Skip to main content
Erschienen in: Critical Care 1/2020

Open Access 01.12.2020 | Research

Impact of acyclovir use on survival of patients with ventilator-associated pneumonia and high load herpes simplex virus replication

verfasst von: Lukas Schuierer, Michael Gebhard, Hans-Georg Ruf, Ulrich Jaschinski, Thomas M. Berghaus, Michael Wittmann, Georg Braun, Dirk H. Busch, Reinhard Hoffmann

Erschienen in: Critical Care | Ausgabe 1/2020

Abstract

Background

Herpes simplex virus (HSV) replication can be detected in the respiratory secretions of a high proportion of ventilated intensive care unit (ICU) patients. However, the clinical significance remains poorly defined. We investigated whether patients with ventilator-associated pneumonia not responding to antibiotics and in whom high levels of HSV could be detected in respiratory secretions benefit from acyclovir treatment.

Methods

Respiratory secretions (bronchoalveolar lavage fluid or tracheal aspirates) were tested for HSV replication by quantitative real-time PCR. ICU survival times, clinical parameters, and radiographic findings were retrospectively compared between untreated and acyclovir treated patients with high (> 105 HSV copies/mL) and low (103–105 HSV copies/mL) viral load.

Results

Fifty-seven low and 69 high viral load patients were identified. Fewer patients with high viral load responded to antibiotic treatment (12% compared to 40% of low load patients, p = 0.001). Acyclovir improved median ICU survival (8 vs 22 days, p = 0.014) and was associated with a significantly reduced hazard ratio for ICU death (HR = 0.31, 95% CI 0.11–0.92, p = 0.035) in high load patients only. Moreover, circulatory and pulmonary oxygenation function of high load patients improved significantly over the course of acyclovir treatment: mean norepinephrine doses decreased from 0.05 to 0.02 μg/kg body weight/min between days 0 and 6 of treatment (p = 0.049), and median PaO2/FiO2 ratio increased from 187 to 241 between day 3 and day 7 of treatment (p = 0.02). Chest radiographic findings also improved significantly (p < 0.001).

Conclusions

In patients with ventilator-associated pneumonia, antibiotic treatment failure, and high levels of HSV replication, acyclovir treatment was associated with a significantly longer time to death in the ICU and improved circulatory and pulmonary function. This suggests a causative role for HSV in this highly selected group of patients.
Hinweise
A comment to this article is available online at https://​doi.​org/​10.​1186/​s13054-020-02868-9.
A comment to this article is available online at https://​doi.​org/​10.​1186/​s13054-020-2815-9.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13054-019-2701-5.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
95% CI
95% confidence interval
APACHE II
Acute Physiology, Age, Chronic Health Evaluation II Score
CPIS
Clinical Pulmonary Infection Score
CT
Computed tomography
d0
Day 0
fdr
False discovery rate adjustment
FiO2
Fraction of inspired oxygen
HSV
Herpes simplex virus
HSV-1
Herpes simplex virus type 1
HSV-2
Herpes simples virus type 2
ICU
Intensive care unit
LIS
Lung Injury Score
PaCO2
Arterial partial pressure of carbon dioxide
PaO2
Arterial partial pressure of oxygen
PCR
Polymerase chain reaction
SOFA
Sequential Organ Failure Assessment Score
VAP
Ventilator-associated pneumonia

Background

Latent herpes simples virus type 1 (HSV-1) and type 2 (HSV-2) infections are common in the human population, with seroprevalence rates of 54% and 16%, respectively [1]. Residing latently in sensory neurons, HSV reactivates in states of reduced immunocompetence [2]. Several studies have shown that HSV-1 reactivation and active replication in the respiratory tract are common in mechanically ventilated intensive care unit (ICU) patients even without underlying immunosuppression, with reported rates of 5 to 64% [3]. Ong et al., in the largest study available to date, detected active HSV replication in 27% of 393 ventilated ICU patients, which was associated with a nearly twofold increase in hospital mortality (41% vs 24%, p = 0.002) [4].
Nevertheless, whether HSV replication in the lower respiratory tract has clinical consequences remains controversial [5, 6]. Linssen et al. reported that detection of more than 105 HSV-DNA copies/mL in lower respiratory material was associated with a significantly higher mortality (41% vs 20%, p = 0.001) [7]. A recent meta-analysis demonstrated a significant increase in mortality (odds ratio 1.8, 95% CI 1.2–2.6, p = 0.0001) for patients with HSV replication compared to patients without [8]. Whether this increase in mortality is caused by HSV reactivation or whether HSV reactivation is merely an indicator of a more severe underlying disease remains unclear.
Similarly, cytomegalovirus (CMV) reactivation can be detected in respiratory secretions of about 16% immunocompetent ICU patients [9]. Much like in HSV, the clinical consequences remain unclear.
Some case reports suggest that acyclovir treatment may improve the clinical course of patients with detectable HSV reactivation [1013]; however, this could not be confirmed in larger studies [1416]. To date, only one study has suggested that acyclovir may reduce in-hospital and ICU mortality, even after correcting for confounders via propensity score matching [17]. The reasons for these conflicting results remain unclear; however, it is apparent that most of the previous studies examined HSV replication, corresponding treatment, and the impact on survival among a diverse range of ICU patients. Often, stringent inclusion criteria for presumed viral ventilator-associated pneumonia (VAP) were not employed, and patients were not stratified for viral load. In fact, many patients with molecularly detectable HSV replication may not have clinical signs of pneumonia, precluding any conclusions regarding the therapeutic efficacy of acyclovir.
We observed that in some patients with high levels of HSV replication in the lower respiratory tract, the clinical status improved after initiation of antiviral treatment, often allowing extubation several days later. Therefore, we changed our treatment algorithm for patients with VAP early in 2013. In patients with clinical signs of pneumonia who did not respond to antibiotic treatment (as determined in joint rounds by clinicians and experienced clinical microbiologists performed routinely three times per week), HSV-1/2 testing of respiratory specimens was performed. Antiviral treatment was strongly encouraged if more than 105 HSV copies/mL could be detected. However, final treatment decisions were left to the responsible physician. We hypothesized that these stringent selection criteria would result in a significantly more homogeneous patient population than in previous studies, with a higher pretreatment likelihood of HSV pneumonia, and would, for the first time, allow for direct evaluation of acyclovir treatment efficacy in these patients.

