Skip to main content
Erschienen in: Neuroinformatics 3/2014

01.07.2014 | Original Article

Identifying Informative Imaging Biomarkers via Tree Structured Sparse Learning for AD Diagnosis

verfasst von: Manhua Liu, Daoqiang Zhang, Dinggang Shen, the Alzheimer’s Disease Neuroimaging Initiative

Erschienen in: Neuroinformatics | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Neuroimaging provides a powerful tool to characterize neurodegenerative progression and therapeutic efficacy in Alzheimer’s disease (AD) and its prodromal stage—mild cognitive impairment (MCI). However, since the disease pathology might cause different patterns of structural degeneration, which is not pre-known, it is still a challenging problem to identify the relevant imaging markers for facilitating disease interpretation and classification. Recently, sparse learning methods have been investigated in neuroimaging studies for selecting the relevant imaging biomarkers and have achieved very promising results on disease classification. However, in the standard sparse learning method, the spatial structure is often ignored, although it is important for identifying the informative biomarkers. In this paper, a sparse learning method with tree-structured regularization is proposed to capture patterns of pathological degeneration from fine to coarse scale, for helping identify the informative imaging biomarkers to guide the disease classification and interpretation. Specifically, we first develop a new tree construction method based on the hierarchical agglomerative clustering of voxel-wise imaging features in the whole brain, by taking into account their spatial adjacency, feature similarity and discriminability. In this way, the complexity of all possible multi-scale spatial configurations of imaging features can be reduced to a single tree of nested regions. Second, we impose the tree-structured regularization on the sparse learning to capture the imaging structures, and then use them for selecting the most relevant biomarkers. Finally, we train a support vector machine (SVM) classifier with the selected features to make the classification. We have evaluated our proposed method by using the baseline MR images of 830 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, which includes 198 AD patients, 167 progressive MCI (pMCI), 236 stable MCI (sMCI), and 229 normal controls (NC). Our experimental results show that our method can achieve accuracies of 90.2 %, 87.2 %, and 70.7 % for classifications of AD vs. NC, pMCI vs. NC, and pMCI vs. sMCI, respectively, demonstrating promising performance compared with other state-of-the-art methods.
Literatur
Zurück zum Zitat Chen, Y., An, H., Zhu, H., Stone, T., Smith, J. K., Hall, C., et al. (2009). White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage, 47(4), 1154–1162.PubMedCrossRef Chen, Y., An, H., Zhu, H., Stone, T., Smith, J. K., Hall, C., et al. (2009). White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage, 47(4), 1154–1162.PubMedCrossRef
Zurück zum Zitat Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., Lin, C., & for the Alzheimer’s Disease Neuroimaging Initiative. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60(1), 59–70.PubMedCrossRef Chu, C., Hsu, A.-L., Chou, K.-H., Bandettini, P., Lin, C., & for the Alzheimer’s Disease Neuroimaging Initiative. (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60(1), 59–70.PubMedCrossRef
Zurück zum Zitat Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M. O., et al. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56(2), 766–781. doi:10.1016/j.neuroimage.2010.06.013.PubMedCrossRef Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M. O., et al. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage, 56(2), 766–781. doi:10.​1016/​j.​neuroimage.​2010.​06.​013.PubMedCrossRef
Zurück zum Zitat Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2010). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32(12), 2322.e2319–2322.e2327. Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2010). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32(12), 2322.e2319–2322.e2327.
