Skip to main content
Erschienen in: Die Onkologie 6/2022

26.04.2022 | Hämatologische Neoplasien | Leitthema

Pathogenese und molekulare Diagnostik der akuten myeloischen Leukämie

verfasst von: Prof. Dr. med. Alwin Krämer, Christian Thiede

Erschienen in: Die Onkologie | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Zusammenfassung

Hintergrund

Die akute myeloische Leukämie (AML) ist eine klonale Erkrankung hämatopoetischer Stamm- und Progenitorzellen des Knochenmarkes mit einem Altersgipfel im fortgeschrittenen Erwachsenenalter. Akute myeloische Leukämien können sowohl spontan und de novo als auch hereditär infolge von Keimbahnmutationen, sekundär aus anderen hämatologischen Erkrankungen oder therapie-induziert nach vorausgegangener Chemo- oder Strahlentherapie entstehen. Unabhängig vom Entstehungsmechanismus sind alle Formen der AML auf die klonale Expansion hämatopoetischer Vorläuferzellen mit rekurrenten Treibermutationen in Onkogenen und Tumorsuppressoren oder chromosomalen Aberrationen zurückzuführen.

Schlussfolgerung

Insbesondere moderne Sequenzierungsmethoden haben in den letzten Jahren zu der Erkenntnis geführt, dass die Expansion hämatopoetischer Klone mit bestimmten Treibermutationen bei gesunden Personen mit zunehmendem Lebensalter häufig nachzuweisen und mit einem erhöhten Risiko des Auftretens einer AML verbunden ist. Der Nachweis molekularer Aberrationen gehört mittlerweile zur Primärdiagnostik der AML und ist sowohl von prognostischer als auch therapeutischer Bedeutung. Im weiteren Erkrankungsverlauf und nach Abschluss der Therapie werden initial nachgewiesene Mutationen zur Bestimmung der messbaren residuellen Erkrankung (MRD) verwendet, die ebenfalls prognostisch bedeutsam ist und die Möglichkeit präemptiver Therapien bereits vor dem Auftreten eines hämatologischen Rezidivs eröffnet.
Literatur
1.
Zurück zum Zitat Juliusson G, Antunovic P, Derolf A et al (2009) Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 113:4179–4187PubMedCrossRef Juliusson G, Antunovic P, Derolf A et al (2009) Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 113:4179–4187PubMedCrossRef
2.
Zurück zum Zitat Kakiuchi N, Ogawa S (2021) Clonal expansion in non-cancer tissues. Nat Rev Cancer 21:239–256PubMedCrossRef Kakiuchi N, Ogawa S (2021) Clonal expansion in non-cancer tissues. Nat Rev Cancer 21:239–256PubMedCrossRef
3.
Zurück zum Zitat Genovese G, Kahler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487PubMedPubMedCentralCrossRef Genovese G, Kahler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498PubMedPubMedCentralCrossRef Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498PubMedPubMedCentralCrossRef
5.
6.
Zurück zum Zitat Young AL, Challen GA, Birmann BM et al (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:12484PubMedPubMedCentralCrossRef Young AL, Challen GA, Birmann BM et al (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:12484PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Desai P, Mencia-Trinchant N, Savenkov O et al (2018) Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med 24:1015–1023PubMedPubMedCentralCrossRef Desai P, Mencia-Trinchant N, Savenkov O et al (2018) Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med 24:1015–1023PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Jaiswal S, Ebert BL (2019) Clonal hematopoiesis in human aging and disease. Science 366:6465CrossRef Jaiswal S, Ebert BL (2019) Clonal hematopoiesis in human aging and disease. Science 366:6465CrossRef
9.
Zurück zum Zitat Jonason AS, Kunala S, Price GJ et al (1996) Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci U S A 93:14025–14029PubMedPubMedCentralCrossRef Jonason AS, Kunala S, Price GJ et al (1996) Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci U S A 93:14025–14029PubMedPubMedCentralCrossRef
10.
11.
Zurück zum Zitat Martincorena I, Roshan A, Gerstung M et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–886PubMedPubMedCentralCrossRef Martincorena I, Roshan A, Gerstung M et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–886PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Shain AH, Yeh I, Kovalyshyn I et al (2015) The genetic evolution of melanoma from precursor lesions. N Engl J Med 373:1926–1936PubMedCrossRef Shain AH, Yeh I, Kovalyshyn I et al (2015) The genetic evolution of melanoma from precursor lesions. N Engl J Med 373:1926–1936PubMedCrossRef