Methods

Patient selection and PCR testing

We retrospectively identified all adult ICU patients who were on ventilator support, received a diagnosis of VAP and PCR testing on clinical grounds (as determined jointly by clinicians and clinical microbiologists, based on elevated C-reactive protein, leukocytosis, purulent tracheal secretions, infiltrates on chest X-ray, or typical signs in bronchoscopy), and had a viral load of > 103 HSV-1/2 copies/mL by PCR in respiratory specimens (excluding oropharyngeal swabs from herpes-suspected lesions) within the period of January 1, 2013, through April 1, 2018. We defined the time point of VAP diagnosis as the first radiological demonstration of pulmonary infiltrates. In those patients without clear-cut infiltrates, a diagnosis of VAP was made based on bronchoscopy findings. Neutropenic patients (neutrophils < 1500/μL) were excluded. Response to antibiotic treatment was assessed during regular daily ICU rounds, usually 48 h after initiation; responding patients were excluded from the analysis. Quantitative HSV-1/2 PCR was performed after automated DNA extraction by COBAS AmpliPrep (Roche) with the RealStar HSV-PCR kit 1.0 (AltonaDiagnostics) on a Rotor-Gene-Q thermocycler (Qiagen) according to the manufacturer’s recommendations. Additional CMV testing was performed as required by the treating physician. Quantitative CMV PCR was performed with the COBAS AmpliPrep/COBAS TaqMan CMV test (Roche) according to the manufacturer’s recommendations.

Clinical and radiographic scores

Day 0 (d0) was defined as the date of first detection of significant HSV-1/2 replication (low load, 103–105 copies/mL; high load, > 105 copies/mL) in untreated patients or as the date of acyclovir treatment start for patients receiving acyclovir. Data were evaluated from d-4 up to d+14.
The Charlson Comorbidity Index was determined on d0 based on the treating physician’s discharge letters [18]. The “Acute Physiology, Age, Chronic Health Evaluation II” (APACHE II) score and “Sequential Organ Failure Assessment” (SOFA) score were calculated on d0 and with the most abnormal values in first 24 h after ICU admission, as described [19, 20]. The Glasgow Coma Score was used as documented by responsible ICU staff in the patient charts.
Chest X-rays and lung computed tomography (CT) were taken based on individual clinical necessity as assessed by treating ICU physicians. The standardized Lung Injury Score (LIS) and the simplified version of the Clinical Pulmonary Infection Score (CPIS) were calculated as described [21, 22]. Imaging results from all patients with a high viral load were re-analyzed in a standardized way to quantitatively assess appearance and distribution of pulmonary infiltrates over time. Based on the descriptive radiologic part of the LIS score, we assigned points to each of the six lung fields (upper/middle/lower, left, and right, respectively), with 1 point = “no infiltrates,” 2 points = “discrete/questionable infiltrate,” and 3 points = “distinct infiltrate.” We evaluated our score by re-analyzing all radiographs using the descriptive radiologic part of the LIS score with essentially identical results (Additional file 1: Figure S3).