Zurück zum Zitat Desikan, R. S., Cabral, H. J., Hess, C. P., Dillon, W. P., Glastonbury, C. M., Weiner, M. W., et al. (2009). Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain, 132(Pt 8), 2048–2057.PubMedCentralPubMedCrossRef Desikan, R. S., Cabral, H. J., Hess, C. P., Dillon, W. P., Glastonbury, C. M., Weiner, M. W., et al. (2009). Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain, 132(Pt 8), 2048–2057.PubMedCentralPubMedCrossRef
Zurück zum Zitat Duchesne, S., Caroli, A., Geroldi, C., Collins, D. L., & Frisoni, G. B. (2009). Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. NeuroImage, 47(4), 1363–1370.PubMedCrossRef Duchesne, S., Caroli, A., Geroldi, C., Collins, D. L., & Frisoni, G. B. (2009). Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. NeuroImage, 47(4), 1363–1370.PubMedCrossRef
Zurück zum Zitat Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., Shera, D., et al. (2007a). Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage, 36(4), 1189–1199.PubMedCrossRef Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., Shera, D., et al. (2007a). Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage, 36(4), 1189–1199.PubMedCrossRef
Zurück zum Zitat Fan, Y., Shen, D., Gur, R. C., Gur, R. E., & Davatzikos, C. (2007b). COMPARE: Classification Of Morphological Patterns using Adaptive Regional Elements. IEEE Transactions on Medical Imaging, 26(1), 93–105.PubMedCrossRef Fan, Y., Shen, D., Gur, R. C., Gur, R. E., & Davatzikos, C. (2007b). COMPARE: Classification Of Morphological Patterns using Adaptive Regional Elements. IEEE Transactions on Medical Imaging, 26(1), 93–105.PubMedCrossRef
Zurück zum Zitat Ghosh, D., & Chinnaiyan, A. M. (2005). Classification and selection of biomarkers in genomic data using LASSO. Journal of Biomedicine and Biotechnology, 2005(2), 147–154. Ghosh, D., & Chinnaiyan, A. M. (2005). Classification and selection of biomarkers in genomic data using LASSO. Journal of Biomedicine and Biotechnology, 2005(2), 147–154.
Zurück zum Zitat Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., & Johnson, S. C. (2009). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48(1), 138–149.PubMedCentralPubMedCrossRef Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., & Johnson, S. C. (2009). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48(1), 138–149.PubMedCentralPubMedCrossRef
Zurück zum Zitat Ishii, K., Kawachi, T., Sasaki, H., Kono, A. K., Fukuda, T., Kojima, Y., et al. (2005). Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. American Journal of Neuroradiology, 26(2), 333–340.PubMed Ishii, K., Kawachi, T., Sasaki, H., Kono, A. K., Fukuda, T., Kojima, Y., et al. (2005). Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. American Journal of Neuroradiology, 26(2), 333–340.PubMed
Zurück zum Zitat Jenatton, R., Gramfort, A., Michel, V., Obozinski, G., Bach, F., & Thirion, B. Multi-scale mining of fMRI data with hierarchical structured sparsity. In IEEE International Workshop on Pattern Recognition in NeuroImaging, Seoul, Korea May 16–May 18 2011 (pp. 69–72) Jenatton, R., Gramfort, A., Michel, V., Obozinski, G., Bach, F., & Thirion, B. Multi-scale mining of fMRI data with hierarchical structured sparsity. In IEEE International Workshop on Pattern Recognition in NeuroImaging, Seoul, Korea May 16–May 18 2011 (pp. 69–72)
Zurück zum Zitat Jia, H., Wu, G. Wang, Q., & Shen, D. (2010). ABSORB: Atlas building by self-organized registration and bundling. NeuroImage, 51(3), 1057–1070. Jia, H., Wu, G. Wang, Q., & Shen, D. (2010). ABSORB: Atlas building by self-organized registration and bundling. NeuroImage, 51(3), 1057–1070.
Zurück zum Zitat Kabani, N., MacDonald, D., Holmes, C. J., & Evans, A. (1998). A 3D atlas of the human brain. NeuroImage, 7(4), S717. Kabani, N., MacDonald, D., Holmes, C. J., & Evans, A. (1998). A 3D atlas of the human brain. NeuroImage, 7(4), S717.
