Skip to main content
Erschienen in: Clinical Reviews in Allergy & Immunology 1/2015

01.02.2015

Immunobiology of Critical Pediatric Asthma

verfasst von: Stacey Galowitz, Christopher Chang

Erschienen in: Clinical Reviews in Allergy & Immunology | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Asthma is a heterogeneous disease with numerous clinical phenotypes. Severe asthma constitutes about 10 % of all cases of asthma. There is significant geographic and regional variation in the incidence and severity of asthma. Other important factors include gender, ethnicity, living environment, lifestyle, socioeconomic class, and pathophysiology. These factors can often be identified as either genetic or environmental influences on asthma severity. The immune system derangements in severe asthma are poorly understood. Many molecules and cell types have been implicated in severe asthma, including neutrophils, airway epithelial cells, thymic stromal lymphopoietin, and even filaggrin. Recently, vitamin D has been thought to have a role in the severity of asthma. Aspirin exacerbated respiratory disease is an example of a phenotype that includes severe asthma as a feature. This suggests a role of leukotrienes or prostaglandins in the pathogenesis of severe asthma. Both the innate and adaptive immune system may play a role in the development of severe asthma. Besides filaggrin, other factors of the innate immune system, including TLR4 and TLR9 have been implicated in asthma. Airway epithelial cells possess pattern recognition receptors that recognize danger or pathogen-associated molecular patterns, and the result of binding of the ligand is the triggering of a signaling pathway that ultimately can lead to an activation of inflammatory mediators through the action of calcineurin and NF-κB. Components of the adaptive immune system, including TH2 and Th17 cells, have been implicated in the pathogenesis of asthma. The fact that so many molecules and cells may be variably involved in asthma patients, coupled with the presence of redundant pathways that lead to secretion of inflammatory mediators, make the development of effective drugs for the treatment of asthma extremely difficult. A better understanding of the heterogeneity and what drives this diversity on a genetic and epigenetic level will help to develop strategies for novel therapeutic agents or methods.
Literatur
2.
Zurück zum Zitat Moore WC et al (2007) Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J Allergy Clin Immunol 119(2):405–13PubMedCentralPubMed Moore WC et al (2007) Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J Allergy Clin Immunol 119(2):405–13PubMedCentralPubMed
3.
Zurück zum Zitat Spycher BD, Silverman M, Kuehni CE (2010) Phenotypes of childhood asthma: are they real? Clin Exp Allergy 40(8):1130–41PubMed Spycher BD, Silverman M, Kuehni CE (2010) Phenotypes of childhood asthma: are they real? Clin Exp Allergy 40(8):1130–41PubMed
5.
Zurück zum Zitat Klimek L, Pfaar O (2013) A comparison of immunotherapy delivery methods for allergen immunotherapy. Expert Rev Clin Immunol 9(5):465–74, quiz 475PubMed Klimek L, Pfaar O (2013) A comparison of immunotherapy delivery methods for allergen immunotherapy. Expert Rev Clin Immunol 9(5):465–74, quiz 475PubMed
6.
Zurück zum Zitat Chang C (2012) Asthma in children and adolescents: a comprehensive approach to diagnosis and management. Clin Rev Allergy Immunol 43(1–2):98–137PubMed Chang C (2012) Asthma in children and adolescents: a comprehensive approach to diagnosis and management. Clin Rev Allergy Immunol 43(1–2):98–137PubMed
7.
Zurück zum Zitat Matucci A et al (2012) Asthma: developments in targeted therapy. Expert Rev Clin Immunol 8(1):13–5PubMed Matucci A et al (2012) Asthma: developments in targeted therapy. Expert Rev Clin Immunol 8(1):13–5PubMed
8.
Zurück zum Zitat Vatti RR, Teuber SS (2012) Asthma and pregnancy. Clin Rev Allergy Immunol 43(1–2):45–56PubMed Vatti RR, Teuber SS (2012) Asthma and pregnancy. Clin Rev Allergy Immunol 43(1–2):45–56PubMed
9.
Zurück zum Zitat Louie S et al (2012) The critically ill asthmatic—from ICU to discharge. Clin Rev Allergy Immunol 43(1–2):30–44PubMed Louie S et al (2012) The critically ill asthmatic—from ICU to discharge. Clin Rev Allergy Immunol 43(1–2):30–44PubMed
10.
Zurück zum Zitat Leong AB, Ramsey CD, Celedon JC (2012) The challenge of asthma in minority populations. Clin Rev Allergy Immunol 43(1–2):156–83PubMed Leong AB, Ramsey CD, Celedon JC (2012) The challenge of asthma in minority populations. Clin Rev Allergy Immunol 43(1–2):156–83PubMed
14.
Zurück zum Zitat Siroux V, Garcia-Aymerich J (2011) The investigation of asthma phenotypes. Curr Opin Allergy Clin Immunol 11(5):393–9PubMed Siroux V, Garcia-Aymerich J (2011) The investigation of asthma phenotypes. Curr Opin Allergy Clin Immunol 11(5):393–9PubMed
15.
