Skip to main content
Erschienen in: NeuroMolecular Medicine 4/2008

01.12.2008 | Review Paper

Impact of Energy Intake and Expenditure on Neuronal Plasticity

verfasst von: Alexis M. Stranahan, Mark P. Mattson

Erschienen in: NeuroMolecular Medicine | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

The Roman poet Horace was among the first to recognize that when “clogged with yesterday’s excess, the body drags the mind down with it.” Although considerable attention has been paid in neuroscience to the enhancement of neuronal function by wheel running and caloric restriction, far less is known about the other side of this issue. What are the consequences of unhealthy habits to central nervous system function? Prolonged exposure to excessive caloric intake impairs neuronal function and also contributes to obesity and other risk factors for diabetes. Diabetes, a disease characterized by reduced sensitivity to glucose and insulin, is also associated with deficits in brain structure and function. In contrast, enhancement of somatic metabolism by wheel running or caloric restriction improves central neuroplasticity. Generalizing across studies reveals a relationship between global metabolic efficiency and neuroplasticity in the hippocampus, a brain region that is essential for learning and memory. The specific principles upheld by these findings are suggestive of a continuum, with global metabolic alterations fluctuating in concert with neuroplasticity in the hippocampus.
Literatur
Zurück zum Zitat Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.PubMedCrossRef Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.PubMedCrossRef
Zurück zum Zitat Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. Journal of Neuroscience, 25, 4217–4221.PubMedCrossRef Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. Journal of Neuroscience, 25, 4217–4221.PubMedCrossRef
Zurück zum Zitat Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135, 1127–1128.PubMedCrossRef Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135, 1127–1128.PubMedCrossRef
Zurück zum Zitat Andrade, J. P., Castanheira-Vale, A. J., Paz-Dias, P. G., Madeira, M. D., & Paula-Barbosa, M. M. (1996). The dendritic trees of neurons from the hippocampal formation of protein-deprived adult rats. A quantitative Golgi study. Experimental Brain Research, 109, 419–433. Andrade, J. P., Castanheira-Vale, A. J., Paz-Dias, P. G., Madeira, M. D., & Paula-Barbosa, M. M. (1996). The dendritic trees of neurons from the hippocampal formation of protein-deprived adult rats. A quantitative Golgi study. Experimental Brain Research, 109, 419–433.
Zurück zum Zitat Andrade, J. P., Lukoyanov, N. V., & Paula-Barbosa, M. M. (2002). Chronic food restriction is associated with subtle dendritic alterations in granule cells of the rat hippocampal formation. Hippocampus, 12, 149–164.PubMedCrossRef Andrade, J. P., Lukoyanov, N. V., & Paula-Barbosa, M. M. (2002). Chronic food restriction is associated with subtle dendritic alterations in granule cells of the rat hippocampal formation. Hippocampus, 12, 149–164.PubMedCrossRef
Zurück zum Zitat Asztely, F., Kokaia, M., Olofsdotter, K., Ortegren, U., & Lindvall, O. (2000). Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. European Journal of Neuroscience, 12, 662–669.CrossRef Asztely, F., Kokaia, M., Olofsdotter, K., Ortegren, U., & Lindvall, O. (2000). Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. European Journal of Neuroscience, 12, 662–669.CrossRef
Zurück zum Zitat Barsh, G. S., Farooqi, I. S., & O’Rahilly, S. (2000). Genetics of body-weight regulation. Nature, 404, 644–651.PubMed Barsh, G. S., Farooqi, I. S., & O’Rahilly, S. (2000). Genetics of body-weight regulation. Nature, 404, 644–651.PubMed
Zurück zum Zitat Biessels, G. J., Kamal, A., Ramakers, G. M., Urban, I. J., Spruijt, B. M., Erkelens, D. W., et al. (1996). Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes, 45(9), 1259–1266.PubMedCrossRef Biessels, G. J., Kamal, A., Ramakers, G. M., Urban, I. J., Spruijt, B. M., Erkelens, D. W., et al. (1996). Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes, 45(9), 1259–1266.PubMedCrossRef
