Skip to main content
Erschienen in: Clinical and Translational Oncology 12/2021

23.06.2021 | Review Article

Immunotherapy in AML: a brief review on emerging strategies

verfasst von: A. Moeinafshar, S. Hemmati, N. Rezaei

Erschienen in: Clinical and Translational Oncology | Ausgabe 12/2021

Einloggen, um Zugang zu erhalten

Abstract

Acute myeloid leukemia (AML), the most common form of leukemia amongst adults, is one of the most important hematological malignancies. Epidemiological data show both high incidence rates and low survival rates, especially in secondary cases among adults. Although classic and novel chemotherapeutic approaches have extensively improved disease prognosis and survival, the need for more personalized and target-specific methods with less side effects have been inevitable. Therefore, immunotherapeutic methods are of importance. In the following review, primarily a brief understanding of the molecular basis of the disease has been represented. Second, prior to the introduction of immunotherapeutic approaches, the entangled relationship of AML and patient’s immune system has been discussed. At last, mechanistic and clinical evidence of each of the immunotherapy approaches have been covered.
Literatur
2.
Zurück zum Zitat Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, et al. Immunotherapy-based targeting and elimination of leukemic stem cells in AML and CML. Int J Mol Sci. 2019;20(17):4233.PubMedCentralCrossRef Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, et al. Immunotherapy-based targeting and elimination of leukemic stem cells in AML and CML. Int J Mol Sci. 2019;20(17):4233.PubMedCentralCrossRef
3.
Zurück zum Zitat Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87.PubMedCrossRef Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87.PubMedCrossRef
4.
Zurück zum Zitat Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107(9):2099–107.PubMedCrossRef Deschler B, Lübbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107(9):2099–107.PubMedCrossRef
5.
Zurück zum Zitat Medeiros BC. Is there a standard of care for relapsed AML? Best Pract Res Clin Haematol. 2018;31(4):384–6.PubMedCrossRef Medeiros BC. Is there a standard of care for relapsed AML? Best Pract Res Clin Haematol. 2018;31(4):384–6.PubMedCrossRef
7.
Zurück zum Zitat Velcheti V, Schalper K. Basic overview of current immunotherapy approaches in cancer. Am Soc Clin Oncol Educ Book. 2016;35:298–308.PubMedCrossRef Velcheti V, Schalper K. Basic overview of current immunotherapy approaches in cancer. Am Soc Clin Oncol Educ Book. 2016;35:298–308.PubMedCrossRef
8.
Zurück zum Zitat Gale RP, Opelz G. Commentary: does immune suppression increase risk of developing acute myeloid leukemia? Leukemia. 2012;26(3):422–3.PubMedCrossRef Gale RP, Opelz G. Commentary: does immune suppression increase risk of developing acute myeloid leukemia? Leukemia. 2012;26(3):422–3.PubMedCrossRef
9.
Zurück zum Zitat Barrett AJ. Acute myeloid leukaemia and the immune system: implications for immunotherapy. Br J Haematol. 2020;188(1):147–58.PubMedCrossRef Barrett AJ. Acute myeloid leukaemia and the immune system: implications for immunotherapy. Br J Haematol. 2020;188(1):147–58.PubMedCrossRef
10.
Zurück zum Zitat Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, et al. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 2018;9:398.PubMedPubMedCentralCrossRef Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, et al. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 2018;9:398.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol. 2016;103:62–77.PubMedCrossRef Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol. 2016;103:62–77.PubMedCrossRef
12.
Zurück zum Zitat Yang D, Zhang X, Zhang X, Xu Y. The progress and current status of immunotherapy in acute myeloid leukemia. Ann Hematol. 2017;96(12):1965–82.PubMedCrossRef Yang D, Zhang X, Zhang X, Xu Y. The progress and current status of immunotherapy in acute myeloid leukemia. Ann Hematol. 2017;96(12):1965–82.PubMedCrossRef
13.
Zurück zum Zitat Quesada JR, Hersh EM, Manning J, Reuben J, Keating M, Schnipper E, et al. Treatment of hairy cell leukemia with recombinant alpha-interferon. Blood. 1986;68(2):493–7.PubMedCrossRef Quesada JR, Hersh EM, Manning J, Reuben J, Keating M, Schnipper E, et al. Treatment of hairy cell leukemia with recombinant alpha-interferon. Blood. 1986;68(2):493–7.PubMedCrossRef
14.
Zurück zum Zitat Ahmed S, Rai KR. Interferon in the treatment of hairy-cell leukemia. Best Pract Res Clin Haematol. 2003;16(1):69–81.PubMedCrossRef Ahmed S, Rai KR. Interferon in the treatment of hairy-cell leukemia. Best Pract Res Clin Haematol. 2003;16(1):69–81.PubMedCrossRef
16.
Zurück zum Zitat Abdel-Wahab N, Shah M, Lopez-Olivo MA, Suarez-Almazor ME. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: a systematic review. Ann Intern Med. 2018;168(2):121–30.PubMedCrossRef Abdel-Wahab N, Shah M, Lopez-Olivo MA, Suarez-Almazor ME. Use of immune checkpoint inhibitors in the treatment of patients with cancer and preexisting autoimmune disease: a systematic review. Ann Intern Med. 2018;168(2):121–30.PubMedCrossRef
17.
Zurück zum Zitat Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67.PubMedCrossRef Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67.PubMedCrossRef
19.
20.