13.
14.
15.
Zurück zum Zitat Kakiuchi N, Yoshida K, Uchino M et al (2020) Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577:260–265PubMedCrossRef Kakiuchi N, Yoshida K, Uchino M et al (2020) Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577:260–265PubMedCrossRef
16.
Zurück zum Zitat Lee-Six H, Olafsson S, Ellis P et al (2019) The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574:532–537PubMedCrossRef Lee-Six H, Olafsson S, Ellis P et al (2019) The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574:532–537PubMedCrossRef
17.
Zurück zum Zitat Moore L, Leongamornlert D, Coorens THH et al (2020) The mutational landscape of normal human endometrial epithelium. Nature 580:640–646PubMedCrossRef Moore L, Leongamornlert D, Coorens THH et al (2020) The mutational landscape of normal human endometrial epithelium. Nature 580:640–646PubMedCrossRef
18.
Zurück zum Zitat Suda K, Nakaoka H, Yoshihara K et al (2018) Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep 24:1777–1789PubMedCrossRef Suda K, Nakaoka H, Yoshihara K et al (2018) Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep 24:1777–1789PubMedCrossRef
19.
Zurück zum Zitat Li R, Du Y, Chen Z et al (2020) Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science 370:82–89PubMedCrossRef Li R, Du Y, Chen Z et al (2020) Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science 370:82–89PubMedCrossRef
20.
Zurück zum Zitat Lawson ARJ, Abascal F, Coorens THH et al (2020) Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370:75–82PubMedCrossRef Lawson ARJ, Abascal F, Coorens THH et al (2020) Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370:75–82PubMedCrossRef
21.
Zurück zum Zitat Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478PubMedPubMedCentralCrossRef Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478PubMedPubMedCentralCrossRef
22.
23.
Zurück zum Zitat Osorio FG, Rosendahl Huber A, Oka R et al (2018) Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep 25:2308–2316.e4PubMedPubMedCentralCrossRef Osorio FG, Rosendahl Huber A, Oka R et al (2018) Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep 25:2308–2316.e4PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Yoshizato T, Dumitriu B, Hosokawa K et al (2015) Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med 373:35–47PubMedPubMedCentralCrossRef Yoshizato T, Dumitriu B, Hosokawa K et al (2015) Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med 373:35–47PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Laurie CC, Laurie CA, Rice K et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642–650PubMedPubMedCentralCrossRef Laurie CC, Laurie CA, Rice K et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642–650PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Jacobs KB, Yeager M, Zhou W et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44:651–658PubMedPubMedCentralCrossRef Jacobs KB, Yeager M, Zhou W et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44:651–658PubMedPubMedCentralCrossRef
27.
28.
Zurück zum Zitat Loh PR, Genovese G, Handsaker RE et al (2018) Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559:350–355PubMedPubMedCentralCrossRef Loh PR, Genovese G, Handsaker RE et al (2018) Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559:350–355PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Loh PR, Genovese G, McCarroll SA (2020) Monogenic and polygenic inheritance become instruments for clonal selection. Nature 584:136–141PubMedPubMedCentralCrossRef Loh PR, Genovese G, McCarroll SA (2020) Monogenic and polygenic inheritance become instruments for clonal selection. Nature 584:136–141PubMedPubMedCentralCrossRef
30.
31.
Zurück zum Zitat Bick AG, Weinstock JS, Nandakumar SK et al (2020) Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586:763–768PubMedPubMedCentralCrossRef Bick AG, Weinstock JS, Nandakumar SK et al (2020) Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586:763–768PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Olcaydu D, Harutyunyan A, Jager R et al (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:450–454PubMedCrossRef Olcaydu D, Harutyunyan A, Jager R et al (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:450–454PubMedCrossRef
33.