Zurück zum Zitat Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.PubMed Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.PubMed
Zurück zum Zitat Bloomgarden, Z. T. (2004). Type 2 diabetes in the young: The evolving epidemic. Diabetes Care, 27, 998–1010.PubMedCrossRef Bloomgarden, Z. T. (2004). Type 2 diabetes in the young: The evolving epidemic. Diabetes Care, 27, 998–1010.PubMedCrossRef
Zurück zum Zitat Broadbent, N. J., Squire, L. R., & Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 101, 14515–14520.PubMedCrossRef Broadbent, N. J., Squire, L. R., & Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 101, 14515–14520.PubMedCrossRef
Zurück zum Zitat Burkhalter, J., Fiumelli, H., Allaman, I., Chatton, J. Y., & Martin, J. L. (2003). Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons. Journal of Neuroscience, 23, 8212–8220.PubMed Burkhalter, J., Fiumelli, H., Allaman, I., Chatton, J. Y., & Martin, J. L. (2003). Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons. Journal of Neuroscience, 23, 8212–8220.PubMed
Zurück zum Zitat Burns, J. M., Donnelly, J. E., Anderson, H. S., Mayo, M. S., Spencer-Gardner, L., Thomas, G., et al. (2007). Peripheral insulin and brain structure in early Alzheimer disease. Neurology, 69, 1094–1104.PubMedCrossRef Burns, J. M., Donnelly, J. E., Anderson, H. S., Mayo, M. S., Spencer-Gardner, L., Thomas, G., et al. (2007). Peripheral insulin and brain structure in early Alzheimer disease. Neurology, 69, 1094–1104.PubMedCrossRef
Zurück zum Zitat Cameron, H. A., & McKay, R. D. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. Journal of Comparative Neurology, 435, 406–417.PubMedCrossRef Cameron, H. A., & McKay, R. D. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. Journal of Comparative Neurology, 435, 406–417.PubMedCrossRef
Zurück zum Zitat Carro, E., Trejo, J. L., Busiguina, S., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. Journal of Neuroscience, 21, 5678–5684.PubMed Carro, E., Trejo, J. L., Busiguina, S., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. Journal of Neuroscience, 21, 5678–5684.PubMed
Zurück zum Zitat Chen, M. J., & Russo-Neustadt, A. A. (2007). Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors, 25, 118–131.PubMedCrossRef Chen, M. J., & Russo-Neustadt, A. A. (2007). Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors, 25, 118–131.PubMedCrossRef
Zurück zum Zitat Clark, R. E., Zola, S. M., & Squire, L. R. (2000). Impaired recognition memory in rats after damage to the hippocampus. Journal of Neuroscience, 20, 8853–8860.PubMed Clark, R. E., Zola, S. M., & Squire, L. R. (2000). Impaired recognition memory in rats after damage to the hippocampus. Journal of Neuroscience, 20, 8853–8860.PubMed
Zurück zum Zitat Colino, A., & Malenka, R. C. (1993). Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. Journal of Neurophysiology, 69, 1150–1159.PubMed Colino, A., & Malenka, R. C. (1993). Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. Journal of Neurophysiology, 69, 1150–1159.PubMed
Zurück zum Zitat Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100, 2019–2022.PubMedCrossRef Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100, 2019–2022.PubMedCrossRef
Zurück zum Zitat Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health, key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.PubMedCrossRef Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health, key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.PubMedCrossRef
Zurück zum Zitat Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: The link between insulin resistance, obesity and diabetes. Trends in Immunology, 25(1), 4–7.PubMedCrossRef Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: The link between insulin resistance, obesity and diabetes. Trends in Immunology, 25(1), 4–7.PubMedCrossRef