Zurück zum Zitat Kecman, V. (2001). Learning and soft computing-support vector machines, neural networks, fuzzy logic systems. Cambridge: The MIT Press. Kecman, V. (2001). Learning and soft computing-support vector machines, neural networks, fuzzy logic systems. Cambridge: The MIT Press.
Zurück zum Zitat Kim, S., & Xing, E. P. (2009). Tree-guided group lasso for multi-task regression with structured sparsity. Arxiv preprint arXiv:0909.1373. Kim, S., & Xing, E. P. (2009). Tree-guided group lasso for multi-task regression with structured sparsity. Arxiv preprint arXiv:0909.1373.
Zurück zum Zitat Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., et al. (2008). Automatic classification of MR scans in Alzheimer’s disease. Brain, 131(3), 681–689.PubMedCentralPubMedCrossRef Klöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., et al. (2008). Automatic classification of MR scans in Alzheimer’s disease. Brain, 131(3), 681–689.PubMedCentralPubMedCrossRef
Zurück zum Zitat Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. (2004). Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage, 21(1), 46–57.PubMedCrossRef Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. (2004). Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage, 21(1), 46–57.PubMedCrossRef
Zurück zum Zitat Leung, K., Shen, K. K., Barnes, J., Ridgway, G., Clarkson, M., Fripp, J., et al. (2010). Increasing power to predict mild cognitive impairment conversion to Alzheimer’s disease using hippocampal atrophy rate and statistical shape models. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, 13, 125–132. Leung, K., Shen, K. K., Barnes, J., Ridgway, G., Clarkson, M., Fripp, J., et al. (2010). Increasing power to predict mild cognitive impairment conversion to Alzheimer’s disease using hippocampal atrophy rate and statistical shape models. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, 13, 125–132.
Zurück zum Zitat Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., & Shen D. (2012). Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiology of aging, 33(2), 427. e15-427. e30. Li, Y., Wang, Y., Wu, G., Shi, F., Zhou, L., Lin, W., & Shen D. (2012). Discriminant analysis of longitudinal cortical thickness changes in Alzheimer's disease using dynamic and network features. Neurobiology of aging, 33(2), 427. e15-427. e30.
Zurück zum Zitat Liu, J., & Ye, J. (2010). Moreau-Yosida regularization for grouped tree structure learning. Advances in Neural Information Processing Systems, 23, 1459–1467. Liu, J., & Ye, J. (2010). Moreau-Yosida regularization for grouped tree structure learning. Advances in Neural Information Processing Systems, 23, 1459–1467.
Zurück zum Zitat Liu, M., Zhang, D., Yap, P.-T., & Shen, D. (2012b). Tree-Guided Sparse Coding for Brain Disease Classification. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012 (Vol. 7512, pp. 239–247, Lecture Notes in Computer Science). Berlin Heidelberg: Springer. Liu, M., Zhang, D., Yap, P.-T., & Shen, D. (2012b). Tree-Guided Sparse Coding for Brain Disease Classification. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012 (Vol. 7512, pp. 239–247, Lecture Notes in Computer Science). Berlin Heidelberg: Springer.
Zurück zum Zitat Magnin, B., Mesrob, L., Kinkingnehun, S., Pelegrini-Issac, M., Colliot, O., Sarazin, M., et al. (2009). Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology, 51(2), 73–83.PubMedCrossRef Magnin, B., Mesrob, L., Kinkingnehun, S., Pelegrini-Issac, M., Colliot, O., Sarazin, M., et al. (2009). Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology, 51(2), 73–83.PubMedCrossRef
Zurück zum Zitat Oliveira, P. J., Nitrini, R., Busatto, G., Buchpiguel, C., Sato, J., & Amaro, E. J. (2010). Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease. Journal of Alzheimer’s Disease, 19(4), 1263–1272.PubMed Oliveira, P. J., Nitrini, R., Busatto, G., Buchpiguel, C., Sato, J., & Amaro, E. J. (2010). Use of SVM methods with surface-based cortical and volumetric subcortical measurements to detect Alzheimer’s disease. Journal of Alzheimer’s Disease, 19(4), 1263–1272.PubMed
Zurück zum Zitat Querbes, O., Aubry, F., Pariente, J., Lotterie, J. A., Demonet, J. F., Duret, V., et al. (2009). Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain, 132(Pt 8), 2036–2047.PubMedCentralPubMedCrossRef Querbes, O., Aubry, F., Pariente, J., Lotterie, J. A., Demonet, J. F., Duret, V., et al. (2009). Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain, 132(Pt 8), 2036–2047.PubMedCentralPubMedCrossRef
Zurück zum Zitat Shen, D., & Davatzikos, C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. Medical Imaging, IEEE Transactions on, 21(11), 1421–1439. Shen, D., & Davatzikos, C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. Medical Imaging, IEEE Transactions on, 21(11), 1421–1439.