Clinical and laboratory parameters

The clinical and laboratory parameters listed in Table 1 and Figs. 123, and 4 were extracted from the hospital information systems (Hydmedia G5 and Orbis, Agfa), from the laboratory information system (Swisslab, Nexus AG, Donaueschingen, Germany), or manually from handwritten ICU charts at different time points.
Table 1
Baseline clinical and treatment characteristics of the entire cohort and the subgroups (low/high viral load)
Variables
All patients
Low viral load (103–105 HSV copies/mL)
High viral load (> 105 HSV copies/mL)
Untreated (n = 24)
Treated (n = 65)
p
Untreated (n = 14)
Treated (n = 16)
p
Untreated (n = 10)
Treated (n = 49)
p
Age (years)
72 [67–76]
69 [59–76]
0.274
69 [61–77]
65 [46–75]
0.308
73 [71–76]
71 [60–76]
0.187
Female
12 (50)
23 (35)
0.230
9 (64)
4 (25)
0.063
3 (30)
19 (39)
0.729
Charlson score
4 [3–6]
4 [2–6]
0.281
4 [3–6]
3 [3–5]
0.179
4 [3–6]
4 [2–6]
0.743
Intubation (days)
9 [6–12]
13 [8–17]
0.017
9 [6–12]
12 [7–18]
0.324
10 [7–11]
14 [9–17]
0.109
Lung disease
15 (62)
31 (48)
0.241
9 (64)
10 (63)
1
6 (60)
21 (43)
0.488
COPD
12 (50)
13 (20)
0.008
7 (50)
2 (13)
0.046
5 (50)
11 (22)
0.116
Active smoker
6 (25)
18 (28)
1
4 (29)
5 (31)
1
2 (20)
13 (27)
1
Dialysis
7 (29)
19 (29)
1
5 (36)
7 (44)
0.722
2 (20)
12 (24)
1
Diabetes
6 (25)
13 (20)
0.771
4 (29)
3 (19)
0.675
2 (20)
10 (20)
1
Malignant diseases
3 (12)
10 (15)
1
2 (14)
2 (13)
1
1 (10)
8 (16)
1
Quantitative polymerase chain reaction results
 BAL performed
18 (75)
45 (69)
0.793
12 (86)
13 (81)
1
6 (60)
32 (54)
0.733
 HSV—copies/mL ×105
0.13 [0.05–2.18]
10.78 [1.01–60.15]
< 0.001
0.06 [0.04–0.09]
0.16 [0.04–0.40]
0.085
2.84 [1.80–6.80]
30.69 [7.26–12.42]
< 0.001
 BAL: HSV—copies/mL ×105
0.09 [0.04–1.22]
10.50 [0.41–41.55]
< 0.001
0.05 [0.04–0.09]
0.13 [0.03–0.27]
0.205
2.37 [1.45–2.89]
28.30 [6.77–83.50]
0.005
 TBS: HSV—copies/mL ×105
3.19 [0.61–15.79]
19.29 [6.50–143.9]
0.108
0.14 [0.10–0.19]
0.55 [0.34–0.76]
0.400
12.08 [3.92–39.63]
44.85 [10.5–169.2]
0.247
Pulmonary infiltrates
 Infiltrates
16 (66)
54 (83)
0.143
11 (79)
13 (81)
1
5 (50)
41 (84)
0.033
 Questionable but pathologic brochoscopy
4 (17)
5 (8)
0.244
1 (7)
1 (6)
1
3 (30)
4 (8)
0.087
 No infiltrates but pathologic bronchoscopy
4 (17)
6 (9)
0.449
2 (14)
2 (13)
1
2 (20)
4 (8)
0.266
 Days from detection of infiltrates to HSV detection
7 [3–11]
8 [5–14]
0.318
6 [2–8]
8 [5–13]
0.126
12 [8–15]
8 [5–14]
0.444
Clinical score at day of HSV detection
 APACHE II score
31 [25–37]
27 [22–33]
0.081
31 [25–37]
26 [21–34]
0.219
31 [28–36]
27 [22–33]
0.223
 SOFA score
11 [7–13]
10 [6–11]
0.091
11 [8–14]
10 [6–11]
0.325
10 [8–13]
9 [6–11]
0.294
 LIS score
2 [1.4–2.8]
2.3 [1.9–3]
0.050
2 [1.5–2.8]
2.2 [2.0–3.0]
0.134
1.8 [1.1–2.6]
2.3 [1.8–3]
0.123
 CPIS score
5 [3–6]
5 [3–6]
0.455
5 [4–5]
4 [3–5]
0.519
6 [3–7]
5 [3–6]
0.402
Antiviral treatment and relevant medication
 Acyclovir
63 (97)
14 (88)
49 (100)
 Ganciclovir
3 (5)
2 (13)
1 (2)
 Hours from HSV detection to treatment
46 [30–68]
48 [31–95]
44 [30–67]
 Acyclovir + antibiotics
44 (68)
11 (69)
33 (67)
 Steroids at baseline
4 (17)
13 (20)
1
2 (14)
6 (38)
0.226
2 (20)
7 (14)
0.641
 Antibiotic classes
4 [2–5]
5 [3–6]
0.025
4 [2–6]
6 [5–6]
0.051
4 [2.0–5]
5 [3–6]
0.124
 Antibiotics (days)
15 [9–23]
18 [14–28]
0.046
20 [7–26]
26 [18–37]
0.094
12 [10–17]
17 [13–25]
0.045
 Catecholamines
23 (96)
63 (97)
1
13 (93)
15 (94)
1
10 (100)
48 (98)
1
 Catecholamines (days)
10 [5–13]
10 [7–19]
0.523
11 [4–12]
8 [6–20]
0.847
8 [6–14]
11 [8–18]
0.505
Diagnoses at ICU admission
 Respiratory insufficiency
22 (92)
58 (89)
1
14 (100)
14 (88)
0.485
8 (80)
44 (90)
0.338
 Sepsis
14 (58)
26 (40)
0.153
9 (64)
9 (56)
0.722
5 (50)
17 (35)
0.477
 Renal failure
9 (38)
15 (23)
0.188
7 (50)
2 (13)
0.046
2 (20)
13 (27)
1
 Cardiac arrest
2 (8)
4 (6)
0.659
1 (7)
1 (6)
1
1 (10)
3 (6)
0.535
Reasons for mechanical ventilation
 Sepsis
15 (63)
35 (54)
0.631
9 (64)
11 (69)
1
6 (60)
24 (49)
0.731
 Heart failure
4 (17)
14 (22)
0.769
3 (21)
0
0.090
1 (10)
14 (29)
0.427
 COPD exacerbation
6 (25)
7 (11)
0.104
3 (21)
2 (13)
0.642
3 (30)
5 (10)
0.126
 Postoperative respiratory insufficiency
2 (8)
3 (5)
0.609
1 (7)
0
0.467
1 (10)
3 (6)
0.535
Intensive care unit stay and length of hospitalization
 Surgical ICU
4 (17)
7 (11)
0.475
1 (7)
1 (6)
1
3 (30)
6 (12)
0.17
 Medical ICU
20 (83)
58 (89)
0.475
13 (93)
15 (94)
1
7 (70)
43 (88)
0.17
 Total days ICU
16 [10–28]
26 [17–32]
0.009
17 [6–31]
25 [16–32]
0.328
15 [12–17]
26 [17–32]
0.006
 Death on ICU
12 (50)
25 (38)
0.344
6 (43)
6 (38)
1
6 (60)
20 (34)
0.311
 Total days hospital
26 [17–38]
41 [26–56]
0.004
31 [19–43]
38 [26–51]
0.176
24 [16–34]
42 [26–56]
0.008
 Death in hospital
13 (54)
30 (46)
0.634
7 (50)
7 (44)
1
6 (60)
23 (47)
0.506
The baseline data of the entire cohort and subgroups is listed in the corresponding column as median [interquartile range] or as absolute number (%). p values were calculated using the Mann-Whitney U test for medians or Fisher’s exact test for categorical data comparing untreated to antivirally treated patients (significant values are indicated in italics, < 0.05). Abbreviations: HSV herpes simplex virus, COPD chronic obstructive pulmonary disease, ICU intensive care unit, BAL bronchoalveolar lavage fluid, TBS tracheobronchial secretions
Norepinephrine use was recorded as micrograms/kilogram body weight/minute. The following parameters were calculated: partial pressure arterial oxygen and fraction of inspired oxygen (PaO2/FiO2) ratio, alveolar-arterial O2 gradient ([677 mmHg × FiO2 − (PaCO2/0.8)] − PaO2), and lung compliance (tidal volume/[plateau pressure − positive endexpiratory pressure]) [23, 24]. In cases with more than one recorded value per day in the chart, we used the 24-h arithmetic mean for analysis.