Zurück zum Zitat DelParigi, A., Chen, K., Salbe, A. D., Hill, J. O., Wing, R. R., Reiman, E. M., et al. (2004). Persistence of abnormal neural responses to a meal in postobese individuals. International Journal of Obesity and Related Metabolic Disorders, 28(3), 370–377.PubMedCrossRef DelParigi, A., Chen, K., Salbe, A. D., Hill, J. O., Wing, R. R., Reiman, E. M., et al. (2004). Persistence of abnormal neural responses to a meal in postobese individuals. International Journal of Obesity and Related Metabolic Disorders, 28(3), 370–377.PubMedCrossRef
Zurück zum Zitat den Heijer, T., Vermeer, S. E., van Dijk, E. J., Prins, N. D., Koudstaal, P. J., Hofman, A., et al. (2003). Type 2 diabetes and atrophy of medial temporal lobe structures on brain. MRI. Diabetologia, 46, 1604–1610.CrossRef den Heijer, T., Vermeer, S. E., van Dijk, E. J., Prins, N. D., Koudstaal, P. J., Hofman, A., et al. (2003). Type 2 diabetes and atrophy of medial temporal lobe structures on brain. MRI. Diabetologia, 46, 1604–1610.CrossRef
Zurück zum Zitat Dore, S., Kar, S., & Quirion, R. (1997). Rediscovering an old friend, IGF-I, potential use in the treatment of neurodegenerative diseases. Trends in Neurosciences, 20, 326–331.PubMedCrossRef Dore, S., Kar, S., & Quirion, R. (1997). Rediscovering an old friend, IGF-I, potential use in the treatment of neurodegenerative diseases. Trends in Neurosciences, 20, 326–331.PubMedCrossRef
Zurück zum Zitat Duan, W., Guo, Z., Jiang, H., Ware, M., & Mattson, M. P. (2003). Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology, 144, 2446–2453.PubMedCrossRef Duan, W., Guo, Z., Jiang, H., Ware, M., & Mattson, M. P. (2003). Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology, 144, 2446–2453.PubMedCrossRef
Zurück zum Zitat Eadie, B. D., Redila, V. A., & Christie, B. R. (2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. Journal of Comparative Neurology, 486, 39–47.PubMedCrossRef Eadie, B. D., Redila, V. A., & Christie, B. R. (2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. Journal of Comparative Neurology, 486, 39–47.PubMedCrossRef
Zurück zum Zitat Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399, 66–70.PubMedCrossRef Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399, 66–70.PubMedCrossRef
Zurück zum Zitat Esposito, M. S., Piatti, V. C., Laplagne, D. A., Morgenstern, N. A., Ferrari, C. C., Pitossi, F. J., et al. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. Journal of Neuroscience, 25, 10074–10086.PubMedCrossRef Esposito, M. S., Piatti, V. C., Laplagne, D. A., Morgenstern, N. A., Ferrari, C. C., Pitossi, F. J., et al. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. Journal of Neuroscience, 25, 10074–10086.PubMedCrossRef
Zurück zum Zitat Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience, 124, 71–79.PubMedCrossRef Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience, 124, 71–79.PubMedCrossRef
Zurück zum Zitat Fedulov, V., Rex, C. S., Simmons, D. A., Palmer, L., Gall, C. M., & Lynch, G. (2007). Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. Journal of Neuroscience, 27, 8031–8039.PubMedCrossRef Fedulov, V., Rex, C. S., Simmons, D. A., Palmer, L., Gall, C. M., & Lynch, G. (2007). Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. Journal of Neuroscience, 27, 8031–8039.PubMedCrossRef
Zurück zum Zitat Fiala, B. A., Joyce, J. N., & Greenough, W. T. (1978). Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Experimental Neurology, 59, 372–383.PubMedCrossRef Fiala, B. A., Joyce, J. N., & Greenough, W. T. (1978). Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Experimental Neurology, 59, 372–383.PubMedCrossRef
Zurück zum Zitat Fontán-Lozano, A., Sáez-Cassanelli, J. L., Inda, M. C., de los Santos-Arteaga, M., Sierra-Domínguez, S. A., López-Lluch, G., et al. (2007). Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. Journal of Neuroscience, 27, 10185–10195.PubMedCrossRef Fontán-Lozano, A., Sáez-Cassanelli, J. L., Inda, M. C., de los Santos-Arteaga, M., Sierra-Domínguez, S. A., López-Lluch, G., et al. (2007). Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. Journal of Neuroscience, 27, 10185–10195.PubMedCrossRef