Zurück zum Zitat Shen, D., & Davatzikos, C. (2003). Very high resolution morphometry using mass-preserving deformations and HAMMER elastic registration. NeuroImage, 18(1), 28–41. Shen, D., & Davatzikos, C. (2003). Very high resolution morphometry using mass-preserving deformations and HAMMER elastic registration. NeuroImage, 18(1), 28–41.
Zurück zum Zitat Shen, D., Wong, W., & Ip, H. H. S. (1999). Affine-invariant image retrieval by correspondence matching of shapes. Image and Vision Computing, 17(7), 489–499. Shen, D., Wong, W., & Ip, H. H. S. (1999). Affine-invariant image retrieval by correspondence matching of shapes. Image and Vision Computing, 17(7), 489–499.
Zurück zum Zitat Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. Medical Imaging, IEEE Transactions on, 17(1), 87–97. doi:10.1109/42.668698.CrossRef Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. Medical Imaging, IEEE Transactions on, 17(1), 87–97. doi:10.​1109/​42.​668698.CrossRef
Zurück zum Zitat Stonnington, C. M., Chu, C., Kloppel, S., Jack, C. R., Jr., Ashburner, J., & Frackowiak, R. S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51(4), 1405–1413.PubMedCentralPubMedCrossRef Stonnington, C. M., Chu, C., Kloppel, S., Jack, C. R., Jr., Ashburner, J., & Frackowiak, R. S. (2010). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51(4), 1405–1413.PubMedCentralPubMedCrossRef
Zurück zum Zitat Tang, S., Fan, Y., Wu, G., Kim, M., & Shen D., (2009). RABBIT: rapid alignment of brains by building intermediate templates. NeuroImage, 47(4), 1277–1287. Tang, S., Fan, Y., Wu, G., Kim, M., & Shen D., (2009). RABBIT: rapid alignment of brains by building intermediate templates. NeuroImage, 47(4), 1277–1287.
Zurück zum Zitat Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B: Methodological, 58(1), 267–288. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B: Methodological, 58(1), 267–288.
Zurück zum Zitat Wang, Y., Nie, J., Yap, P.-T., Shi, F., Guo, L., & Shen, D. (2011). Robust deformable-surface-based skull-stripping for large-scale studies. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011 (pp. 635–642). Springer. Wang, Y., Nie, J., Yap, P.-T., Shi, F., Guo, L., & Shen, D. (2011). Robust deformable-surface-based skull-stripping for large-scale studies. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011 (pp. 635–642). Springer.
Zurück zum Zitat Wee, C.-Y., Yap, P.-T., Li, W., Denny, K., Browndyke, J. N., Potter, G.G.,et al. (2011). Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage, 54(3), 1812–1822.PubMedCentralPubMedCrossRef Wee, C.-Y., Yap, P.-T., Li, W., Denny, K., Browndyke, J. N., Potter, G.G.,et al. (2011). Enriched white matter connectivity networks for accurate identification of MCI patients. NeuroImage, 54(3), 1812–1822.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., & Welsh-Bohmer, K. A. (2012). Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 59(3), 2045–2056. Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., & Welsh-Bohmer, K. A. (2012). Identification of MCI individuals using structural and functional connectivity networks. Neuroimage, 59(3), 2045–2056.