Zurück zum Zitat Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 2016;34:539–73.CrossRefPubMed Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 2016;34:539–73.CrossRefPubMed
21.
Zurück zum Zitat Wanchoo R, Karam S, Uppal NN, Barta VS, Deray G, Devoe C, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol. 2017;45(2):160–9.PubMedCrossRef Wanchoo R, Karam S, Uppal NN, Barta VS, Deray G, Devoe C, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review. Am J Nephrol. 2017;45(2):160–9.PubMedCrossRef
22.
Zurück zum Zitat Varricchi G, Marone G, Mercurio V, Galdiero MR, Bonaduce D, Tocchetti CG. Immune checkpoint inhibitors and cardiac toxicity: an emerging issue. Curr Med Chem. 2018;25(11):1327–39.PubMedCrossRef Varricchi G, Marone G, Mercurio V, Galdiero MR, Bonaduce D, Tocchetti CG. Immune checkpoint inhibitors and cardiac toxicity: an emerging issue. Curr Med Chem. 2018;25(11):1327–39.PubMedCrossRef
23.
Zurück zum Zitat Psimaras D. Neuromuscular complications of immune checkpoint inhibitors. Presse Med. 2018;47(11–12 Pt 2):e253–9.PubMedCrossRef Psimaras D. Neuromuscular complications of immune checkpoint inhibitors. Presse Med. 2018;47(11–12 Pt 2):e253–9.PubMedCrossRef
24.
Zurück zum Zitat Spiers L, Coupe N, Payne M. Toxicities associated with checkpoint inhibitors-an overview. Rheumatology (Oxford). 2019;58(Suppl 7):vii7–16.CrossRef Spiers L, Coupe N, Payne M. Toxicities associated with checkpoint inhibitors-an overview. Rheumatology (Oxford). 2019;58(Suppl 7):vii7–16.CrossRef
25.
Zurück zum Zitat Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–41.PubMedCrossRef Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–41.PubMedCrossRef
26.
Zurück zum Zitat Boddu P, Kantarjian H, Garcia-Manero G, Allison J, Sharma P, Daver N. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma. 2018;59(4):790–802.PubMedCrossRef Boddu P, Kantarjian H, Garcia-Manero G, Allison J, Sharma P, Daver N. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma. 2018;59(4):790–802.PubMedCrossRef
27.
Zurück zum Zitat Haroun F, Solola SA, Nassereddine S, Tabbara I. PD-1 signaling and inhibition in AML and MDS. Ann Hematol. 2017;96(9):1441–8.PubMedCrossRef Haroun F, Solola SA, Nassereddine S, Tabbara I. PD-1 signaling and inhibition in AML and MDS. Ann Hematol. 2017;96(9):1441–8.PubMedCrossRef
28.
Zurück zum Zitat Stahl M, Goldberg AD. Immune checkpoint inhibitors in acute myeloid leukemia: novel combinations and therapeutic targets. Curr Oncol Rep. 2019;21(4):37.PubMedCrossRef Stahl M, Goldberg AD. Immune checkpoint inhibitors in acute myeloid leukemia: novel combinations and therapeutic targets. Curr Oncol Rep. 2019;21(4):37.PubMedCrossRef
29.
Zurück zum Zitat Liao D, Wang M, Liao Y, Li J, Niu T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol. 2019;10:609.PubMedPubMedCentralCrossRef Liao D, Wang M, Liao Y, Li J, Niu T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol. 2019;10:609.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Przespolewski A, Szeles A, Wang ES. Advances in immunotherapy for acute myeloid leukemia. Future Oncol. 2018;14(10):963–78.PubMedCrossRef Przespolewski A, Szeles A, Wang ES. Advances in immunotherapy for acute myeloid leukemia. Future Oncol. 2018;14(10):963–78.PubMedCrossRef
31.
32.
Zurück zum Zitat Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin cancer Res. 2008;14(10):3044–51.PubMedCrossRef Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin cancer Res. 2008;14(10):3044–51.PubMedCrossRef
33.
Zurück zum Zitat Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.PubMedPubMedCentralCrossRef Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375(2):143–53.PubMedPubMedCentralCrossRef Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, et al. Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med. 2016;375(2):143–53.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Daver N, Garcia-Manero G, Basu S, Boddu PC, Alfayez M, Cortes JE, et al. Efficacy, safety, and biomarkers of response to Azacitidine and Nivolumab in relapsed/refractory acute Myeloid leukemia: a nonrandomized, open-label Phase II Study. Cancer Discov. 2019;9(3):370–83.PubMedCrossRef Daver N, Garcia-Manero G, Basu S, Boddu PC, Alfayez M, Cortes JE, et al. Efficacy, safety, and biomarkers of response to Azacitidine and Nivolumab in relapsed/refractory acute Myeloid leukemia: a nonrandomized, open-label Phase II Study. Cancer Discov. 2019;9(3):370–83.PubMedCrossRef
36.
Zurück zum Zitat Assi R, Kantarjian HM, Daver NG, Garcia-Manero G, Benton CB, Thompson PA, et al. Results of a phase 2, open-label study of idarubicin (I), cytarabine (A) and nivolumab (Nivo) in patients with newly diagnosed acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood. 2018;132(Supplement 1):905.CrossRef Assi R, Kantarjian HM, Daver NG, Garcia-Manero G, Benton CB, Thompson PA, et al. Results of a phase 2, open-label study of idarubicin (I), cytarabine (A) and nivolumab (Nivo) in patients with newly diagnosed acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood. 2018;132(Supplement 1):905.CrossRef
37.