Zurück zum Zitat Anderson GP (2008) Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372(9643):1107–19PubMed Anderson GP (2008) Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372(9643):1107–19PubMed
16.
Zurück zum Zitat Lotvall J et al (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127(2):355–60PubMed Lotvall J et al (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127(2):355–60PubMed
17.
Zurück zum Zitat Wenzel S (2012) Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy 42(5):650–8PubMed Wenzel S (2012) Severe asthma: from characteristics to phenotypes to endotypes. Clin Exp Allergy 42(5):650–8PubMed
18.
Zurück zum Zitat Kim HY, DeKruyff RH, Umetsu DT (2010) The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11(7):577–84PubMedCentralPubMed Kim HY, DeKruyff RH, Umetsu DT (2010) The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11(7):577–84PubMedCentralPubMed
19.
Zurück zum Zitat Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18(5):684–92PubMed Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18(5):684–92PubMed
20.
Zurück zum Zitat Bailey M, Christoforidou Z, Lewis M (2013) Evolution of immune systems: specificity and autoreactivity. Autoimmun Rev 12(6):643–7PubMed Bailey M, Christoforidou Z, Lewis M (2013) Evolution of immune systems: specificity and autoreactivity. Autoimmun Rev 12(6):643–7PubMed
21.
Zurück zum Zitat Hammad H et al (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15(4):410–6PubMedCentralPubMed Hammad H et al (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15(4):410–6PubMedCentralPubMed
22.
Zurück zum Zitat Trompette A et al (2009) Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457(7229):585–8PubMedCentralPubMed Trompette A et al (2009) Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457(7229):585–8PubMedCentralPubMed
23.
Zurück zum Zitat Pace E et al (2008) Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 124(3):401–11PubMedCentralPubMed Pace E et al (2008) Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 124(3):401–11PubMedCentralPubMed
24.
Zurück zum Zitat Monick MM et al (2003) Respiratory syncytial virus up-regulates TLR4 and sensitizes airway epithelial cells to endotoxin. J Biol Chem 278(52):53035–44PubMed Monick MM et al (2003) Respiratory syncytial virus up-regulates TLR4 and sensitizes airway epithelial cells to endotoxin. J Biol Chem 278(52):53035–44PubMed
25.
Zurück zum Zitat Saenz SA et al (2010) IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464(7293):1362–6PubMedCentralPubMed Saenz SA et al (2010) IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464(7293):1362–6PubMedCentralPubMed
26.
Zurück zum Zitat Neill DR et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–70PubMedCentralPubMed Neill DR et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–70PubMedCentralPubMed
27.
Zurück zum Zitat Fort MM et al (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15(6):985–95PubMed Fort MM et al (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15(6):985–95PubMed
28.
Zurück zum Zitat Schneider E et al (2009) IL-33 activates unprimed murine basophils directly in vitro and induces their in vivo expansion indirectly by promoting hematopoietic growth factor production. J Immunol 183(6):3591–7PubMed Schneider E et al (2009) IL-33 activates unprimed murine basophils directly in vitro and induces their in vivo expansion indirectly by promoting hematopoietic growth factor production. J Immunol 183(6):3591–7PubMed
29.
Zurück zum Zitat Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406(6797):782–7PubMed Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406(6797):782–7PubMed
30.
Zurück zum Zitat Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–7PubMed Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–7PubMed
31.
Zurück zum Zitat Muzio M et al (2000) Toll-like receptor family and signalling pathway. Biochem Soc Trans 28(5):563–6PubMed Muzio M et al (2000) Toll-like receptor family and signalling pathway. Biochem Soc Trans 28(5):563–6PubMed
32.
Zurück zum Zitat Dabbagh K et al (2002) Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J Immunol 168(9):4524–30PubMed Dabbagh K et al (2002) Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J Immunol 168(9):4524–30PubMed
33.
Zurück zum Zitat Gern JE (2000) Viral and bacterial infections in the development and progression of asthma. J Allergy Clin Immunol 105(2 Pt 2):S497–502PubMed Gern JE (2000) Viral and bacterial infections in the development and progression of asthma. J Allergy Clin Immunol 105(2 Pt 2):S497–502PubMed
34.
Zurück zum Zitat Kurt-Jones EA et al (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1(5):398–401PubMed Kurt-Jones EA et al (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1(5):398–401PubMed
35.
Zurück zum Zitat Gill MA (2012) The role of dendritic cells in asthma. J Allergy Clin Immunol 129(4):889–901PubMed Gill MA (2012) The role of dendritic cells in asthma. J Allergy Clin Immunol 129(4):889–901PubMed
36.
Zurück zum Zitat Zhang Q et al (2011) Polymorphisms in toll-like receptor 4 gene are associated with asthma severity but not susceptibility in a Chinese Han population. J investig allergol Clin Immunol 21(5):370–7PubMed Zhang Q et al (2011) Polymorphisms in toll-like receptor 4 gene are associated with asthma severity but not susceptibility in a Chinese Han population. J investig allergol Clin Immunol 21(5):370–7PubMed
37.