Zurück zum Zitat Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439, 589–593.PubMedCrossRef Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439, 589–593.PubMedCrossRef
Zurück zum Zitat Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54, 559–566.PubMedCrossRef Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54, 559–566.PubMedCrossRef
Zurück zum Zitat Gold, S. M., Dziobek, I., Sweat, V., Tirsi, A., Rogers, K., Bruehl, H., et al. (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia, 50, 711–719.PubMedCrossRef Gold, S. M., Dziobek, I., Sweat, V., Tirsi, A., Rogers, K., Bruehl, H., et al. (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia, 50, 711–719.PubMedCrossRef
Zurück zum Zitat Green, K. N., Billings, L. M., Roozendaal, B., McGaugh, J. L., & LaFerla, F. M. (2006). Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 26, 9047–9056.PubMedCrossRef Green, K. N., Billings, L. M., Roozendaal, B., McGaugh, J. L., & LaFerla, F. M. (2006). Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 26, 9047–9056.PubMedCrossRef
Zurück zum Zitat Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M., et al. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 26, 212–220.PubMedCrossRef Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M., et al. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 26, 212–220.PubMedCrossRef
Zurück zum Zitat Hanse, E., & Gustafsson, B. (1992). Long-term Potentiation and Field EPSPs in the Lateral and Medial Perforant Paths in the Dentate Gyrus In Vitro, a Comparison. European Journal of Neuroscience, 4, 1191–1201.PubMedCrossRef Hanse, E., & Gustafsson, B. (1992). Long-term Potentiation and Field EPSPs in the Lateral and Medial Perforant Paths in the Dentate Gyrus In Vitro, a Comparison. European Journal of Neuroscience, 4, 1191–1201.PubMedCrossRef
Zurück zum Zitat Hastings, N. B., & Gould, E. (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. Journal of Comparative Neurology, 413, 146–154.PubMedCrossRef Hastings, N. B., & Gould, E. (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. Journal of Comparative Neurology, 413, 146–154.PubMedCrossRef
Zurück zum Zitat Hayes, N. L., & Nowakowski, R. S. (2002). Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice. Brain Research. Developmental Brain Research, 134, 77–85.PubMedCrossRef Hayes, N. L., & Nowakowski, R. S. (2002). Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice. Brain Research. Developmental Brain Research, 134, 77–85.PubMedCrossRef
Zurück zum Zitat Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: John Wiley and Sons, Inc. Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: John Wiley and Sons, Inc.
Zurück zum Zitat Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart, exercise effects on brain and cognition. Nature Reviews in the Neurosciences, 9, 58–65.PubMedCrossRef Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart, exercise effects on brain and cognition. Nature Reviews in the Neurosciences, 9, 58–65.PubMedCrossRef
Zurück zum Zitat Ho, L., Qin, W., Pompl, P. N., Xiang, Z., Wang, J., Zhao, Z., et al. (2004). Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB Journal, 18, 902–904.PubMed Ho, L., Qin, W., Pompl, P. N., Xiang, Z., Wang, J., Zhao, Z., et al. (2004). Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB Journal, 18, 902–904.PubMed
Zurück zum Zitat Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X., Knott, G. W., et al. (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron, 45, 279–291.PubMedCrossRef Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X., Knott, G. W., et al. (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron, 45, 279–291.PubMedCrossRef
Zurück zum Zitat Jackson-Guilford, J., Leander, J. D., & Nisenbaum, L. K. (2000). The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neuroscience Letters, 293, 91–94.PubMedCrossRef Jackson-Guilford, J., Leander, J. D., & Nisenbaum, L. K. (2000). The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neuroscience Letters, 293, 91–94.PubMedCrossRef