Statistical analysis

Statistical calculations were performed in R (version 3.5.0) [25] with the following external packages: exactRankTests, survival, survminer, ggplot2, and PMCMRplus [2630]. The nonparametric Mann-Whitney U test and Fisher’s exact test were used because data was not normally distributed. The Kaplan-Meier curves and the log-rank test were used to analyze ICU survival. We then applied a multivariable Cox regression model for the effect of acyclovir on ICU survival time, adjusted for age, sex, and SOFA score at d0. The Cox regression model was tested for its proportional hazard assumption via the Schoenfeld residuals tests. Additional models and a propensity score analysis were calculated as shown in Additional file 1: Table S2. The propensity score was determined in a logistic regression model with acyclovir treatment as response variable and age, sex, and SOFA score as predictor covariates.
Daily medians of norepinephrine doses and PaO2/Fio2 ratios were analyzed for all patients without missing values within 7 days from d0 using the nonparametric Friedman test. This was followed by post hoc analysis by the Friedman-Conover test with p value adjustment by false discovery rate (fdr).
The radiographic score and the descriptive part of the LIS score were analyzed by the Wilcoxon signed-rank test comparing the last available X-ray or CT before d0 and the maximum change within a time span of 3 to 15 days.

Results

Patient selection and baseline parameters

We tested respiratory secretions of 425 ICU patients for HSV-1/2 replication by PCR. Of these, 126 (29.6%) tested positive for at least 103 HSV-1 copies/mL. Only one patient had additional HSV-2 replication (Fig. 1). All but two patients had clinical signs of pneumonia (elevated C-reactive protein, leukocytosis, purulent tracheal secretions, pulmonary infiltrates, or typical signs in bronchoscopy). Strikingly, 20/50 (40%) low viral load patients responded to culture-guided antibiotic treatment, in contrast to 8/67 (12%) of high viral load patients (p < 0.001). These antibiotic responders as well as the two patients without clinical signs of pneumonia were excluded from analysis, so that 89 patients with antibiotic refractory VAP remained: 30 with low viral load (103–105 copies/mL) and 59 with high viral load (> 105 copies/mL). Additional file 1: Table S1 shows microbiology culture results and antibiotics received by these patients; all were treated with at least one antibiotic active against the bacteria identified. A significantly higher proportion of high load patients received antiviral treatment (83% vs 57%, p = 0.005, Fig. 1).
The time from VAP diagnosis (detection of infiltrates) to HSV detection was not significantly different between untreated and acyclovir treated patients (Table 1), nor did it correlate with viral load (Additional file 1: Figure S1).
In general, tracheobronchial secretions tended to have higher HSV viral loads than bronchoalveolar lavages, although this difference reached statistical significance only in the entire cohort (p = 0.026, Additional file 1: Figure S2a); it was not significant in the subgroups of high and low load patients, respectively (Additional file 1: Figure S2b, c).
As shown in Table 1, antiviral-treated patients had higher HSV loads (median 1.1 × 106 vs 1.3 × 104, p < 0.001) especially in bronchoalveolar lavage fluid (median 1.1 × 106 vs 0.9 × 104, p < 0.001) and longer total ICU and hospital stays (mean 26 vs 16 days, p = 0.009, and 41 vs 26 days, p = 0.004, respectively) than untreated patients. During the entire ICU stay, they had longer antibiotic treatment (18 vs 14.5 days, p = 0.046); had a greater number of different antibiotic classes (5.0 vs 3.5, p = 0.025), particularly ceftazidime (18% vs 0%, p = 0.031); and were intubated longer (13 vs 9 days, p = 0.017). On the other hand, treated patients had less chronic obstructive pulmonary disease (20% vs 50%, p = 0.008) and required lower norepinephrine doses on d0 than untreated patients (median 0.001 vs 0.101 μg/kg body weight/min, p = 0.009).
Among the subgroup with high viral load, those receiving antiviral treatment had higher HSV loads (median 3.1 × 106 vs 2.8 × 105, p < 0.001) and longer total ICU and hospital stays (26 vs 15 days, p = 0.006, and 42 vs 24 days, p = 0.008, respectively) than untreated patients. They also received longer antibiotic courses (median 17 vs 12 days, p = 0.045) than untreated patients. None of these differences were significant in the subgroup with low viral load.