Zurück zum Zitat Sackesen C et al (2005) The effect of polymorphisms at the CD14 promoter and the TLR4 gene on asthma phenotypes in Turkish children with asthma. Allergy 60(12):1485–92PubMed Sackesen C et al (2005) The effect of polymorphisms at the CD14 promoter and the TLR4 gene on asthma phenotypes in Turkish children with asthma. Allergy 60(12):1485–92PubMed
38.
Zurück zum Zitat Beeh KM et al (2013) The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. J Allergy Clin Immunol 131(3):866–74PubMed Beeh KM et al (2013) The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. J Allergy Clin Immunol 131(3):866–74PubMed
39.
Zurück zum Zitat Haldar P, Pavord ID (2007) Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J Allergy Clin Immunol 119(5):1043–52, quiz 1053–4PubMed Haldar P, Pavord ID (2007) Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J Allergy Clin Immunol 119(5):1043–52, quiz 1053–4PubMed
40.
Zurück zum Zitat Wardlaw AJ et al (1988) Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis 137(1):62–9PubMed Wardlaw AJ et al (1988) Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis 137(1):62–9PubMed
41.
Zurück zum Zitat Bousquet J et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323(15):1033–9PubMed Bousquet J et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323(15):1033–9PubMed
42.
Zurück zum Zitat Bentley AM et al (1996) Prednisolone treatment in asthma. Reduction in the numbers of eosinophils, T cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5, and interferon-gamma cytokine gene expression within the bronchial mucosa. Am J Respir Crit Care Med 153(2):551–6PubMed Bentley AM et al (1996) Prednisolone treatment in asthma. Reduction in the numbers of eosinophils, T cells, tryptase-only positive mast cells, and modulation of IL-4, IL-5, and interferon-gamma cytokine gene expression within the bronchial mucosa. Am J Respir Crit Care Med 153(2):551–6PubMed
43.
Zurück zum Zitat Beasley R et al (1989) Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis 139(3):806–17PubMed Beasley R et al (1989) Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis 139(3):806–17PubMed
44.
Zurück zum Zitat Gibson PG, Fujimura M, Niimi A (2002) Eosinophilic bronchitis: clinical manifestations and implications for treatment. Thorax 57(2):178–82PubMedCentralPubMed Gibson PG, Fujimura M, Niimi A (2002) Eosinophilic bronchitis: clinical manifestations and implications for treatment. Thorax 57(2):178–82PubMedCentralPubMed
45.
Zurück zum Zitat Payne DN et al (2001) Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am J Respir Crit Care Med 164(8 Pt 1):1376–81PubMed Payne DN et al (2001) Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am J Respir Crit Care Med 164(8 Pt 1):1376–81PubMed
46.
47.
Zurück zum Zitat Dweik RA et al (2011) An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 184(5):602–15PubMed Dweik RA et al (2011) An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 184(5):602–15PubMed
48.
Zurück zum Zitat Fahy JV (2009) Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc Am Thorac Soc 6(3):256–9PubMed Fahy JV (2009) Eosinophilic and neutrophilic inflammation in asthma: insights from clinical studies. Proc Am Thorac Soc 6(3):256–9PubMed
49.
Zurück zum Zitat Woodruff PG et al (2001) Relationship between airway inflammation, hyperresponsiveness, and obstruction in asthma. J Allergy Clin Immunol 108(5):753–8PubMed Woodruff PG et al (2001) Relationship between airway inflammation, hyperresponsiveness, and obstruction in asthma. J Allergy Clin Immunol 108(5):753–8PubMed
50.
Zurück zum Zitat Wenzel SE et al (1997) Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 156(3 Pt 1):737–43PubMed Wenzel SE et al (1997) Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 156(3 Pt 1):737–43PubMed
51.
Zurück zum Zitat Wenzel SE et al (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160(3):1001–8PubMed Wenzel SE et al (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160(3):1001–8PubMed
52.
Zurück zum Zitat Gibson PG, Simpson JL, Saltos N (2001) Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 119(5):1329–36PubMed Gibson PG, Simpson JL, Saltos N (2001) Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 119(5):1329–36PubMed
53.
Zurück zum Zitat Berry M et al (2007) Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax 62(12):1043–9PubMedCentralPubMed Berry M et al (2007) Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax 62(12):1043–9PubMedCentralPubMed
54.
Zurück zum Zitat Green RH et al (2002) Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 360(9347):1715–21PubMed Green RH et al (2002) Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 360(9347):1715–21PubMed
55.
Zurück zum Zitat Jayaram L et al (2006) Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J 27(3):483–94PubMed Jayaram L et al (2006) Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J 27(3):483–94PubMed
56.
Zurück zum Zitat Brown HM (1958) Treatment of chronic asthma with prednisolone; significance of eosinophils in the sputum. Lancet 2(7059):1245–7PubMed Brown HM (1958) Treatment of chronic asthma with prednisolone; significance of eosinophils in the sputum. Lancet 2(7059):1245–7PubMed
57.
Zurück zum Zitat Pavord ID et al (1999) Non-eosinophilic corticosteroid unresponsive asthma. Lancet 353(9171):2213–4PubMed Pavord ID et al (1999) Non-eosinophilic corticosteroid unresponsive asthma. Lancet 353(9171):2213–4PubMed
58.