Zurück zum Zitat Jones AV, Chase A, Silver RT et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41:446–449PubMedPubMedCentralCrossRef Jones AV, Chase A, Silver RT et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41:446–449PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Terao C, Suzuki A, Momozawa Y et al (2020) Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584:130–135PubMedPubMedCentralCrossRef Terao C, Suzuki A, Momozawa Y et al (2020) Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584:130–135PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Tawana K, Brown AL, Churpek JE (2021) Integrating germline variant assessment into routine clinical practice for myelodysplastic syndrome and acute myeloid leukaemia: current strategies and challenges. Br J Haematol 196(6):1293–1310PubMedCrossRef Tawana K, Brown AL, Churpek JE (2021) Integrating germline variant assessment into routine clinical practice for myelodysplastic syndrome and acute myeloid leukaemia: current strategies and challenges. Br J Haematol 196(6):1293–1310PubMedCrossRef
36.
Zurück zum Zitat Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405PubMedCrossRef Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405PubMedCrossRef
37.
Zurück zum Zitat Song WJ, Sullivan MG, Legare RD et al (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23:166–175PubMedCrossRef Song WJ, Sullivan MG, Legare RD et al (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23:166–175PubMedCrossRef
38.
Zurück zum Zitat Noris P, Perrotta S, Seri M et al (2011) Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood 117:6673–6680PubMedCrossRef Noris P, Perrotta S, Seri M et al (2011) Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood 117:6673–6680PubMedCrossRef
39.
Zurück zum Zitat Pippucci T, Savoia A, Perrotta S et al (2011) Mutations in the 5′ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet 88:115–120PubMedPubMedCentralCrossRef Pippucci T, Savoia A, Perrotta S et al (2011) Mutations in the 5′ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet 88:115–120PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Zhang MY, Churpek JE, Keel SB et al (2015) Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet 47:180–185PubMedPubMedCentralCrossRef Zhang MY, Churpek JE, Keel SB et al (2015) Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet 47:180–185PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Noetzli L, Lo RW, Lee-Sherick AB et al (2015) Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet 47:535–538PubMedPubMedCentralCrossRef Noetzli L, Lo RW, Lee-Sherick AB et al (2015) Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet 47:535–538PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Hahn CN, Chong CE, Carmichael CL et al (2011) Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet 43:1012–1017PubMedPubMedCentralCrossRef Hahn CN, Chong CE, Carmichael CL et al (2011) Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet 43:1012–1017PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Feurstein S, Adegunsoye A, Mojsilovic D et al (2020) Telomere biology disorder prevalence and phenotypes in adults with familial hematologic and/or pulmonary presentations. Blood Adv 4:4873–4886PubMedPubMedCentralCrossRef Feurstein S, Adegunsoye A, Mojsilovic D et al (2020) Telomere biology disorder prevalence and phenotypes in adults with familial hematologic and/or pulmonary presentations. Blood Adv 4:4873–4886PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Chen DH, Below JE, Shimamura A et al (2016) Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet 98:1146–1158PubMedPubMedCentralCrossRef Chen DH, Below JE, Shimamura A et al (2016) Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet 98:1146–1158PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Narumi S, Amano N, Ishii T et al (2016) SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet 48:792–797PubMedCrossRef Narumi S, Amano N, Ishii T et al (2016) SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet 48:792–797PubMedCrossRef
46.
Zurück zum Zitat Douglas SPM, Siipola P, Kovanen PE et al (2019) ERCC6L2 defines a novel entity within inherited acute myeloid leukemia. Blood 133:2724–2728PubMedCrossRef Douglas SPM, Siipola P, Kovanen PE et al (2019) ERCC6L2 defines a novel entity within inherited acute myeloid leukemia. Blood 133:2724–2728PubMedCrossRef
47.