Zurück zum Zitat Jagust, W., Harvey, D., Mungas, D., & Haan, M. (2005). Central obesity and the aging brain. Archives of Neurology, 62(10), 1545–1548.PubMedCrossRef Jagust, W., Harvey, D., Mungas, D., & Haan, M. (2005). Central obesity and the aging brain. Archives of Neurology, 62(10), 1545–1548.PubMedCrossRef
Zurück zum Zitat Jakubs, K., Nanobashvili, A., Bonde, S., Ekdahl, C. T., Kokaia, Z., Kokaia, M., et al. (2006). Environment matters, synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron, 52, 1047–1059.PubMedCrossRef Jakubs, K., Nanobashvili, A., Bonde, S., Ekdahl, C. T., Kokaia, Z., Kokaia, M., et al. (2006). Environment matters, synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron, 52, 1047–1059.PubMedCrossRef
Zurück zum Zitat Juraska, J. M., Fitch, J. M., Henderson, C., & Rivers, N. (1985). Sex differences in dendritic branching of dentate granule cells following differential experience. Brain Research, 333, 73–80.PubMedCrossRef Juraska, J. M., Fitch, J. M., Henderson, C., & Rivers, N. (1985). Sex differences in dendritic branching of dentate granule cells following differential experience. Brain Research, 333, 73–80.PubMedCrossRef
Zurück zum Zitat Kamal, A., Biessels, G. J., Urban, I. J., & Gispen, W. H. (1999). Hippocampal synaptic plasticity in streptozotocin-diabetic rats, impairment of long-term potentiation and facilitation of long-term depression. Neuroscience, 90, 737–745.PubMedCrossRef Kamal, A., Biessels, G. J., Urban, I. J., & Gispen, W. H. (1999). Hippocampal synaptic plasticity in streptozotocin-diabetic rats, impairment of long-term potentiation and facilitation of long-term depression. Neuroscience, 90, 737–745.PubMedCrossRef
Zurück zum Zitat Kempermann, G., Jessberger, S., Steiner, B., & Kronenberg, G. (2004). Milestones of neuronal development in the adult hippocampus. Trends in Neurosciences, 27, 447–452.PubMedCrossRef Kempermann, G., Jessberger, S., Steiner, B., & Kronenberg, G. (2004). Milestones of neuronal development in the adult hippocampus. Trends in Neurosciences, 27, 447–452.PubMedCrossRef
Zurück zum Zitat Kim, E., Sohn, S., Lee, M., Jung, J., Kineman, R. D., & Park, S. (2006). Differential responses of the growth hormone axis in two rat models of streptozotocin-induced insulinopenic diabetes. Journal of Endocrinology, 188, 263–270.PubMedCrossRef Kim, E., Sohn, S., Lee, M., Jung, J., Kineman, R. D., & Park, S. (2006). Differential responses of the growth hormone axis in two rat models of streptozotocin-induced insulinopenic diabetes. Journal of Endocrinology, 188, 263–270.PubMedCrossRef
Zurück zum Zitat Korf, E. S., White, L. R., Scheltens, P., & Launer, L. J. (2006). Brain aging in very old men with type 2 diabetes, the Honolulu-Asia Aging Study. Diabetes Care, 29, 2268–2274.PubMedCrossRef Korf, E. S., White, L. R., Scheltens, P., & Launer, L. J. (2006). Brain aging in very old men with type 2 diabetes, the Honolulu-Asia Aging Study. Diabetes Care, 29, 2268–2274.PubMedCrossRef
Zurück zum Zitat Kozorovitskiy, Y., Gross, C. G., Kopil, C., Battaglia, L., McBreen, M., Stranahan, A. M., et al. (2005). Experience induces structural and biochemical changes in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 17478–17482.PubMedCrossRef Kozorovitskiy, Y., Gross, C. G., Kopil, C., Battaglia, L., McBreen, M., Stranahan, A. M., et al. (2005). Experience induces structural and biochemical changes in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 17478–17482.PubMedCrossRef
Zurück zum Zitat Kumari, R., Willing, L. B., Krady, J. K., Vannucci, S. J., & Simpson, I. A. (2007). Impaired wound healing after cerebral hypoxia-ischemia in the diabetic mouse. Journal of Cerebral Blood Flow and Metabolism, 27, 710–718.PubMed Kumari, R., Willing, L. B., Krady, J. K., Vannucci, S. J., & Simpson, I. A. (2007). Impaired wound healing after cerebral hypoxia-ischemia in the diabetic mouse. Journal of Cerebral Blood Flow and Metabolism, 27, 710–718.PubMed