Zurück zum Zitat van Rijt LS et al (2002) Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31(hi)Ly-6C(neg) bone marrow precursors in a mouse model of asthma. Blood 100(10):3663–71PubMed van Rijt LS et al (2002) Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31(hi)Ly-6C(neg) bone marrow precursors in a mouse model of asthma. Blood 100(10):3663–71PubMed
59.
Zurück zum Zitat Lambrecht BN et al (1999) Allergen-induced changes in bone-marrow progenitor and airway dendritic cells in sensitized rats. Am J Respir Cell Mol Biol 20(6):1165–74PubMed Lambrecht BN et al (1999) Allergen-induced changes in bone-marrow progenitor and airway dendritic cells in sensitized rats. Am J Respir Cell Mol Biol 20(6):1165–74PubMed
60.
Zurück zum Zitat Lambrecht BN et al (2000) Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 106(4):551–9PubMedCentralPubMed Lambrecht BN et al (2000) Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest 106(4):551–9PubMedCentralPubMed
61.
Zurück zum Zitat Sung S, Rose CE, Fu SM (2001) Intratracheal priming with ovalbumin- and ovalbumin 323–339 peptide-pulsed dendritic cells induces airway hyperresponsiveness, lung eosinophilia, goblet cell hyperplasia, and inflammation. J Immunol 166(2):1261–71PubMed Sung S, Rose CE, Fu SM (2001) Intratracheal priming with ovalbumin- and ovalbumin 323–339 peptide-pulsed dendritic cells induces airway hyperresponsiveness, lung eosinophilia, goblet cell hyperplasia, and inflammation. J Immunol 166(2):1261–71PubMed
62.
Zurück zum Zitat Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306PubMed Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306PubMed
63.
Zurück zum Zitat Gill MA et al (2010) Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol 184(11):5999–6006PubMed Gill MA et al (2010) Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol 184(11):5999–6006PubMed
64.
Zurück zum Zitat Gehlhar K et al (2006) Impaired virus-induced interferon-alpha2 release in adult asthmatic patients. Clin Exp Allergy 36(3):331–7PubMed Gehlhar K et al (2006) Impaired virus-induced interferon-alpha2 release in adult asthmatic patients. Clin Exp Allergy 36(3):331–7PubMed
65.
Zurück zum Zitat Bufe A et al (2002) Atopic phenotype in children is associated with decreased virus-induced interferon-alpha release. Int Arch Allergy Immunol 127(1):82–8PubMed Bufe A et al (2002) Atopic phenotype in children is associated with decreased virus-induced interferon-alpha release. Int Arch Allergy Immunol 127(1):82–8PubMed
66.
Zurück zum Zitat Huber JP et al (2010) Cutting edge: type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J Immunol 185(2):813–7PubMedCentralPubMed Huber JP et al (2010) Cutting edge: type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J Immunol 185(2):813–7PubMedCentralPubMed
67.
Zurück zum Zitat Moschen AR et al (2008) Interferon-alpha controls IL-17 expression in vitro and in vivo. Immunobiology 213(9–10):779–87PubMed Moschen AR et al (2008) Interferon-alpha controls IL-17 expression in vitro and in vivo. Immunobiology 213(9–10):779–87PubMed
68.
Zurück zum Zitat Harrington LE et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–32PubMed Harrington LE et al (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–32PubMed
69.
Zurück zum Zitat Allakhverdi Z et al (2007) Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 204(2):253–8PubMedCentralPubMed Allakhverdi Z et al (2007) Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 204(2):253–8PubMedCentralPubMed
70.
Zurück zum Zitat Liu YJ et al (2007) TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 25:193–219PubMed Liu YJ et al (2007) TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 25:193–219PubMed
71.
Zurück zum Zitat Ying S et al (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174(12):8183–90PubMed Ying S et al (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174(12):8183–90PubMed
72.
Zurück zum Zitat Zhou B et al (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6(10):1047–53PubMed Zhou B et al (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6(10):1047–53PubMed
73.
Zurück zum Zitat Fang C et al (2010) The role of thymic stromal lymphopoietin in allergic inflammation and chronic obstructive pulmonary disease. Arch Immunol Ther Exp (Warsz) 58(2):81–90 Fang C et al (2010) The role of thymic stromal lymphopoietin in allergic inflammation and chronic obstructive pulmonary disease. Arch Immunol Ther Exp (Warsz) 58(2):81–90
74.
Zurück zum Zitat Tu HY, Chen X, Li J (2007) [Signal transduction in respiratory syncytial virus infection-induced thymic stromal lymphopoietin expression in human epithelial cells]. Nan Fang Yi Ke Da Xue Xue Bao 27(10):1581–3PubMed Tu HY, Chen X, Li J (2007) [Signal transduction in respiratory syncytial virus infection-induced thymic stromal lymphopoietin expression in human epithelial cells]. Nan Fang Yi Ke Da Xue Xue Bao 27(10):1581–3PubMed
75.
Zurück zum Zitat Robinson DS et al (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326(5):298–304PubMed Robinson DS et al (1992) Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 326(5):298–304PubMed
76.