Zurück zum Zitat Smith ML, Cavenagh JD, Lister TA et al (2004) Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 351:2403–2407PubMedCrossRef Smith ML, Cavenagh JD, Lister TA et al (2004) Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 351:2403–2407PubMedCrossRef
48.
Zurück zum Zitat Tawana K, Wang J, Renneville A et al (2015) Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 126:1214–1223PubMedCrossRef Tawana K, Wang J, Renneville A et al (2015) Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 126:1214–1223PubMedCrossRef
49.
Zurück zum Zitat Polprasert C, Schulze I, Sekeres MA et al (2015) Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 27:658–670PubMedPubMedCentralCrossRef Polprasert C, Schulze I, Sekeres MA et al (2015) Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 27:658–670PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Brown AL, Arts P, Carmichael CL et al (2020) RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv 4:1131–1144PubMedPubMedCentralCrossRef Brown AL, Arts P, Carmichael CL et al (2020) RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv 4:1131–1144PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Churpek JE, Pyrtel K, Kanchi KL et al (2015) Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood 126:2484–2490PubMedPubMedCentralCrossRef Churpek JE, Pyrtel K, Kanchi KL et al (2015) Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood 126:2484–2490PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Granfeldt Ostgard LS, Medeiros BC, Sengelov H et al (2015) Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol 33:3641–3649PubMedCrossRef Granfeldt Ostgard LS, Medeiros BC, Sengelov H et al (2015) Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol 33:3641–3649PubMedCrossRef
53.
Zurück zum Zitat Greenberg PL, Tuechler H, Schanz J et al (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120:2454–2465PubMedPubMedCentralCrossRef Greenberg PL, Tuechler H, Schanz J et al (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120:2454–2465PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Gangat N, Caramazza D, Vaidya R et al (2011) DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29:392–397PubMedCrossRef Gangat N, Caramazza D, Vaidya R et al (2011) DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29:392–397PubMedCrossRef
55.
Zurück zum Zitat Grinfeld J, Nangalia J, Baxter EJ et al (2018) Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med 379:1416–1430PubMedPubMedCentralCrossRef Grinfeld J, Nangalia J, Baxter EJ et al (2018) Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med 379:1416–1430PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Tefferi A, Guglielmelli P, Larson DR et al (2014) Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 124:2507–2513 (quiz 2615)PubMedPubMedCentralCrossRef Tefferi A, Guglielmelli P, Larson DR et al (2014) Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 124:2507–2513 (quiz 2615)PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Lindsley RC, Mar BG, Mazzola E et al (2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125:1367–1376PubMedPubMedCentralCrossRef Lindsley RC, Mar BG, Mazzola E et al (2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125:1367–1376PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Courtier F, Carbuccia N, Garnier S et al (2017) Genomic analysis of myeloproliferative neoplasms in chronic and acute phases. Haematologica 102:e11–e14PubMedPubMedCentralCrossRef Courtier F, Carbuccia N, Garnier S et al (2017) Genomic analysis of myeloproliferative neoplasms in chronic and acute phases. Haematologica 102:e11–e14PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Super HJ, McCabe NR, Thirman MJ et al (1993) Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 82:3705–3711PubMedCrossRef Super HJ, McCabe NR, Thirman MJ et al (1993) Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 82:3705–3711PubMedCrossRef
60.
Zurück zum Zitat Morton LM, Dores GM, Schonfeld SJ et al (2019) Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol 5:318–325PubMedCrossRef Morton LM, Dores GM, Schonfeld SJ et al (2019) Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol 5:318–325PubMedCrossRef
61.