Survival time and Cox regression analysis

In the entire cohort of 89 patients with detectable respiratory HSV replication, acyclovir had no significant impact on ICU survival (Fig. 2a). Upon subgroup analysis, however, patients with high viral load who received acyclovir had significantly longer median ICU survival compared to patients without antiviral treatment (22 vs 8 days, p = 0.014; Fig. 2c), while no significant difference was demonstrated in low viral load patients (Fig. 2b). To correct for possible confounding, a multiple Cox regression model was adjusted for age, sex, and SOFA score (Fig. 3). The Cox model key assumption of proportional hazards was not violated as tested with the Schoenfeld residuals tests. In all patient groups, higher SOFA scores were consistently associated with increased hazard ratios for ICU death (Fig. 3a–c). The impact of acyclovir on survival remained significant only in high viral load patients (hazard ratio for ICU death 0.31, 95% CI 0.11–0.92, p = 0.035; Fig. 3c). Additional Cox models adjusted for different covariates (SOFA, APACHE II, COPD, HSV viral load as continuous variable) and a propensity score analysis gave essentially identical results (see Additional file 1: Table S2). Absolute ICU mortality, however, did not differ between untreated and acyclovir treated patients in the entire cohort (12/24 vs 26/65, p = 0.344), the low viral load subgroup (6/14 vs 6/16, p = 1), or the high viral subgroup (6/10 vs 20/49, p = 0.311).

Impact of concomitant cytomegalovirus reactivation on ICU survival

Overall, 66 of 89 patients were tested for CMV replication together with HSV. CMV replication could be detected in 14/66 (21%) patients but had no effect on median ICU survival (Additional file 1: Figure S4).

Changes in clinical and laboratory parameters over the course of antiviral treatment

Upon antiviral treatment (Fig. 4), high viral load patients improved in terms of circulatory support (from day 0 to 6 decrease in mean norepinephrine doses from 0.05 to 0.02 μg/kg body weight/min, fdr-adjusted p = 0.049; Fig. 4a) and pulmonary oxygenation (median PaO2/FiO2 ratio increased during treatment from 187 on day 3 to 241 on day 7, fdr-adjusted p = 0.02; Fig. 4b). Pulmonary and circulatory function of untreated patients remained unchanged. Finally, we evaluated all chest X-rays and CTs from high viral load patients. Scores of the first radiograph were slightly worse in patients who subsequently received antiviral treatment than in patients who did not (median 11 vs 8 points, p = 0.10; Fig. 4c), but they improved significantly during the course of treatment (11 vs 10 points, p < 0.001). The radiographic score did not change in untreated patients for whom at least two sequential X-rays were available for analysis.