Zurück zum Zitat Kline J, Liu H, Michael T, Artz AS, Godfrey J, Curran EK, et al. Pembrolizumab for the treatment of disease relapse following allogeneic hematopoietic cell transplantation. Blood. 2018;132(Supplement 1):3415.CrossRef Kline J, Liu H, Michael T, Artz AS, Godfrey J, Curran EK, et al. Pembrolizumab for the treatment of disease relapse following allogeneic hematopoietic cell transplantation. Blood. 2018;132(Supplement 1):3415.CrossRef
38.
Zurück zum Zitat Ravandi F, Assi R, Daver N, Benton CB, Kadia T, Thompson PA, et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematol. 2019;6(9):e480–8.PubMedPubMedCentralCrossRef Ravandi F, Assi R, Daver N, Benton CB, Kadia T, Thompson PA, et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematol. 2019;6(9):e480–8.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Zheng H, Mineishi S, Claxton D, Zhu J, Zhao C, Jia B, et al. A phase I clinical trial of avelumab in combination with decitabine as first line treatment of unfit patients with acute myeloid leukemia. Am J Hematol. 2021;96:46–50.CrossRef Zheng H, Mineishi S, Claxton D, Zhu J, Zhao C, Jia B, et al. A phase I clinical trial of avelumab in combination with decitabine as first line treatment of unfit patients with acute myeloid leukemia. Am J Hematol. 2021;96:46–50.CrossRef
41.
42.
Zurück zum Zitat Banerjee M, Saxena M. Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta. 2012;413(15–16):1163–70.PubMedCrossRef Banerjee M, Saxena M. Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin Chim Acta. 2012;413(15–16):1163–70.PubMedCrossRef
43.
44.
Zurück zum Zitat Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front Immunol. 2018;9:444.PubMedPubMedCentralCrossRef Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor necrosis factor α and regulatory T cells in oncoimmunology. Front Immunol. 2018;9:444.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Broughton SE, Hercus TR, Nero TL, Kan WL, Barry EF, Dottore M, et al. A dual role for the N-terminal domain of the IL-3 receptor in cell signalling. Nat Commun. 2018;9(1):386.PubMedPubMedCentralCrossRef Broughton SE, Hercus TR, Nero TL, Kan WL, Barry EF, Dottore M, et al. A dual role for the N-terminal domain of the IL-3 receptor in cell signalling. Nat Commun. 2018;9(1):386.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat O’Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol. 2007;7(6):425–8.PubMedCrossRef O’Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol. 2007;7(6):425–8.PubMedCrossRef
47.
Zurück zum Zitat Llopiz D, Ruiz M, Infante S, Villanueva L, Silva L, Hervas-Stubbs S, et al. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget. 2017;8(2):2659–71.PubMedCrossRef Llopiz D, Ruiz M, Infante S, Villanueva L, Silva L, Hervas-Stubbs S, et al. IL-10 expression defines an immunosuppressive dendritic cell population induced by antitumor therapeutic vaccination. Oncotarget. 2017;8(2):2659–71.PubMedCrossRef
48.
Zurück zum Zitat Moore KW, de Waal MR, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.PubMedCrossRef Moore KW, de Waal MR, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.PubMedCrossRef
49.
Zurück zum Zitat Fioravanti J, Di Lucia P, Magini D, Moalli F, Boni C, Benechet AP, et al. Effector CD8(+) T cell-derived interleukin-10 enhances acute liver immunopathology. J Hepatol. 2017;67(3):543–8.PubMedPubMedCentralCrossRef Fioravanti J, Di Lucia P, Magini D, Moalli F, Boni C, Benechet AP, et al. Effector CD8(+) T cell-derived interleukin-10 enhances acute liver immunopathology. J Hepatol. 2017;67(3):543–8.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, et al. IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell. 2011;20(6):781–96.PubMedCrossRef Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, et al. IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell. 2011;20(6):781–96.PubMedCrossRef
51.
Zurück zum Zitat Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, et al. Adaptive plasticity of IL-10(+) and IL-35(+) T(reg) cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 2019;20(6):724–35.PubMedPubMedCentralCrossRef Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, et al. Adaptive plasticity of IL-10(+) and IL-35(+) T(reg) cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 2019;20(6):724–35.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.PubMedCrossRef Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15.PubMedCrossRef
53.
Zurück zum Zitat Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): a focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018;43:8–15.PubMedCrossRef Binder S, Luciano M, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia (AML): a focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018;43:8–15.PubMedCrossRef
54.
Zurück zum Zitat Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357ra123.PubMedPubMedCentralCrossRef Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357ra123.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat van den Ancker W, Wijnands PGJB, Ruben JM, Westers TM, Punt B, Bachas C, et al. Procedures for the expansion of CD14(+) precursors from acute myeloid leukemic cells to facilitate dendritic cell-based immunotherapy. Immunotherapy. 2013;5(11):1183–90.PubMedCrossRef van den Ancker W, Wijnands PGJB, Ruben JM, Westers TM, Punt B, Bachas C, et al. Procedures for the expansion of CD14(+) precursors from acute myeloid leukemic cells to facilitate dendritic cell-based immunotherapy. Immunotherapy. 2013;5(11):1183–90.PubMedCrossRef
56.