Zurück zum Zitat Hsu JI, Dayaram T, Tovy A et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700–713.e6PubMedPubMedCentralCrossRef Hsu JI, Dayaram T, Tovy A et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700–713.e6PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Bolton KL, Ptashkin RN, Gao T et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219–1226PubMedPubMedCentralCrossRef Bolton KL, Ptashkin RN, Gao T et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219–1226PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Wong TN, Ramsingh G, Young AL et al (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518:552–555PubMedCrossRef Wong TN, Ramsingh G, Young AL et al (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518:552–555PubMedCrossRef
64.
Zurück zum Zitat Takahashi K, Wang F, Kantarjian H et al (2017) Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol 18:100–111PubMedCrossRef Takahashi K, Wang F, Kantarjian H et al (2017) Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol 18:100–111PubMedCrossRef
65.
Zurück zum Zitat Dohner H, Estey E, Grimwade D et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129:424–447PubMedPubMedCentralCrossRef Dohner H, Estey E, Grimwade D et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129:424–447PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Heuser M, Ofran Y, Boissel N et al (2020) Acute myeloid leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 31:697–712PubMedCrossRef Heuser M, Ofran Y, Boissel N et al (2020) Acute myeloid leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 31:697–712PubMedCrossRef
67.
Zurück zum Zitat National Comprehensive Cancer Network (2021) NCCN clinical practice guidelines in oncology—Acute myeloid leukemia. In: Plymouth Meeting, PA, USA National Comprehensive Cancer Network (2021) NCCN clinical practice guidelines in oncology—Acute myeloid leukemia. In: Plymouth Meeting, PA, USA
68.
Zurück zum Zitat Stone RM, Larson RA, Dohner H (2017) Midostaurin in FLT3-mutated acute myeloid leukemia. N Engl J Med 377:1903PubMedCrossRef Stone RM, Larson RA, Dohner H (2017) Midostaurin in FLT3-mutated acute myeloid leukemia. N Engl J Med 377:1903PubMedCrossRef
69.
Zurück zum Zitat Fournier E, Duployez N, Ducourneau B et al (2020) Mutational profile and benefit of gemtuzumab ozogamicin in acute myeloid leukemia. Blood 135:542–546PubMedCrossRef Fournier E, Duployez N, Ducourneau B et al (2020) Mutational profile and benefit of gemtuzumab ozogamicin in acute myeloid leukemia. Blood 135:542–546PubMedCrossRef
70.
Zurück zum Zitat Rollig C, Kramer M, Schliemann C et al (2020) Does time from diagnosis to treatment affect the prognosis of patients with newly diagnosed acute myeloid leukemia? Blood 136:823–830PubMedCrossRef Rollig C, Kramer M, Schliemann C et al (2020) Does time from diagnosis to treatment affect the prognosis of patients with newly diagnosed acute myeloid leukemia? Blood 136:823–830PubMedCrossRef
71.
Zurück zum Zitat Schuurhuis GJ, Heuser M, Freeman S et al (2018) Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 131:1275–1291PubMedPubMedCentralCrossRef Schuurhuis GJ, Heuser M, Freeman S et al (2018) Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 131:1275–1291PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Heuser M, Freeman SD, Ossenkoppele GJ et al (2021) 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood 138:2753–2767PubMedPubMedCentralCrossRef Heuser M, Freeman SD, Ossenkoppele GJ et al (2021) 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood 138:2753–2767PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Daver N, Schlenk RF, Russell NH et al (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33:299–312PubMedPubMedCentralCrossRef Daver N, Schlenk RF, Russell NH et al (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33:299–312PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Thiede C, Steudel C, Mohr B et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335PubMedCrossRef Thiede C, Steudel C, Mohr B et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335PubMedCrossRef
75.
Zurück zum Zitat Schlenk RF, Kayser S, Bullinger L et al (2014) Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 124:3441–3449PubMedCrossRef Schlenk RF, Kayser S, Bullinger L et al (2014) Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 124:3441–3449PubMedCrossRef
76.
Zurück zum Zitat Falini B, Brunetti L, Sportoletti P et al (2020) NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood 136:1707–1721PubMedCrossRef Falini B, Brunetti L, Sportoletti P et al (2020) NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood 136:1707–1721PubMedCrossRef