Discussion

The role of HSV as a causative agent of VAP is subject of active debate, since HSV replication is not infrequent in ICU patients (29.6% in our cohort). Some studies have shown that HSV replication is of clinical importance: Ong et al. reported a prevalence of HSV viremia in 26% of septic shock patients admitted to the ICU [31] and Luyt et al. published that 21% of prolonged ventilated patients with clinical deterioration had histologically proven HSV bronchopneumonitis [14]. Identification of these patients under conditions of routine clinical care, however, is challenging, and a clinical algorithm would be helpful.
We suggest testing all patients with a diagnosis of VAP who do not respond to antibiotics for HSV replication in respiratory secretions. We adopted the suggested cutoff of 105 copies/mL [7], and several lines of evidence support this: First, more patients with lower viral loads responded to antibiotics than patients with higher viral loads, suggesting the former may have mostly bacterial causes of pneumonia. Second, the cutoff clearly separated patients responding from those not responding to acyclovir, in both uni- and multivariable analyses. This suggests that high-grade HSV replication may be causative for VAP in patients without other identifiable causes.
Our study is one of the few in which patients with a high likelihood of viral VAP have been identified before testing for HSV replication. Luyt et al. prospectively analyzed 201 ICU patients who were ventilated for more than 5 days, deteriorated clinically, and in whom active lung disease was suspected [14]. These authors found that the presence of histologic or cytologic signs of HSV bronchopneumonitis was associated with higher HSV viral loads. They could, however, not demonstrate any effect of acyclovir treatment on clinical courses or outcomes.
Several previous studies which examined the impact of acyclovir treatment on survival analyzed ICU mortality at one particular time point [1416]. Since the risk of non-HSV-associated, ICU-acquired complications increases with the length of ICU stay, a survival benefit caused by acyclovir may be underestimated by analyzing mortality after a longer period of time. We found that patients receiving acyclovir had significantly longer ICU stays and a longer duration of mechanical ventilation than untreated patients. We think that this is a consequence of shorter ICU survival of untreated patients, naturally resulting in a numerically reduced duration of ICU stay or mechanical ventilation.
To date, only one study has demonstrated a similar survival benefit of acyclovir, in 29 ICU patients with positive HSV-1 by culture (PCR was not performed) compared to 21 untreated patients (ICU mortality 21% vs 48%, hospital mortality 28% vs 62%) [17]. Although the patients receiving acyclovir treatment, like in our study, had longer ICU stays (55 vs 31 days), and, therefore, had longer risk exposure to other ICU-related complications, acyclovir treatment still was associated with longer survival. This suggests that the impact of acyclovir treatment on survival may be substantial if proper patient selection was performed.
Since acyclovir was associated with a significant longer time to ICU death in high load HSV patients, we expected that recovery of organ dysfunction should also occur during the course of treatment. Indeed, circulatory support, pulmonary oxygenation function, and radiologic signs of pneumonia improved during treatment, but not in untreated patients. Since patients who quickly improved upon antiviral treatment often did not have had a second chest radiograph taken, we likely underestimated radiographic improvement.
However, the following limitations should be considered: First, our study was retrospective and as such cannot prove that acyclovir was causative for our patients’ improvement. However, we think that the effect of acyclovir treatment on survival was surprisingly clear, and the improvement in circulatory and pulmonary oxygenation function was quite impressive.
Second, the group of untreated high load patients is quite small. This poses the question why these patients have not been treated. It should be kept in mind that this is a retrospective study of data acquired during routine clinical practice, so the decision to provide or withhold acyclovir treatment was left entirely to the responsible attending physician. In these patients, given the lack of evidence at that time, detection of HSV replication in the respiratory tract was not considered clinically significant by our clinical staff. To minimize selection bias, we determined a propensity score and added it to a multivariable Cox regression model (as shown in Additional file 1: Table S2), but the results remained essentially the same.
Third, we cannot prove that HSV was the causative pathogen leading to VAP in our patients since histopathologic evaluation was not performed. However, we consider it highly likely, because all patients in the final analysis had signs of pneumonia, all other pulmonary pathogens detected were adequately treated by antibiotics, and no patient responded to antibiotic treatment. Additionally, the therapeutic effect of acyclovir suggests a causative role of HSV in high load patients. Unfortunately, there are no randomized trials examining acyclovir as a treatment for VAP. Only one randomized trial exists regarding prophylactic treatment in patients with acute respiratory distress syndrome. Acyclovir reduced HSV detection in viral culture, but did not reduce mortality [32].
Fourth, the day of material sampling was not standardized, but based on clinical symptoms as judged by clinicians and microbiologists. Timing may impact HSV detection, since HSV load may increase with the length of mechanical ventilation [33]. Thus, some of our low viral load patients may have been classified as high load patients if the PCR had been performed later. However, they all had clinical signs of pneumonia at the time of sampling. Moreover, we found no correlation between time from VAP diagnosis to HSV detection and viral load (Additional file 1: Figure S1). This suggests that viral loads may not rapidly increase during several days. Therefore, we consider this time point as clinically adequate and suggest that a few days of variation in PCR diagnosis does not significantly alter the results.

Conclusions

Taken together, we showed that acyclovir treatment was associated with a significantly longer time to death in the ICU, reduced hazard ratio for ICU death, and improved circulatory and pulmonary oxygenation function in patients with VAP not responding to antibiotic treatment and with high HSV load. We suggest testing all patients with a diagnosis of antibiotic refractory VAP for HSV replication in respiratory secretions and considering acyclovir treatment if more than 105 copies/mL were detected.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13054-019-2701-5.

Acknowledgements

We thank professors Axel R. Heller and Helmuth Forst for critical reading of the manuscript. We are indebted to expert technical staff at the Institute for Laboratory Medicine and especially to Dennis Freuer for statistics consultations.
This study was approved by the institutional review board (Beratungskommission für klinische Forschung (BKF) Klinikum Augsburg, reference number #2017-16).
Not applicable