Zurück zum Zitat Thomas X, Raffoux E, Renneville A, Pautas C, de Botton S, Terre C, et al. Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study. Cancer. 2010;116(7):1725–32.PubMedCrossRef Thomas X, Raffoux E, Renneville A, Pautas C, de Botton S, Terre C, et al. Which AML subsets benefit from leukemic cell priming during chemotherapy? Long-term analysis of the ALFA-9802 GM-CSF study. Cancer. 2010;116(7):1725–32.PubMedCrossRef
57.
Zurück zum Zitat Gurion R, Belnik-Plitman Y, Gafter-Gvili A, Paul M, Vidal L, Ben-Bassat I, et al. Colony-stimulating factors for prevention and treatment of infectious complications in patients with acute myelogenous leukemia. Cochrane Database Syst Rev. 2012;2012(6):CD008238.PubMedCentral Gurion R, Belnik-Plitman Y, Gafter-Gvili A, Paul M, Vidal L, Ben-Bassat I, et al. Colony-stimulating factors for prevention and treatment of infectious complications in patients with acute myelogenous leukemia. Cochrane Database Syst Rev. 2012;2012(6):CD008238.PubMedCentral
58.
Zurück zum Zitat Norsworthy KJ, Cho E, Arora J, Kowalski J, Tsai H-L, Warlick E, et al. Differentiation therapy in poor risk myeloid malignancies: results of companion phase II studies. Leuk Res. 2016;49:90–7.PubMedCrossRefPubMedCentral Norsworthy KJ, Cho E, Arora J, Kowalski J, Tsai H-L, Warlick E, et al. Differentiation therapy in poor risk myeloid malignancies: results of companion phase II studies. Leuk Res. 2016;49:90–7.PubMedCrossRefPubMedCentral
59.
Zurück zum Zitat Nakayama H, Tomizawa D, Tanaka S, Iwamoto S, Shimada A, Saito AM, et al. Fludarabine, cytarabine, granulocyte colony-stimulating factor and idarubicin for relapsed childhood acute myeloid leukemia. Pediatr Int. 2017;59(10):1046–52.PubMedCrossRef Nakayama H, Tomizawa D, Tanaka S, Iwamoto S, Shimada A, Saito AM, et al. Fludarabine, cytarabine, granulocyte colony-stimulating factor and idarubicin for relapsed childhood acute myeloid leukemia. Pediatr Int. 2017;59(10):1046–52.PubMedCrossRef
60.
Zurück zum Zitat Feng X, Lan H, Ruan Y, Li C. Impact on acute myeloid leukemia relapse in granulocyte colony-stimulating factor application: a meta-analysis. Hematology. 2018;23(9):581–9.PubMedCrossRef Feng X, Lan H, Ruan Y, Li C. Impact on acute myeloid leukemia relapse in granulocyte colony-stimulating factor application: a meta-analysis. Hematology. 2018;23(9):581–9.PubMedCrossRef
61.
Zurück zum Zitat Scarfò I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer. 2017;5:28.PubMedPubMedCentralCrossRef Scarfò I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer. 2017;5:28.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66.PubMedCrossRef Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66.PubMedCrossRef
63.
Zurück zum Zitat Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214–21.PubMedPubMedCentralCrossRef Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214–21.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3(1):35–45.PubMedCrossRef Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3(1):35–45.PubMedCrossRef
66.
Zurück zum Zitat Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE. Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther. 2010;10(2):77–90.PubMedCrossRef Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE. Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther. 2010;10(2):77–90.PubMedCrossRef
67.
Zurück zum Zitat Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15(12):2548–60.PubMedPubMedCentralCrossRef Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15(12):2548–60.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 2018;4:62.PubMedPubMedCentralCrossRef Xu Y, Yang Z, Horan LH, Zhang P, Liu L, Zimdahl B, et al. A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release. Cell Discov. 2018;4:62.PubMedPubMedCentralCrossRef
69.
70.
Zurück zum Zitat Spranger S, Jeremias I, Wilde S, Leisegang M, Stärck L, Mosetter B, et al. TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood. 2012;119(15):3440–9.PubMedCrossRef Spranger S, Jeremias I, Wilde S, Leisegang M, Stärck L, Mosetter B, et al. TCR-transgenic lymphocytes specific for HMMR/Rhamm limit tumor outgrowth in vivo. Blood. 2012;119(15):3440–9.PubMedCrossRef
71.
Zurück zum Zitat Hofmann S, Schubert M-L, Wang L, He B, Neuber B, Dreger P, et al. Chimeric antigen receptor (CAR) T Cell therapy in acute myeloid leukemia (AML). J Clin Med. 2019;8(2):200.PubMedCentralCrossRef Hofmann S, Schubert M-L, Wang L, He B, Neuber B, Dreger P, et al. Chimeric antigen receptor (CAR) T Cell therapy in acute myeloid leukemia (AML). J Clin Med. 2019;8(2):200.PubMedCentralCrossRef
72.
Zurück zum Zitat Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, et al. Phase I trial of autologous CAR T cells targeting NKG2D Ligands in patients with AML/MDS and multiple Myeloma. Cancer Immunol Res. 2019;7(1):100–12.PubMedCrossRef Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, et al. Phase I trial of autologous CAR T cells targeting NKG2D Ligands in patients with AML/MDS and multiple Myeloma. Cancer Immunol Res. 2019;7(1):100–12.PubMedCrossRef
73.