77.
Zurück zum Zitat Pratcorona M, Brunet S, Nomdedeu J et al (2013) Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy. Blood 121:2734–2738PubMedCrossRef Pratcorona M, Brunet S, Nomdedeu J et al (2013) Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy. Blood 121:2734–2738PubMedCrossRef
78.
Zurück zum Zitat Dohner K, Thiede C, Jahn N et al (2020) Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood 135:371–380PubMedPubMedCentralCrossRef Dohner K, Thiede C, Jahn N et al (2020) Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood 135:371–380PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Wilhelmson AS, Porse BT (2020) CCAAT enhancer binding protein alpha (CEBPA) biallelic acute myeloid leukaemia: cooperating lesions, molecular mechanisms and clinical relevance. Br J Haematol 190:495–507PubMedPubMedCentralCrossRef Wilhelmson AS, Porse BT (2020) CCAAT enhancer binding protein alpha (CEBPA) biallelic acute myeloid leukaemia: cooperating lesions, molecular mechanisms and clinical relevance. Br J Haematol 190:495–507PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Tarlock K, Lamble AJ, Wang YC et al (2021) CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children’s Oncology Group. Blood 138:1137–1147PubMedCrossRef Tarlock K, Lamble AJ, Wang YC et al (2021) CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children’s Oncology Group. Blood 138:1137–1147PubMedCrossRef
81.
Zurück zum Zitat Taube F, Georgi JA, Kramer M et al (2022) CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood 139:87–103PubMedCrossRef Taube F, Georgi JA, Kramer M et al (2022) CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood 139:87–103PubMedCrossRef
82.
Zurück zum Zitat Wakita S, Sakaguchi M, Oh I et al (2022) Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv 6:238–247PubMedPubMedCentralCrossRef Wakita S, Sakaguchi M, Oh I et al (2022) Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv 6:238–247PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Hunter AM, Sallman DA (2019) Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol 32:134–144PubMedCrossRef Hunter AM, Sallman DA (2019) Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol 32:134–144PubMedCrossRef
84.
Zurück zum Zitat Bullinger L, Dohner K, Dohner H (2017) Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol 35:934–946PubMedCrossRef Bullinger L, Dohner K, Dohner H (2017) Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol 35:934–946PubMedCrossRef
85.
Zurück zum Zitat Perl AE, Martinelli G, Cortes JE et al (2019) Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med 381:1728–1740PubMedCrossRef Perl AE, Martinelli G, Cortes JE et al (2019) Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med 381:1728–1740PubMedCrossRef
86.
Zurück zum Zitat Freeman SD, Hourigan CS (2019) MRD evaluation of AML in clinical practice: are we there yet? Hematology Am Soc Hematol Educ Program 2019:557–569PubMedPubMedCentralCrossRef Freeman SD, Hourigan CS (2019) MRD evaluation of AML in clinical practice: are we there yet? Hematology Am Soc Hematol Educ Program 2019:557–569PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Ivey A, Hills RK, Simpson MA et al (2016) Assessment of minimal residual disease in standard-risk AML. N Engl J Med 374:422–433PubMedCrossRef Ivey A, Hills RK, Simpson MA et al (2016) Assessment of minimal residual disease in standard-risk AML. N Engl J Med 374:422–433PubMedCrossRef
89.
Zurück zum Zitat Yin JA, O’Brien MA, Hills RK et al (2012) Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood 120:2826–2835PubMedCrossRef Yin JA, O’Brien MA, Hills RK et al (2012) Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood 120:2826–2835PubMedCrossRef
90.
Zurück zum Zitat Jongen-Lavrencic M, Grob T, Hanekamp D et al (2018) Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med 378:1189–1199PubMedCrossRef Jongen-Lavrencic M, Grob T, Hanekamp D et al (2018) Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med 378:1189–1199PubMedCrossRef
91.
Zurück zum Zitat Thol F, Gabdoulline R, Liebich A et al (2018) Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 132:1703–1713PubMedCrossRef Thol F, Gabdoulline R, Liebich A et al (2018) Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 132:1703–1713PubMedCrossRef
92.