Zurück zum Zitat Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D. P., Rueckert, D., et al. (2011). Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS ONE, 6(10), e25446.PubMedCentralPubMedCrossRef Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D. P., Rueckert, D., et al. (2011). Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS ONE, 6(10), e25446.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. Medical Imaging, IEEE Transactions on, 25(9), 1145–1157.CrossRef Wu, G., Qi, F., & Shen, D. (2006). Learning-based deformable registration of MR brain images. Medical Imaging, IEEE Transactions on, 25(9), 1145–1157.CrossRef
Zurück zum Zitat Xue, Z., Shen, D., Karacali, B., Stern, J., Rottenberg, D., & Davatzikos, C. (2006). Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms. NeuroImage, 33(3), 855–866.PubMedCentralPubMedCrossRef Xue, Z., Shen, D., Karacali, B., Stern, J., Rottenberg, D., & Davatzikos, C. (2006). Simulating deformations of MR brain images for validation of atlas-based segmentation and registration algorithms. NeuroImage, 33(3), 855–866.PubMedCentralPubMedCrossRef
Zurück zum Zitat Yang, J., Shen, D., Davatzikos, C., & Verma, R. (2008). Diffusion tensor image registration using tensor geometry and orientation features. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008 (pp. 905–913). Springer. Yang, J., Shen, D., Davatzikos, C., & Verma, R. (2008). Diffusion tensor image registration using tensor geometry and orientation features. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008 (pp. 905–913). Springer.
Zurück zum Zitat Zhang, D., & Shen, D. (2012a). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage, 59(2), 895–907. Zhang, D., & Shen, D. (2012a). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage, 59(2), 895–907.
Zurück zum Zitat Zhang, D., & Shen, D. (2012b). Predicting future clinical changes of mci patients using longitudinal and multimodal biomarkers. PloS one, 7(3), e33182, 2012. Zhang, D., & Shen, D. (2012b). Predicting future clinical changes of mci patients using longitudinal and multimodal biomarkers. PloS one, 7(3), e33182, 2012.
Zurück zum Zitat Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55(3), 856–867. Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55(3), 856–867.
Zurück zum Zitat Zhao, P., Rocha, G., & Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. The Annals of Statistics, 37(6A), 3468–3497.CrossRef Zhao, P., Rocha, G., & Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. The Annals of Statistics, 37(6A), 3468–3497.CrossRef
Zurück zum Zitat Zhou, L., Wang, Y., Li, Y., Yap, P. T., & Shen, D. (2011). Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PLoS ONE, 6(7), e21935.PubMedCentralPubMedCrossRef Zhou, L., Wang, Y., Li, Y., Yap, P. T., & Shen, D. (2011). Hierarchical anatomical brain networks for MCI prediction: revisiting volumetric measures. PLoS ONE, 6(7), e21935.PubMedCentralPubMedCrossRef
Zurück zum Zitat Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., et al. (2013). DICCCOL: dense individualized and common connectivity-based cortical landmarks. Cerebral Cortex, 23(4), 786–800.PubMedCentralPubMedCrossRef Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., et al. (2013). DICCCOL: dense individualized and common connectivity-based cortical landmarks. Cerebral Cortex, 23(4), 786–800.PubMedCentralPubMedCrossRef
Metadaten
Titel
Identifying Informative Imaging Biomarkers via Tree Structured Sparse Learning for AD Diagnosis
verfasst von
Manhua Liu
Daoqiang Zhang
Dinggang Shen
the Alzheimer’s Disease Neuroimaging Initiative
Publikationsdatum
01.07.2014
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 3/2014
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-013-9218-x

Weitere Artikel der Ausgabe 3/2014

Neuroinformatics 3/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.