Zurück zum Zitat Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21(11):2122–9.PubMedPubMedCentralCrossRef Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21(11):2122–9.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Wang Q, Wang Y, Lv H, Han Q, Fan H, Guo B, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23(1):184–91.PubMedCrossRef Wang Q, Wang Y, Lv H, Han Q, Fan H, Guo B, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23(1):184–91.PubMedCrossRef
75.
Zurück zum Zitat Enblad G, Karlsson H, Gammelgård G, Wenthe J, Lövgren T, Amini RM, et al. A phase I/IIa trial using CD19-targeted third-generation CAR T cells for lymphoma and leukemia. Clin Cancer Res. 2018;24(24):6185–94.PubMedCrossRef Enblad G, Karlsson H, Gammelgård G, Wenthe J, Lövgren T, Amini RM, et al. A phase I/IIa trial using CD19-targeted third-generation CAR T cells for lymphoma and leukemia. Clin Cancer Res. 2018;24(24):6185–94.PubMedCrossRef
76.
Zurück zum Zitat Sallman DA, Kerre T, Poire X, Havelange V, Lewalle P, Davila ML, et al. Remissions in relapse/refractory acute myeloid leukemia patients following treatment with NKG2D CAR-T therapy without a prior preconditioning chemotherapy. Blood. 2018;132(Supplement 1):902.CrossRef Sallman DA, Kerre T, Poire X, Havelange V, Lewalle P, Davila ML, et al. Remissions in relapse/refractory acute myeloid leukemia patients following treatment with NKG2D CAR-T therapy without a prior preconditioning chemotherapy. Blood. 2018;132(Supplement 1):902.CrossRef
77.
Zurück zum Zitat Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. Erratum: first-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(9):1899.PubMedPubMedCentral Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. Erratum: first-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am J Cancer Res. 2018;8(9):1899.PubMedPubMedCentral
78.
Zurück zum Zitat Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov. 2018;17(7):509–27.PubMedCrossRef Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov. 2018;17(7):509–27.PubMedCrossRef
79.
Zurück zum Zitat Garfin PM, Feldman EJ. Antibody-based treatment of acute myeloid leukemia. Curr Hematol Malig Rep. 2016;11(6):545–52.PubMedCrossRef Garfin PM, Feldman EJ. Antibody-based treatment of acute myeloid leukemia. Curr Hematol Malig Rep. 2016;11(6):545–52.PubMedCrossRef
80.
Zurück zum Zitat Ginaldi L, De Martinis M, Matutes E, Farahat N, Morilla R, Catovsky D. Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol. 1998;51(5):364–9.PubMedPubMedCentralCrossRef Ginaldi L, De Martinis M, Matutes E, Farahat N, Morilla R, Catovsky D. Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol. 1998;51(5):364–9.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.CrossRefPubMed Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.CrossRefPubMed
82.
Zurück zum Zitat Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198–208.PubMedPubMedCentralCrossRef Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198–208.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Testa U, Riccioni R, Diverio D, Rossini A, Lo Coco F, Peschle C. Interleukin-3 receptor in acute leukemia. Leukemia. 2004;18(2):219–26.PubMedCrossRef Testa U, Riccioni R, Diverio D, Rossini A, Lo Coco F, Peschle C. Interleukin-3 receptor in acute leukemia. Leukemia. 2004;18(2):219–26.PubMedCrossRef
84.
Zurück zum Zitat Bakker ABH, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64(22):8443–50.PubMedCrossRef Bakker ABH, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA, et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res. 2004;64(22):8443–50.PubMedCrossRef
85.
Zurück zum Zitat Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE. 2015;10(9):e0137345.PubMedPubMedCentralCrossRef Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE. 2015;10(9):e0137345.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Stanchina M, Soong D, Zheng-Lin B, Watts JM, Taylor J. Advances in acute myeloid leukemia: recently approved therapies and drugs in development. Cancers (Basel). 2020;12(11):3225.CrossRef Stanchina M, Soong D, Zheng-Lin B, Watts JM, Taylor J. Advances in acute myeloid leukemia: recently approved therapies and drugs in development. Cancers (Basel). 2020;12(11):3225.CrossRef
87.
Zurück zum Zitat Reusch U, Harrington KH, Gudgeon CJ, Fucek I, Ellwanger K, Weichel M, et al. Characterization of CD33/CD3 Tetravalent bispecific Tandem Diabodies (TandAbs) for the treatment of acute myeloid Leukemia. Clin Cancer Res. 2016;22(23):5829–38.PubMedCrossRef Reusch U, Harrington KH, Gudgeon CJ, Fucek I, Ellwanger K, Weichel M, et al. Characterization of CD33/CD3 Tetravalent bispecific Tandem Diabodies (TandAbs) for the treatment of acute myeloid Leukemia. Clin Cancer Res. 2016;22(23):5829–38.PubMedCrossRef
88.
Zurück zum Zitat Laszlo GS, Estey EH, Walter RB. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 2014;28(4):143–53.PubMedCrossRef Laszlo GS, Estey EH, Walter RB. The past and future of CD33 as therapeutic target in acute myeloid leukemia. Blood Rev. 2014;28(4):143–53.PubMedCrossRef
89.
Zurück zum Zitat Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute Myeloid Leukemia unsuitable for Intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9.PubMedCrossRef Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute Myeloid Leukemia unsuitable for Intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34(9):972–9.PubMedCrossRef
90.