Zurück zum Zitat Heuser M, Heida B, Buttner K et al (2021) Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations. Blood Adv 5:2294–2304PubMedPubMedCentralCrossRef Heuser M, Heida B, Buttner K et al (2021) Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations. Blood Adv 5:2294–2304PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Hourigan CS, Dillon LW, Gui G et al (2020) Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol 38:1273–1283PubMedCrossRef Hourigan CS, Dillon LW, Gui G et al (2020) Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol 38:1273–1283PubMedCrossRef
94.
Zurück zum Zitat Platzbecker U, Middeke JM, Sockel K et al (2018) Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial. Lancet Oncol 19:1668–1679PubMedCrossRef Platzbecker U, Middeke JM, Sockel K et al (2018) Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial. Lancet Oncol 19:1668–1679PubMedCrossRef
95.
Zurück zum Zitat Wei AH, Dohner H, Pocock C et al (2020) Oral Azacitidine maintenance therapy for acute myeloid leukemia in first remission. N Engl J Med 383:2526–2537PubMedCrossRef Wei AH, Dohner H, Pocock C et al (2020) Oral Azacitidine maintenance therapy for acute myeloid leukemia in first remission. N Engl J Med 383:2526–2537PubMedCrossRef
96.
Zurück zum Zitat Duncavage EJ, Schroeder MC, O’Laughlin M et al (2021) Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N Engl J Med 384:924–935PubMedPubMedCentralCrossRef Duncavage EJ, Schroeder MC, O’Laughlin M et al (2021) Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N Engl J Med 384:924–935PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Petti AA, Williams SR, Miller CA et al (2019) A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat Commun 10:3660PubMedPubMedCentralCrossRef Petti AA, Williams SR, Miller CA et al (2019) A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat Commun 10:3660PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Velten L, Story BA, Hernandez-Malmierca P et al (2021) Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nat Commun 12:1366PubMedPubMedCentralCrossRef Velten L, Story BA, Hernandez-Malmierca P et al (2021) Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nat Commun 12:1366PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Madaci L, Colle J, Venton G et al (2021) The contribution of single-cell analysis of acute leukemia in the therapeutic strategy. Biomark Res 9:50PubMedPubMedCentralCrossRef Madaci L, Colle J, Venton G et al (2021) The contribution of single-cell analysis of acute leukemia in the therapeutic strategy. Biomark Res 9:50PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Eckardt JN, Bornhauser M, Wendt K et al (2020) Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects. Blood Adv 4:6077–6085PubMedPubMedCentralCrossRef Eckardt JN, Bornhauser M, Wendt K et al (2020) Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects. Blood Adv 4:6077–6085PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Eckardt JN, Schmittmann T, Riechert S et al (2022) Deep learning identifies acute promyelocytic leukemia in bone marrow smears. BMC Cancer 22:201PubMedPubMedCentralCrossRef Eckardt JN, Schmittmann T, Riechert S et al (2022) Deep learning identifies acute promyelocytic leukemia in bone marrow smears. BMC Cancer 22:201PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Eckardt JN, Middeke JM, Riechert S et al (2022) Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears. Leukemia 36:111–118PubMedCrossRef Eckardt JN, Middeke JM, Riechert S et al (2022) Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears. Leukemia 36:111–118PubMedCrossRef
103.
Zurück zum Zitat Gerstung M, Papaemmanuil E, Martincorena I et al (2017) Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 49:332–340PubMedPubMedCentralCrossRef Gerstung M, Papaemmanuil E, Martincorena I et al (2017) Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 49:332–340PubMedPubMedCentralCrossRef
Metadaten
Titel
Pathogenese und molekulare Diagnostik der akuten myeloischen Leukämie
verfasst von
Prof. Dr. med. Alwin Krämer
Christian Thiede
Publikationsdatum
26.04.2022
Verlag
Springer Medizin
Erschienen in
Die Onkologie / Ausgabe 6/2022
Print ISSN: 2731-7226
Elektronische ISSN: 2731-7234
DOI
https://doi.org/10.1007/s00761-022-01183-y

Weitere Artikel der Ausgabe 6/2022

Die Onkologie 6/2022 Zur Ausgabe

Einführung zum Thema

Akute Leukämien

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.