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bradley H, Markowitz LE, Gibson T, McQuillan GM. Seroprevalence of herpes simplex virus types 1 and 2--United States, 1999-2010. J Infect Dis. 2014;209:325–33.CrossRef Bradley H, Markowitz LE, Gibson T, McQuillan GM. Seroprevalence of herpes simplex virus types 1 and 2--United States, 1999-2010. J Infect Dis. 2014;209:325–33.CrossRef
2.
Zurück zum Zitat Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513–8.CrossRef Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet. 2001;357:1513–8.CrossRef
3.
Zurück zum Zitat Luyt CE, Brechot N, Chastre J. What role do viruses play in nosocomial pneumonia? Curr Opin Infect Dis. 2014;27:194–9.CrossRef Luyt CE, Brechot N, Chastre J. What role do viruses play in nosocomial pneumonia? Curr Opin Infect Dis. 2014;27:194–9.CrossRef
4.
Zurück zum Zitat Ong GM, Lowry K, Mahajan S, Wyatt DE, Simpson C, O'Neill HJ, et al. Herpes simplex type 1 shedding is associated with reduced hospital survival in patients receiving assisted ventilation in a tertiary referral intensive care unit. J Med Virol. 2004;72:121–5.CrossRef Ong GM, Lowry K, Mahajan S, Wyatt DE, Simpson C, O'Neill HJ, et al. Herpes simplex type 1 shedding is associated with reduced hospital survival in patients receiving assisted ventilation in a tertiary referral intensive care unit. J Med Virol. 2004;72:121–5.CrossRef
5.
Zurück zum Zitat Chanques G, Jaber S. Treating HSV and CMV reactivations in critically ill patients who are not immunocompromised: con. Intensive Care Med. 2014;40:1950–3.CrossRef Chanques G, Jaber S. Treating HSV and CMV reactivations in critically ill patients who are not immunocompromised: con. Intensive Care Med. 2014;40:1950–3.CrossRef
6.
Zurück zum Zitat Forel JM, Martin-Loeches I, Luyt CE. Treating HSV and CMV reactivations in critically ill patients who are not immunocompromised: pro. Intensive Care Med. 2014;40:1945–9.CrossRef Forel JM, Martin-Loeches I, Luyt CE. Treating HSV and CMV reactivations in critically ill patients who are not immunocompromised: pro. Intensive Care Med. 2014;40:1945–9.CrossRef
7.
Zurück zum Zitat Linssen CF, Jacobs JA, Stelma FF, van Mook WN, Terporten P, Vink C, et al. Herpes simplex virus load in bronchoalveolar lavage fluid is related to poor outcome in critically ill patients. Intensive Care Med. 2008;34:2202–9.CrossRef Linssen CF, Jacobs JA, Stelma FF, van Mook WN, Terporten P, Vink C, et al. Herpes simplex virus load in bronchoalveolar lavage fluid is related to poor outcome in critically ill patients. Intensive Care Med. 2008;34:2202–9.CrossRef
8.
Zurück zum Zitat Coisel Y, Bousbia S, Forel JM, Hraiech S, Lascola B, Roch A, et al. Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia. PLoS One. 2012;7:e51340.CrossRef Coisel Y, Bousbia S, Forel JM, Hraiech S, Lascola B, Roch A, et al. Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia. PLoS One. 2012;7:e51340.CrossRef
9.
Zurück zum Zitat Friedrichs I, Bingold T, Keppler OT, Pullmann B, Reinheimer C, Berger A. Detection of herpesvirus EBV DNA in the lower respiratory tract of ICU patients: a marker of infection of the lower respiratory tract? Med Microbiol Immunol. 2013;202:431–6.CrossRef Friedrichs I, Bingold T, Keppler OT, Pullmann B, Reinheimer C, Berger A. Detection of herpesvirus EBV DNA in the lower respiratory tract of ICU patients: a marker of infection of the lower respiratory tract? Med Microbiol Immunol. 2013;202:431–6.CrossRef
10.
Zurück zum Zitat Martinez E, de Diego A, Paradis A, Perpina M, Hernandez M. Herpes simplex pneumonia in a young immunocompetent man. Eur Respir J. 1994;7:1185–8.PubMed Martinez E, de Diego A, Paradis A, Perpina M, Hernandez M. Herpes simplex pneumonia in a young immunocompetent man. Eur Respir J. 1994;7:1185–8.PubMed
11.
Zurück zum Zitat Reyes CV, Bolden JR. Herpes simplex virus type-1 pneumonitis in immunocompetent young woman. Heart Lung. 2009;38:526–9.CrossRef Reyes CV, Bolden JR. Herpes simplex virus type-1 pneumonitis in immunocompetent young woman. Heart Lung. 2009;38:526–9.CrossRef
12.
Zurück zum Zitat Hunt DP, Muse VV, Pitman MB. Case records of the Massachusetts General Hospital. Case 12-2013. an 18-year-old woman with pulmonary infiltrates and respiratory failure. N Engl J Med. 2013;368:1537–45.CrossRef Hunt DP, Muse VV, Pitman MB. Case records of the Massachusetts General Hospital. Case 12-2013. an 18-year-old woman with pulmonary infiltrates and respiratory failure. N Engl J Med. 2013;368:1537–45.CrossRef
13.
Zurück zum Zitat Boundy KE, Fraire AE, Oliveira PJ. A patient with progressive dyspnea and multiple foci of airspace consolidation. Chest. 2014;145:167–72.CrossRef Boundy KE, Fraire AE, Oliveira PJ. A patient with progressive dyspnea and multiple foci of airspace consolidation. Chest. 2014;145:167–72.CrossRef
14.
Zurück zum Zitat Luyt CE, Combes A, Deback C, Aubriot-Lorton MH, Nieszkowska A, Trouillet JL, et al. Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am J Respir Crit Care Med. 2007;175:935–42.CrossRef Luyt CE, Combes A, Deback C, Aubriot-Lorton MH, Nieszkowska A, Trouillet JL, et al. Herpes simplex virus lung infection in patients undergoing prolonged mechanical ventilation. Am J Respir Crit Care Med. 2007;175:935–42.CrossRef
15.