Zurück zum Zitat Steinke JW, Borish L (2001) Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res 2(2):66–70PubMedCentralPubMed Steinke JW, Borish L (2001) Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res 2(2):66–70PubMedCentralPubMed
77.
Zurück zum Zitat Greenfeder S et al (2001) Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respir Res 2(2):71–9PubMedCentralPubMed Greenfeder S et al (2001) Th2 cytokines and asthma. The role of interleukin-5 in allergic eosinophilic disease. Respir Res 2(2):71–9PubMedCentralPubMed
78.
Zurück zum Zitat Levitt RC et al (1999) IL-9 pathway in asthma: new therapeutic targets for allergic inflammatory disorders. J Allergy Clin Immunol 103(5 Pt 2):S485–91PubMed Levitt RC et al (1999) IL-9 pathway in asthma: new therapeutic targets for allergic inflammatory disorders. J Allergy Clin Immunol 103(5 Pt 2):S485–91PubMed
79.
Zurück zum Zitat Eklund KK et al (1993) Induction by IL-9 and suppression by IL-3 and IL-4 of the levels of chromosome 14-derived transcripts that encode late-expressed mouse mast cell proteases. J Immunol 151(8):4266–73PubMed Eklund KK et al (1993) Induction by IL-9 and suppression by IL-3 and IL-4 of the levels of chromosome 14-derived transcripts that encode late-expressed mouse mast cell proteases. J Immunol 151(8):4266–73PubMed
80.
Zurück zum Zitat Louahed J et al (1995) IL-9 induces expression of granzymes and high-affinity IgE receptor in murine T helper clones. J Immunol 154(10):5061–70PubMed Louahed J et al (1995) IL-9 induces expression of granzymes and high-affinity IgE receptor in murine T helper clones. J Immunol 154(10):5061–70PubMed
81.
Zurück zum Zitat Hultner L, Moeller J (1990) Mast cell growth-enhancing activity (MEA) stimulates interleukin 6 production in a mouse bone marrow-derived mast cell line and a malignant subline. Exp Hematol 18(8):873–7PubMed Hultner L, Moeller J (1990) Mast cell growth-enhancing activity (MEA) stimulates interleukin 6 production in a mouse bone marrow-derived mast cell line and a malignant subline. Exp Hematol 18(8):873–7PubMed
82.
Zurück zum Zitat Dugas B et al (1993) Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur J Immunol 23(7):1687–92PubMed Dugas B et al (1993) Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur J Immunol 23(7):1687–92PubMed
83.
Zurück zum Zitat Petit-Frere C et al (1993) Interleukin-9 potentiates the interleukin-4-induced IgE and IgG1 release from murine B lymphocytes. Immunology 79(1):146–51PubMedCentralPubMed Petit-Frere C et al (1993) Interleukin-9 potentiates the interleukin-4-induced IgE and IgG1 release from murine B lymphocytes. Immunology 79(1):146–51PubMedCentralPubMed
84.
Zurück zum Zitat Sears MR et al (1991) Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children. N Engl J Med 325(15):1067–71PubMed Sears MR et al (1991) Relation between airway responsiveness and serum IgE in children with asthma and in apparently normal children. N Engl J Med 325(15):1067–71PubMed
85.
Zurück zum Zitat Wills-Karp M et al (1998) Interleukin-13: central mediator of allergic asthma. Science 282(5397):2258–61PubMed Wills-Karp M et al (1998) Interleukin-13: central mediator of allergic asthma. Science 282(5397):2258–61PubMed
86.
Zurück zum Zitat Grunig G et al (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282(5397):2261–3PubMedCentralPubMed Grunig G et al (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282(5397):2261–3PubMedCentralPubMed
87.
Zurück zum Zitat Pope SM et al (2001) IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. J Allergy Clin Immunol 108(4):594–601PubMed Pope SM et al (2001) IL-13 induces eosinophil recruitment into the lung by an IL-5- and eotaxin-dependent mechanism. J Allergy Clin Immunol 108(4):594–601PubMed
88.
Zurück zum Zitat Martinez-Nunez RT, Louafi F, Sanchez-Elsner T (2011) The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 286(3):1786–94PubMedCentralPubMed Martinez-Nunez RT, Louafi F, Sanchez-Elsner T (2011) The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 286(3):1786–94PubMedCentralPubMed
89.
Zurück zum Zitat Ramirez-Icaza G et al (2004) Th2 cytokines IL-4 and IL-13 downregulate paxillin expression in bronchial airway epithelial cells. J Clin Immunol 24(4):426–34PubMed Ramirez-Icaza G et al (2004) Th2 cytokines IL-4 and IL-13 downregulate paxillin expression in bronchial airway epithelial cells. J Clin Immunol 24(4):426–34PubMed
90.
Zurück zum Zitat Zhu Z et al (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103(6):779–88PubMedCentralPubMed Zhu Z et al (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103(6):779–88PubMedCentralPubMed
91.