Zurück zum Zitat Hütter-Krönke M-L, Benner A, Döhner K, Krauter J, Weber D, Moessner M, et al. Salvage therapy with high-dose cytarabine and mitoxantrone in combination with all-trans retinoic acid and gemtuzumab ozogamicin in acute myeloid leukemia refractory to first induction therapy. Haematologica. 2016;101(7):839–45.PubMedPubMedCentralCrossRef Hütter-Krönke M-L, Benner A, Döhner K, Krauter J, Weber D, Moessner M, et al. Salvage therapy with high-dose cytarabine and mitoxantrone in combination with all-trans retinoic acid and gemtuzumab ozogamicin in acute myeloid leukemia refractory to first induction therapy. Haematologica. 2016;101(7):839–45.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Vey N, Delaunay J, Martinelli G, Fiedler W, Raffoux E, Prebet T, et al. Phase I clinical study of RG7356, an anti-CD44 humanized antibody, in patients with acute myeloid leukemia. Oncotarget. 2016;7(22):32532–42.PubMedPubMedCentralCrossRef Vey N, Delaunay J, Martinelli G, Fiedler W, Raffoux E, Prebet T, et al. Phase I clinical study of RG7356, an anti-CD44 humanized antibody, in patients with acute myeloid leukemia. Oncotarget. 2016;7(22):32532–42.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Abaza Y, Kantarjian H, Garcia-Manero G, Estey E, Borthakur G, Jabbour E, et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood. 2017;129(10):1275–83.PubMedPubMedCentralCrossRef Abaza Y, Kantarjian H, Garcia-Manero G, Estey E, Borthakur G, Jabbour E, et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood. 2017;129(10):1275–83.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Candoni A, Papayannidis C, Martinelli G, Simeone E, Gottardi M, Iacobucci I, et al. Flai (fludarabine, cytarabine, idarubicin) plus low-dose Gemtuzumab Ozogamicin as induction therapy in CD33-positive AML: final results and long term outcome of a phase II multicenter clinical trial. Am J Hematol. 2018;93(5):655–63.PubMedCrossRef Candoni A, Papayannidis C, Martinelli G, Simeone E, Gottardi M, Iacobucci I, et al. Flai (fludarabine, cytarabine, idarubicin) plus low-dose Gemtuzumab Ozogamicin as induction therapy in CD33-positive AML: final results and long term outcome of a phase II multicenter clinical trial. Am J Hematol. 2018;93(5):655–63.PubMedCrossRef
94.
Zurück zum Zitat Medeiros BC, Tanaka TN, Balaian L, Bashey A, Guzdar A, Li H, et al. A phase I/II trial of the combination of Azacitidine and Gemtuzumab Ozogamicin for treatment of relapsed acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2018;18(5):346-352.e5.PubMedCrossRef Medeiros BC, Tanaka TN, Balaian L, Bashey A, Guzdar A, Li H, et al. A phase I/II trial of the combination of Azacitidine and Gemtuzumab Ozogamicin for treatment of relapsed acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2018;18(5):346-352.e5.PubMedCrossRef
95.
Zurück zum Zitat Fathi AT, Erba HP, Lancet JE, Stein EM, Ravandi F, Faderl S, et al. A phase 1 trial of vadastuximab talirine combined with hypomethylating agents in patients with CD33-positive AML. Blood. 2018;132(11):1125–33.PubMedPubMedCentralCrossRef Fathi AT, Erba HP, Lancet JE, Stein EM, Ravandi F, Faderl S, et al. A phase 1 trial of vadastuximab talirine combined with hypomethylating agents in patients with CD33-positive AML. Blood. 2018;132(11):1125–33.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Narayan R, Blonquist TM, Emadi A, Hasserjian RP, Burke M, Lescinskas C, et al. A phase 1 study of the antibody-drug conjugate brentuximab vedotin with re-induction chemotherapy in patients with CD30-expressing relapsed/refractory acute myeloid leukemia. Cancer. 2020;126(6):1264–73.PubMedCrossRef Narayan R, Blonquist TM, Emadi A, Hasserjian RP, Burke M, Lescinskas C, et al. A phase 1 study of the antibody-drug conjugate brentuximab vedotin with re-induction chemotherapy in patients with CD30-expressing relapsed/refractory acute myeloid leukemia. Cancer. 2020;126(6):1264–73.PubMedCrossRef
97.
Zurück zum Zitat Penel-Page M, Plesa A, Girard S, Marceau-Renaut A, Renard C, Bertrand Y. Association of fludarabin, cytarabine, and fractioned gemtuzumab followed by hematopoietic stem cell transplantation for first-line refractory acute myeloid leukemia in children: a single-center experience. Pediatr Blood Cancer. 2020;67(6):e28305.PubMedCrossRef Penel-Page M, Plesa A, Girard S, Marceau-Renaut A, Renard C, Bertrand Y. Association of fludarabin, cytarabine, and fractioned gemtuzumab followed by hematopoietic stem cell transplantation for first-line refractory acute myeloid leukemia in children: a single-center experience. Pediatr Blood Cancer. 2020;67(6):e28305.PubMedCrossRef
98.
Zurück zum Zitat Goldberg AD, Atallah E, Rizzieri D, Walter RB, Chung K-Y, Spira A, et al. Camidanlumab tesirine, an antibody-drug conjugate, in relapsed/refractory CD25-positive acute myeloid leukemia or acute lymphoblastic leukemia: a phase I study. Leuk Res. 2020;95:106385.PubMedCrossRef Goldberg AD, Atallah E, Rizzieri D, Walter RB, Chung K-Y, Spira A, et al. Camidanlumab tesirine, an antibody-drug conjugate, in relapsed/refractory CD25-positive acute myeloid leukemia or acute lymphoblastic leukemia: a phase I study. Leuk Res. 2020;95:106385.PubMedCrossRef
99.