Zurück zum Zitat LaManna, J. C., & Harik, S. I. (1985). Regional comparisons of brain glucose influx. Brain Research, 326, 299–305.PubMedCrossRef LaManna, J. C., & Harik, S. I. (1985). Regional comparisons of brain glucose influx. Brain Research, 326, 299–305.PubMedCrossRef
Zurück zum Zitat Lang, C., Barco, A., Zablow, L., Kandel, E. R., Siegelbaum, S. A., & Zakharenko, S. S. (2004). Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 101, 16665–16670.PubMedCrossRef Lang, C., Barco, A., Zablow, L., Kandel, E. R., Siegelbaum, S. A., & Zakharenko, S. S. (2004). Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 101, 16665–16670.PubMedCrossRef
Zurück zum Zitat Larson, E. B., Wang, L., Bowen, J. D., McCormick, W. C., Teri, L., Crane, P., et al. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Annals of Internal Medicine, 144, 73–81.PubMed Larson, E. B., Wang, L., Bowen, J. D., McCormick, W. C., Teri, L., Crane, P., et al. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Annals of Internal Medicine, 144, 73–81.PubMed
Zurück zum Zitat Lee, J., Duan, W., & Mattson, M. P. (2002). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 82, 1367–1375.PubMedCrossRef Lee, J., Duan, W., & Mattson, M. P. (2002). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 82, 1367–1375.PubMedCrossRef
Zurück zum Zitat Leuner, B., Gould, E., & Shors, T. J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216–224.PubMedCrossRef Leuner, B., Gould, E., & Shors, T. J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216–224.PubMedCrossRef
Zurück zum Zitat Li, X. L., Aou, S., Oomura, Y., Hori, N., Fukunaga, K., & Hori, T. (2002). Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience, 113, 607–615.PubMedCrossRef Li, X. L., Aou, S., Oomura, Y., Hori, N., Fukunaga, K., & Hori, T. (2002). Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience, 113, 607–615.PubMedCrossRef
Zurück zum Zitat Lindqvist, A., Mohapel, P., Bouter, B., Frielingsdorf, H., Pizzo, D., Brundin, P., et al. (2006). High-fat diet impairs hippocampal neurogenesis in male rats. European Journal of Neurology, 13, 1385–1388.PubMedCrossRef Lindqvist, A., Mohapel, P., Bouter, B., Frielingsdorf, H., Pizzo, D., Brundin, P., et al. (2006). High-fat diet impairs hippocampal neurogenesis in male rats. European Journal of Neurology, 13, 1385–1388.PubMedCrossRef
Zurück zum Zitat Lupien, S. B., Bluhm, E. J., & Ishii, D. N. (2003). Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. Journal of Neuroscience Research, 74, 512–523.PubMedCrossRef Lupien, S. B., Bluhm, E. J., & Ishii, D. N. (2003). Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. Journal of Neuroscience Research, 74, 512–523.PubMedCrossRef
Zurück zum Zitat Magarinos, A. M., & McEwen, B. S. (2000). Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proceedings of the National Academy of Sciences of the United States of America, 97, 11056–11061.PubMedCrossRef Magarinos, A. M., & McEwen, B. S. (2000). Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proceedings of the National Academy of Sciences of the United States of America, 97, 11056–11061.PubMedCrossRef
Zurück zum Zitat Maher, P., Akaishi, T., & Abe, K. (2006). Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Sciences of the United States of America, 103, 16568–16573.PubMedCrossRef Maher, P., Akaishi, T., & Abe, K. (2006). Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Sciences of the United States of America, 103, 16568–16573.PubMedCrossRef
Zurück zum Zitat Mandyam, C. D., Harburg, G. C., & Eisch, A. J. (2007). Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience, 146, 108–122.PubMedCrossRef Mandyam, C. D., Harburg, G. C., & Eisch, A. J. (2007). Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience, 146, 108–122.PubMedCrossRef
Zurück zum Zitat Martínez-Tellez, R., Gómez-Villalobos Mde, J., & Flores, G. (2005). Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Research, 1048, 108–115.PubMedCrossRef Martínez-Tellez, R., Gómez-Villalobos Mde, J., & Flores, G. (2005). Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Research, 1048, 108–115.PubMedCrossRef