Zurück zum Zitat Chibana K et al (2008) IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin Exp Allergy 38(6):936–46PubMed Chibana K et al (2008) IL-13 induced increases in nitrite levels are primarily driven by increases in inducible nitric oxide synthase as compared with effects on arginases in human primary bronchial epithelial cells. Clin Exp Allergy 38(6):936–46PubMed
92.
Zurück zum Zitat Kuperman DA et al (2002) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8(8):885–9PubMed Kuperman DA et al (2002) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8(8):885–9PubMed
93.
Zurück zum Zitat Angkasekwinai P et al (2007) Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med 204(7):1509–17PubMedCentralPubMed Angkasekwinai P et al (2007) Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med 204(7):1509–17PubMedCentralPubMed
94.
Zurück zum Zitat Dolgachev V et al (2009) Pulmonary IL-17E (IL-25) production and IL-17RB + myeloid cell-derived Th2 cytokine production are dependent upon stem cell factor-induced responses during chronic allergic pulmonary disease. J Immunol 183(9):5705–15PubMed Dolgachev V et al (2009) Pulmonary IL-17E (IL-25) production and IL-17RB + myeloid cell-derived Th2 cytokine production are dependent upon stem cell factor-induced responses during chronic allergic pulmonary disease. J Immunol 183(9):5705–15PubMed
95.
Zurück zum Zitat Tamachi T et al (2006) IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol 118(3):606–14PubMed Tamachi T et al (2006) IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol 118(3):606–14PubMed
96.
Zurück zum Zitat Ballantyne SJ et al (2007) Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol 120(6):1324–31PubMed Ballantyne SJ et al (2007) Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol 120(6):1324–31PubMed
97.
Zurück zum Zitat Liew FY, Pitman NI, McInnes IB (2010) Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol 10(2):103–10PubMed Liew FY, Pitman NI, McInnes IB (2010) Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol 10(2):103–10PubMed
98.
Zurück zum Zitat Silver MR et al (2010) IL-33 synergizes with IgE-dependent and IgE-independent agents to promote mast cell and basophil activation. Inflamm Res 59(3):207–18PubMed Silver MR et al (2010) IL-33 synergizes with IgE-dependent and IgE-independent agents to promote mast cell and basophil activation. Inflamm Res 59(3):207–18PubMed
99.
Zurück zum Zitat Cherry WB et al (2008) A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 121(6):1484–90PubMedCentralPubMed Cherry WB et al (2008) A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 121(6):1484–90PubMedCentralPubMed
100.
Zurück zum Zitat Kearley J et al (2009) Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am J Respir Crit Care Med 179(9):772–81PubMedCentralPubMed Kearley J et al (2009) Resolution of allergic inflammation and airway hyperreactivity is dependent upon disruption of the T1/ST2-IL-33 pathway. Am J Respir Crit Care Med 179(9):772–81PubMedCentralPubMed
101.
Zurück zum Zitat Kurowska-Stolarska M et al (2009) IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 183(10):6469–77PubMed Kurowska-Stolarska M et al (2009) IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 183(10):6469–77PubMed
102.
Zurück zum Zitat Coyle AJ et al (1999) Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J Exp Med 190(7):895–902PubMedCentralPubMed Coyle AJ et al (1999) Crucial role of the interleukin 1 receptor family member T1/ST2 in T helper cell type 2-mediated lung mucosal immune responses. J Exp Med 190(7):895–902PubMedCentralPubMed
103.
Zurück zum Zitat Liu X et al (2009) Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem Biophys Res Commun 386(1):181–5PubMed Liu X et al (2009) Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem Biophys Res Commun 386(1):181–5PubMed
104.
Zurück zum Zitat Barczyk A, Pierzchala W, Sozanska E (2003) Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir Med 97(6):726–33PubMed Barczyk A, Pierzchala W, Sozanska E (2003) Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir Med 97(6):726–33PubMed
105.
Zurück zum Zitat Wilson RH et al (2009) Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am J Respir Crit Care Med 180(8):720–30PubMedCentralPubMed Wilson RH et al (2009) Allergic sensitization through the airway primes Th17-dependent neutrophilia and airway hyperresponsiveness. Am J Respir Crit Care Med 180(8):720–30PubMedCentralPubMed
106.
Zurück zum Zitat Dias PM, Banerjee G (2013) The role of Th17/IL-17 on eosinophilic inflammation. J Autoimmun 40:9–20PubMed Dias PM, Banerjee G (2013) The role of Th17/IL-17 on eosinophilic inflammation. J Autoimmun 40:9–20PubMed
107.
Zurück zum Zitat Nakae S et al (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17(3):375–87PubMed Nakae S et al (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17(3):375–87PubMed
108.
Zurück zum Zitat Pichavant M et al (2008) Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205(2):385–93PubMedCentralPubMed Pichavant M et al (2008) Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205(2):385–93PubMedCentralPubMed
109.
Zurück zum Zitat Schroeder JT et al (2010) Decreases in human dendritic cell-dependent T(H)2-like responses after acute in vivo IgE neutralization. J Allergy Clin Immunol 125(4):896–901 e6PubMed Schroeder JT et al (2010) Decreases in human dendritic cell-dependent T(H)2-like responses after acute in vivo IgE neutralization. J Allergy Clin Immunol 125(4):896–901 e6PubMed
110.