Zurück zum Zitat Montesinos P, Roboz GJ, Bulabois C-E, Subklewe M, Platzbecker U, Ofran Y, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia. 2021;35(1):62–74.PubMedCrossRef Montesinos P, Roboz GJ, Bulabois C-E, Subklewe M, Platzbecker U, Ofran Y, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia. 2021;35(1):62–74.PubMedCrossRef
101.
Zurück zum Zitat Ravandi F, Bashey A, Foran JM, Stock W, Mawad R, Blum W et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb14045, a CD123 × CD3 T cell-engaging bispecific antibody: initial results of a phase 1 study. Blood. 2018;132(Supplement 1): 763. Available from: https://doi.org/10.1182/blood-2018-99-119786 Ravandi F, Bashey A, Foran JM, Stock W, Mawad R, Blum W et al. Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of XmAb14045, a CD123 × CD3 T cell-engaging bispecific antibody: initial results of a phase 1 study. Blood. 2018;132(Supplement 1): 763. Available from: https://​doi.​org/​10.​1182/​blood-2018-99-119786
102.
Zurück zum Zitat Uy GL, Aldoss I, Foster MC, Sallman DA, Sweet KL, Rizzieri DA, et al. Flotetuzumab, an Investigational CD123 x CD3 Bispecific Dart® Protein, in salvage therapy for primary refractory and early relapsed Acute Myeloid Leukemia (AML) Patients. Blood [Internet]. 2019 Nov 13;134(Supplement_1):733. Available from: https://doi.org/10.1182/blood-2019-122073 Uy GL, Aldoss I, Foster MC, Sallman DA, Sweet KL, Rizzieri DA, et al. Flotetuzumab, an Investigational CD123 x CD3 Bispecific Dart® Protein, in salvage therapy for primary refractory and early relapsed Acute Myeloid Leukemia (AML) Patients. Blood [Internet]. 2019 Nov 13;134(Supplement_1):733. Available from: https://​doi.​org/​10.​1182/​blood-2019-122073
103.
Zurück zum Zitat Subklewe M, Stein A, Walter RB, Bhatia R, Wei AH, Ritchie D et al. Preliminary Results from a phase 1 first-in-human study of AMG 673, a Novel Half-Life Extended (HLE) Anti-CD33/CD3 BiTE® (Bispecific T-Cell Engager) in patients with relapsed/refractory (R/R) acute Myeloid Leukemia (AML). Blood [Internet]. 2019 Nov 13;134(Supplement_1): 833. Available from: https://doi.org/10.1182/blood-2019-127977 Subklewe M, Stein A, Walter RB, Bhatia R, Wei AH, Ritchie D et al. Preliminary Results from a phase 1 first-in-human study of AMG 673, a Novel Half-Life Extended (HLE) Anti-CD33/CD3 BiTE® (Bispecific T-Cell Engager) in patients with relapsed/refractory (R/R) acute Myeloid Leukemia (AML). Blood [Internet]. 2019 Nov 13;134(Supplement_1): 833. Available from: https://​doi.​org/​10.​1182/​blood-2019-127977
104.
105.
Zurück zum Zitat Ravandi F, Walter RB, Subklewe M, Buecklein V, Jongen-Lavrencic M, Paschka P, et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML). Am Soc Clin Oncol. 2020;38:7508.CrossRef Ravandi F, Walter RB, Subklewe M, Buecklein V, Jongen-Lavrencic M, Paschka P, et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML). Am Soc Clin Oncol. 2020;38:7508.CrossRef
106.
Zurück zum Zitat Lollini P-L, Cavallo F, Nanni P, Forni G. Vaccines for tumour prevention. Nat Rev Cancer. 2006;6(3):204–16.PubMedCrossRef Lollini P-L, Cavallo F, Nanni P, Forni G. Vaccines for tumour prevention. Nat Rev Cancer. 2006;6(3):204–16.PubMedCrossRef
107.
109.
Zurück zum Zitat Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 2017;38(8):577–93.PubMedCrossRef Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol. 2017;38(8):577–93.PubMedCrossRef
110.
Zurück zum Zitat Santos PM, Butterfield LH. Dendritic cell-based cancer vaccines. J Immunol. 2018;200(2):443–9.PubMedCrossRef Santos PM, Butterfield LH. Dendritic cell-based cancer vaccines. J Immunol. 2018;200(2):443–9.PubMedCrossRef
112.
Zurück zum Zitat Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49.PubMedCrossRef Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49.PubMedCrossRef
113.
Zurück zum Zitat Kauffman KJ, Webber MJ, Anderson DG. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release. 2016;240:227–34.PubMedCrossRef Kauffman KJ, Webber MJ, Anderson DG. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J Control Release. 2016;240:227–34.PubMedCrossRef
114.
Zurück zum Zitat Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: tumor-associated antigens vs neoantigens. World J Gastroenterol. 2018;24(48):5418–32.PubMedPubMedCentralCrossRef Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: tumor-associated antigens vs neoantigens. World J Gastroenterol. 2018;24(48):5418–32.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Li L, Goedegebuure SP. Gillanders WE Preclinical and clinical development of neoantigen vaccines. Ann Oncol. 2017;28(suppl12):s11-17.CrossRef Li L, Goedegebuure SP. Gillanders WE Preclinical and clinical development of neoantigen vaccines. Ann Oncol. 2017;28(suppl12):s11-17.CrossRef
116.
