V (2016) Mathematical modeling of the magnetization transfer effect in tissues. J Phys.: Conf. Ser. 677 012001 Yarnykh V (2016) Mathematical modeling of the magnetization transfer effect in tissues. J Phys.: Conf. Ser. 677 012001
48.
Zurück zum Zitat Jin T, Wang P, Zong X, Kim SG (2013) MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T. Magn Reson Med 69:760–770PubMed Jin T, Wang P, Zong X, Kim SG (2013) MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T. Magn Reson Med 69:760–770PubMed
49.
Zurück zum Zitat Liu D, Zhou J, Xue R, Zuo Z, An J, Wang DJ (2013) Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla. Magn Reson Med 70:1070–1081PubMed Liu D, Zhou J, Xue R, Zuo Z, An J, Wang DJ (2013) Quantitative characterization of nuclear overhauser enhancement and amide proton transfer effects in the human brain at 7 Tesla. Magn Reson Med 70:1070–1081PubMed
50.
Zurück zum Zitat Horska A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimag Clin North America 20:293–310 Horska A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimag Clin North America 20:293–310
51.
Zurück zum Zitat Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, Moreno-Torres A, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Luc Bosson J, Cabañas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Rémy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19:411–434PubMed Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, Moreno-Torres A, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Luc Bosson J, Cabañas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Rémy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19:411–434PubMed
52.
Zurück zum Zitat Haris RJ, Cloughesy TF, Liau LM et al (2015) pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro-oncol 17:1514–1524 Haris RJ, Cloughesy TF, Liau LM et al (2015) pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro-oncol 17:1514–1524
53.
Zurück zum Zitat Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26:665–672PubMedPubMedCentral Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26:665–672PubMedPubMedCentral
54.
Zurück zum Zitat Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R, Diedrichsen J, Fitzgerald TH, Smittenaar P, Helms G, Lutti A, Weiskopf N (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 35:1862–1872PubMedPubMedCentral Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R, Diedrichsen J, Fitzgerald TH, Smittenaar P, Helms G, Lutti A, Weiskopf N (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 35:1862–1872PubMedPubMedCentral
55.
Zurück zum Zitat Hanyu H, Asano T, Sakurai H, Imon Y, Iwamoto T, Takasaki M, Shindo H, Abe K (1999) Diffusion-weighted and magnetization transfer imaging of the corpus callosum in Alzheimer’s disease. J Neurol Sci 167:37–44PubMed Hanyu H, Asano T, Sakurai H, Imon Y, Iwamoto T, Takasaki M, Shindo H, Abe K (1999) Diffusion-weighted and magnetization transfer imaging of the corpus callosum in Alzheimer’s disease. J Neurol Sci 167:37–44PubMed
Metadaten
Titel
Glutamate-Weighted CEST Contrast After Removal of Magnetization Transfer Effect in Human Brain and Rat Brain with Tumor
verfasst von
Ayan Debnath
Hari Hariharan
Ravi Prakash Reddy Nanga
Ravinder Reddy
Anup Singh
Publikationsdatum
06.01.2020
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 4/2020
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-019-01465-9

Weitere Artikel der Ausgabe 4/2020

Molecular Imaging and Biology 4/2020 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.