Zurück zum Zitat Antico A et al (2012) Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev 12(2):127–36PubMed Antico A et al (2012) Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev 12(2):127–36PubMed
111.
Zurück zum Zitat Litonjua AA (2012) Vitamin D deficiency as a risk factor for childhood allergic disease and asthma. Curr Opin Allergy Clin Immunol 12(2):179–85PubMedCentralPubMed Litonjua AA (2012) Vitamin D deficiency as a risk factor for childhood allergic disease and asthma. Curr Opin Allergy Clin Immunol 12(2):179–85PubMedCentralPubMed
112.
113.
Zurück zum Zitat Litonjua AA (2009) Childhood asthma may be a consequence of vitamin D deficiency. Curr Opin Allergy Clin Immunol 9(3):202–7PubMedCentralPubMed Litonjua AA (2009) Childhood asthma may be a consequence of vitamin D deficiency. Curr Opin Allergy Clin Immunol 9(3):202–7PubMedCentralPubMed
114.
Zurück zum Zitat Brehm JM et al (2010) Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J Allergy Clin Immunol 126(1):52–8 e5PubMedCentralPubMed Brehm JM et al (2010) Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J Allergy Clin Immunol 126(1):52–8 e5PubMedCentralPubMed
115.
Zurück zum Zitat Freishtat RJ et al (2010) High prevalence of vitamin D deficiency among inner-city African American youth with asthma in Washington, DC. J Pediatr 156(6):948–52PubMedCentralPubMed Freishtat RJ et al (2010) High prevalence of vitamin D deficiency among inner-city African American youth with asthma in Washington, DC. J Pediatr 156(6):948–52PubMedCentralPubMed
116.
Zurück zum Zitat Bener A et al (2012) Vitamin D deficiency as a strong predictor of asthma in children. Int Arch Allergy Immunol 157(2):168–75PubMed Bener A et al (2012) Vitamin D deficiency as a strong predictor of asthma in children. Int Arch Allergy Immunol 157(2):168–75PubMed
117.
Zurück zum Zitat Alyasin S et al (2011) The relationship between serum 25 hydroxy vitamin d levels and asthma in children. Allergy Asthma Immunol Res 3(4):251–5PubMedCentralPubMed Alyasin S et al (2011) The relationship between serum 25 hydroxy vitamin d levels and asthma in children. Allergy Asthma Immunol Res 3(4):251–5PubMedCentralPubMed
118.
Zurück zum Zitat Keet CA et al (2011) Age- and atopy-dependent effects of vitamin D on wheeze and asthma. J Allergy Clin Immunol 128(2):414–16 e5PubMedCentralPubMed Keet CA et al (2011) Age- and atopy-dependent effects of vitamin D on wheeze and asthma. J Allergy Clin Immunol 128(2):414–16 e5PubMedCentralPubMed
119.
Zurück zum Zitat van Oeffelen AA et al (2011) Serum micronutrient concentrations and childhood asthma: the PIAMA birth cohort study. Pediatr Allergy Immunol 22(8):784–93PubMed van Oeffelen AA et al (2011) Serum micronutrient concentrations and childhood asthma: the PIAMA birth cohort study. Pediatr Allergy Immunol 22(8):784–93PubMed
120.
Zurück zum Zitat Jonuleit H et al (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192(9):1213–22PubMedCentralPubMed Jonuleit H et al (2000) Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192(9):1213–22PubMedCentralPubMed
121.
Zurück zum Zitat Akbari O, DeKruyff RH, Umetsu DT (2001) Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2(8):725–31PubMed Akbari O, DeKruyff RH, Umetsu DT (2001) Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2(8):725–31PubMed
122.
123.
Zurück zum Zitat Nouri-Aria KT et al (2004) Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J Immunol 172(5):3252–9PubMed Nouri-Aria KT et al (2004) Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J Immunol 172(5):3252–9PubMed
124.
Zurück zum Zitat Varney VA et al (1993) Influence of grass pollen immunotherapy on cellular infiltration and cytokine mRNA expression during allergen-induced late-phase cutaneous responses. J Clin Invest 92(2):644–51PubMedCentralPubMed Varney VA et al (1993) Influence of grass pollen immunotherapy on cellular infiltration and cytokine mRNA expression during allergen-induced late-phase cutaneous responses. J Clin Invest 92(2):644–51PubMedCentralPubMed
125.
Zurück zum Zitat Secrist H et al (1993) Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J Exp Med 178(6):2123–30PubMed Secrist H et al (1993) Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J Exp Med 178(6):2123–30PubMed
126.
Zurück zum Zitat Ebner C et al (1997) Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin Exp Allergy 27(9):1007–15PubMed Ebner C et al (1997) Immunological changes during specific immunotherapy of grass pollen allergy: reduced lymphoproliferative responses to allergen and shift from TH2 to TH1 in T-cell clones specific for Phl p 1, a major grass pollen allergen. Clin Exp Allergy 27(9):1007–15PubMed
127.