117.
Zurück zum Zitat Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, et al. WT1 vaccination in AML and MDS: a pilot trial with synthetic analog peptides. Am J Hematol. 2015;90(7):602–7.PubMedPubMedCentralCrossRef Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, et al. WT1 vaccination in AML and MDS: a pilot trial with synthetic analog peptides. Am J Hematol. 2015;90(7):602–7.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat van de Loosdrecht AA, van Wetering S, Santegoets SJAM, Singh SK, Eeltink CM, den Hartog Y, et al. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia. Cancer Immunol Immunother. 2018;67(10):1505–18.PubMedPubMedCentralCrossRef van de Loosdrecht AA, van Wetering S, Santegoets SJAM, Singh SK, Eeltink CM, den Hartog Y, et al. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia. Cancer Immunol Immunother. 2018;67(10):1505–18.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Wang D, Huang XF, Hong B, Song X-T, Hu L, Jiang M, et al. Efficacy of intracellular immune checkpoint-silenced DC vaccine. JCI Insight. 2018;3(3):e98368.PubMedCentralCrossRef Wang D, Huang XF, Hong B, Song X-T, Hu L, Jiang M, et al. Efficacy of intracellular immune checkpoint-silenced DC vaccine. JCI Insight. 2018;3(3):e98368.PubMedCentralCrossRef
120.
Zurück zum Zitat Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M, et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv. 2018;2(3):224–34.PubMedPubMedCentralCrossRef Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M, et al. Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv. 2018;2(3):224–34.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Griffiths EA, Srivastava P, Matsuzaki J, Brumberger Z, Wang ES, Kocent J, et al. NY-ESO-1 vaccination in combination with Decitabine induces antigen-specific T-lymphocyte responses in patients with Myelodysplastic syndrome. Clin Cancer Res. 2018;24(5):1019–29.PubMedCrossRef Griffiths EA, Srivastava P, Matsuzaki J, Brumberger Z, Wang ES, Kocent J, et al. NY-ESO-1 vaccination in combination with Decitabine induces antigen-specific T-lymphocyte responses in patients with Myelodysplastic syndrome. Clin Cancer Res. 2018;24(5):1019–29.PubMedCrossRef
122.
Zurück zum Zitat Ueda Y, Ogura M, Miyakoshi S, Suzuki T, Heike Y, Tagashira S, et al. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci. 2017;108(12):2445–53.PubMedPubMedCentralCrossRef Ueda Y, Ogura M, Miyakoshi S, Suzuki T, Heike Y, Tagashira S, et al. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci. 2017;108(12):2445–53.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130(15):1713–21.PubMedPubMedCentralCrossRef Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130(15):1713–21.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Khoury HJ, Collins RHJ, Blum W, Stiff PS, Elias L, Lebkowski JS, et al. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer. 2017;123(16):3061–72.PubMedCrossRef Khoury HJ, Collins RHJ, Blum W, Stiff PS, Elias L, Lebkowski JS, et al. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer. 2017;123(16):3061–72.PubMedCrossRef
125.
Zurück zum Zitat Hamilton BK, Copelan EA. Concise review: the role of hematopoietic stem cell transplantation in the treatment of acute myeloid leukemia. Stem Cells. 2012;30(8):1581–6.CrossRefPubMed Hamilton BK, Copelan EA. Concise review: the role of hematopoietic stem cell transplantation in the treatment of acute myeloid leukemia. Stem Cells. 2012;30(8):1581–6.CrossRefPubMed
126.
Zurück zum Zitat Pei X, Huang X. New approaches in allogenic transplantation in AML. Semin Hematol. 2019;56(2):147–54.PubMedCrossRef Pei X, Huang X. New approaches in allogenic transplantation in AML. Semin Hematol. 2019;56(2):147–54.PubMedCrossRef
127.
Zurück zum Zitat Zhao Y, Chen X, Feng S. Autologous hematopoietic stem cell transplantation in acute Myelogenous Leukemia. Biol blood marrow Transplant. 2019;25(9):e285–92.PubMedCrossRef Zhao Y, Chen X, Feng S. Autologous hematopoietic stem cell transplantation in acute Myelogenous Leukemia. Biol blood marrow Transplant. 2019;25(9):e285–92.PubMedCrossRef
128.
Zurück zum Zitat Orti G, Barba P, Fox L, Salamero O, Bosch F, Valcarcel D. Donor lymphocyte infusions in AML and MDS: enhancing the graft-versus-leukemia effect. Exp Hematol. 2017;48:1–11.PubMedCrossRef Orti G, Barba P, Fox L, Salamero O, Bosch F, Valcarcel D. Donor lymphocyte infusions in AML and MDS: enhancing the graft-versus-leukemia effect. Exp Hematol. 2017;48:1–11.PubMedCrossRef
Metadaten
Titel
Immunotherapy in AML: a brief review on emerging strategies
verfasst von
A. Moeinafshar
S. Hemmati
N. Rezaei
Publikationsdatum
23.06.2021
Verlag
Springer International Publishing
Erschienen in
Clinical and Translational Oncology / Ausgabe 12/2021
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-021-02662-1

Weitere Artikel der Ausgabe 12/2021

Clinical and Translational Oncology 12/2021 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.