Zurück zum Zitat Scheithauer S, Manemann AK, Kruger S, Hausler M, Kruttgen A, Lemmen SW, et al. Impact of herpes simplex virus detection in respiratory specimens of patients with suspected viral pneumonia. Infection. 2010;38:401–5.CrossRef Scheithauer S, Manemann AK, Kruger S, Hausler M, Kruttgen A, Lemmen SW, et al. Impact of herpes simplex virus detection in respiratory specimens of patients with suspected viral pneumonia. Infection. 2010;38:401–5.CrossRef
16.
Zurück zum Zitat Saugel B, Jakobus J, Huber W, Hoffmann D, Holzapfel K, Protzer U, et al. Herpes simplex virus in bronchoalveolar lavage fluid of medical intensive care unit patients: association with lung injury and outcome. J Crit Care. 2016;32:138–44.CrossRef Saugel B, Jakobus J, Huber W, Hoffmann D, Holzapfel K, Protzer U, et al. Herpes simplex virus in bronchoalveolar lavage fluid of medical intensive care unit patients: association with lung injury and outcome. J Crit Care. 2016;32:138–44.CrossRef
17.
Zurück zum Zitat Traen S, Bochanen N, Ieven M, Schepens T, Bruynseels P, Verbrugghe W, et al. Is acyclovir effective among critically ill patients with herpes simplex in the respiratory tract? J Clin Virol. 2014;60:215–21.CrossRef Traen S, Bochanen N, Ieven M, Schepens T, Bruynseels P, Verbrugghe W, et al. Is acyclovir effective among critically ill patients with herpes simplex in the respiratory tract? J Clin Virol. 2014;60:215–21.CrossRef
18.
Zurück zum Zitat Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.CrossRef Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373–83.CrossRef
19.
Zurück zum Zitat Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRef
20.
Zurück zum Zitat Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26:1793–800.CrossRef Vincent JL, de Mendonca A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med. 1998;26:1793–800.CrossRef
21.
Zurück zum Zitat Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;138:720–3.CrossRef Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;138:720–3.CrossRef
22.
Zurück zum Zitat Luna CM, Blanzaco D, Niederman MS, Matarucco W, Baredes NC, Desmery P, et al. Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med. 2003;31:676–82.CrossRef Luna CM, Blanzaco D, Niederman MS, Matarucco W, Baredes NC, Desmery P, et al. Resolution of ventilator-associated pneumonia: prospective evaluation of the clinical pulmonary infection score as an early clinical predictor of outcome. Crit Care Med. 2003;31:676–82.CrossRef
23.
Zurück zum Zitat Le Huu TB, Huynh QD. Équation des gaz alvéolaires et différence alvéolo-atérielle en oxygène. J Fran Viet Pneu. 2014;05:4–10. Le Huu TB, Huynh QD. Équation des gaz alvéolaires et différence alvéolo-atérielle en oxygène. J Fran Viet Pneu. 2014;05:4–10.
24.
Zurück zum Zitat Lamy M, Fallat RJ, Koeniger E, Dietrich HP, Ratliff JL, Eberhart RC, et al. Pathologic features and mechanisms of hypoxemia in adult respiratory distress syndrome. Am Rev Respir Dis. 1976;114:267–84.PubMed Lamy M, Fallat RJ, Koeniger E, Dietrich HP, Ratliff JL, Eberhart RC, et al. Pathologic features and mechanisms of hypoxemia in adult respiratory distress syndrome. Am Rev Respir Dis. 1976;114:267–84.PubMed
25.
29.
Zurück zum Zitat Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. Accessed 27 Nov 2018CrossRef Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. Accessed 27 Nov 2018CrossRef
31.
Zurück zum Zitat Ong DSY, Bonten MJM, Spitoni C, Verduyn Lunel FM, Frencken JF, Horn J, et al. Epidemiology of multiple herpes viremia in previously immunocompetent patients with septic shock. Clin Infect Dis. 2017;64:1204–10.CrossRef Ong DSY, Bonten MJM, Spitoni C, Verduyn Lunel FM, Frencken JF, Horn J, et al. Epidemiology of multiple herpes viremia in previously immunocompetent patients with septic shock. Clin Infect Dis. 2017;64:1204–10.CrossRef
32.
Zurück zum Zitat Tuxen DV, Wilson JW, Cade JF. Prevention of lower respiratory herpes simplex virus infection with acyclovir in patients with the adult respiratory distress syndrome. Am Rev Respir Dis. 1987;136:402–5.CrossRef Tuxen DV, Wilson JW, Cade JF. Prevention of lower respiratory herpes simplex virus infection with acyclovir in patients with the adult respiratory distress syndrome. Am Rev Respir Dis. 1987;136:402–5.CrossRef
33.
Zurück zum Zitat De Vos N, Van Hoovels L, Vankeerberghen A, Van Vaerenbergh K, Boel A, Demeyer I, et al. Monitoring of herpes simplex virus in the lower respiratory tract of critically ill patients using real-time PCR: a prospective study. Clin Microbiol Infect. 2009;15:358–63.CrossRef De Vos N, Van Hoovels L, Vankeerberghen A, Van Vaerenbergh K, Boel A, Demeyer I, et al. Monitoring of herpes simplex virus in the lower respiratory tract of critically ill patients using real-time PCR: a prospective study. Clin Microbiol Infect. 2009;15:358–63.CrossRef
Metadaten
Titel
Impact of acyclovir use on survival of patients with ventilator-associated pneumonia and high load herpes simplex virus replication
verfasst von
Lukas Schuierer
Michael Gebhard
Hans-Georg Ruf
Ulrich Jaschinski
Thomas M. Berghaus
Michael Wittmann
Georg Braun
Dirk H. Busch
Reinhard Hoffmann
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 1/2020
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-019-2701-5

Weitere Artikel der Ausgabe 1/2020

Critical Care 1/2020 Zur Ausgabe

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.