Zurück zum Zitat Mothes N et al (2003) Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin Exp Allergy 33(9):1198–208PubMed Mothes N et al (2003) Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin Exp Allergy 33(9):1198–208PubMed
128.
Zurück zum Zitat Visco V et al (1996) Human IgG monoclonal antibodies that modulate the binding of specific IgE to birch pollen Bet v 1. J Immunol 157(2):956–62PubMed Visco V et al (1996) Human IgG monoclonal antibodies that modulate the binding of specific IgE to birch pollen Bet v 1. J Immunol 157(2):956–62PubMed
129.
Zurück zum Zitat Moller C et al (2002) Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT-study). J Allergy Clin Immunol 109(2):251–6PubMed Moller C et al (2002) Pollen immunotherapy reduces the development of asthma in children with seasonal rhinoconjunctivitis (the PAT-study). J Allergy Clin Immunol 109(2):251–6PubMed
130.
Zurück zum Zitat Almomani B et al (2013) Can certain genotypes predispose to poor asthma control in children? A pharmacogenetic study of 9 candidate genes in children with difficult asthma. PloS one 8(4):e60592PubMedCentralPubMed Almomani B et al (2013) Can certain genotypes predispose to poor asthma control in children? A pharmacogenetic study of 9 candidate genes in children with difficult asthma. PloS one 8(4):e60592PubMedCentralPubMed
131.
Zurück zum Zitat Burchard EG et al (1999) Association between a sequence variant in the IL-4 gene promoter and FEV(1) in asthma. Am J Respir Crit Care Med 160(3):919–22PubMed Burchard EG et al (1999) Association between a sequence variant in the IL-4 gene promoter and FEV(1) in asthma. Am J Respir Crit Care Med 160(3):919–22PubMed
132.
Zurück zum Zitat Sandford AJ et al (2000) Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J Allergy Clin Immunol 106(1 Pt 1):135–40PubMed Sandford AJ et al (2000) Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J Allergy Clin Immunol 106(1 Pt 1):135–40PubMed
133.
Zurück zum Zitat Tantisira KG et al (2004) Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Human Mol Genet 13(13):1353–9 Tantisira KG et al (2004) Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Human Mol Genet 13(13):1353–9
134.
Zurück zum Zitat Berry MA et al (2006) Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 354(7):697–708PubMed Berry MA et al (2006) Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 354(7):697–708PubMed
135.
Zurück zum Zitat Bradding P et al (1994) Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol 10(5):471–80PubMed Bradding P et al (1994) Interleukin-4, -5, and -6 and tumor necrosis factor-alpha in normal and asthmatic airways: evidence for the human mast cell as a source of these cytokines. Am J Respir Cell Mol Biol 10(5):471–80PubMed
136.
Zurück zum Zitat Holgate ST et al (2009) The role of the airway epithelium and its interaction with environmental factors in asthma pathogenesis. Proc Am Thorac Soc 6(8):655–9 Holgate ST et al (2009) The role of the airway epithelium and its interaction with environmental factors in asthma pathogenesis. Proc Am Thorac Soc 6(8):655–9
137.
Zurück zum Zitat Figueiredo CA et al (2012) Does IFN-gamma play a role on the pathogenesis of non-atopic asthma in Latin America children? Allergy Asthma Clin Immunol 8(1):18 Figueiredo CA et al (2012) Does IFN-gamma play a role on the pathogenesis of non-atopic asthma in Latin America children? Allergy Asthma Clin Immunol 8(1):18
138.
Zurück zum Zitat Palmer CN et al (2007) Filaggrin null mutations are associated with increased asthma severity in children and young adults. J Allergy Clin Immunol 120(1):64–8 Palmer CN et al (2007) Filaggrin null mutations are associated with increased asthma severity in children and young adults. J Allergy Clin Immunol 120(1):64–8
139.
Zurück zum Zitat Leung TF et al (2003) The C-159T polymorphism in the CD14 promoter is associated with serum total IgE concentration in atopic Chinese children. Pediatr Allergy Immunol 14(4):255–60 Leung TF et al (2003) The C-159T polymorphism in the CD14 promoter is associated with serum total IgE concentration in atopic Chinese children. Pediatr Allergy Immunol 14(4):255–60
Metadaten
Titel
Immunobiology of Critical Pediatric Asthma
verfasst von
Stacey Galowitz
Christopher Chang
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Clinical Reviews in Allergy & Immunology / Ausgabe 1/2015
Print ISSN: 1080-0549
Elektronische ISSN: 1559-0267
DOI
https://doi.org/10.1007/s12016-014-8409-z

Weitere Artikel der Ausgabe 1/2015

Clinical Reviews in Allergy & Immunology 1/2015 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Hörschwäche erhöht Demenzrisiko unabhängig von Beta-Amyloid

29.05.2024 Hörstörungen Nachrichten

Hört jemand im Alter schlecht, nimmt das Hirn- und Hippocampusvolumen besonders schnell ab, was auch mit einem beschleunigten kognitiven Abbau einhergeht. Und diese Prozesse scheinen sich unabhängig von der Amyloidablagerung zu ereignen.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.