Zurück zum Zitat Matsuo, N., Reijmers, L., & Mayford, M. (2008). Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science, 319(5866), 1104–1107.PubMedCrossRef Matsuo, N., Reijmers, L., & Mayford, M. (2008). Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science, 319(5866), 1104–1107.PubMedCrossRef
Zurück zum Zitat Mayeux, R. (2003). Epidemiology of neurodegeneration. Annual Review of Neuroscience, 26, 81–104.PubMedCrossRef Mayeux, R. (2003). Epidemiology of neurodegeneration. Annual Review of Neuroscience, 26, 81–104.PubMedCrossRef
Zurück zum Zitat McEwen, B. S. (2001). Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load. Annals of the New York Academy of Sciences, 933, 265–277.PubMed McEwen, B. S. (2001). Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load. Annals of the New York Academy of Sciences, 933, 265–277.PubMed
Zurück zum Zitat McEwen, B. S., & Reagan, L. P. (2004). Glucose transporter expression in the central nervous system, relationship to synaptic function. European Journal of Pharmacology, 490, 13–24.PubMedCrossRef McEwen, B. S., & Reagan, L. P. (2004). Glucose transporter expression in the central nervous system, relationship to synaptic function. European Journal of Pharmacology, 490, 13–24.PubMedCrossRef
Zurück zum Zitat Messier, C. (2005). Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiology of Aging, 26(Suppl 1), 26–30.PubMedCrossRef Messier, C. (2005). Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiology of Aging, 26(Suppl 1), 26–30.PubMedCrossRef
Zurück zum Zitat Mielke, J. G., Nicolitch, K., Avellaneda, V., Earlam, K., Ahuja, T., Mealing, G., et al. (2006). Longitudinal study of the effects of a high-fat diet on glucose regulation, hippocampal function, and cerebral insulin sensitivity in C57BL/6 mice. Behavioural Brain Research, 175(2), 374–382.PubMedCrossRef Mielke, J. G., Nicolitch, K., Avellaneda, V., Earlam, K., Ahuja, T., Mealing, G., et al. (2006). Longitudinal study of the effects of a high-fat diet on glucose regulation, hippocampal function, and cerebral insulin sensitivity in C57BL/6 mice. Behavioural Brain Research, 175(2), 374–382.PubMedCrossRef
Zurück zum Zitat Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K., & Gomez-Pinilla, F. (2002). A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 112, 803–814.PubMedCrossRef Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K., & Gomez-Pinilla, F. (2002). A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 112, 803–814.PubMedCrossRef
Zurück zum Zitat Morris, R. G. (2001). Episodic-like memory in animals, psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1453–1465.PubMedCrossRef Morris, R. G. (2001). Episodic-like memory in animals, psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1453–1465.PubMedCrossRef
Zurück zum Zitat Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774–776.PubMedCrossRef Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774–776.PubMedCrossRef
Zurück zum Zitat Nakagawa, T., Tsuchida, A., Itakura, Y., Nonomura, T., Ono, M., Hirota, F., et al. (2000). Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes, 49, 436–444.PubMedCrossRef Nakagawa, T., Tsuchida, A., Itakura, Y., Nonomura, T., Ono, M., Hirota, F., et al. (2000). Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes, 49, 436–444.PubMedCrossRef
Zurück zum Zitat Nakazawa, K., McHugh, T. J., Wilson, M. A., & Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nature Reviews in the Neurosciences, 5, 361–372.PubMedCrossRef Nakazawa, K., McHugh, T. J., Wilson, M. A., & Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nature Reviews in the Neurosciences, 5, 361–372.PubMedCrossRef
Zurück zum Zitat Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMedCrossRef Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.PubMedCrossRef
Zurück zum Zitat Niedernhofer, L. J., Garinis, G. A., Raams, A., Lalai, A. S., Robinson, A. R., Appeldoorn, E., et al. (2006). A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 444, 1038–1043.PubMedCrossRef Niedernhofer, L. J., Garinis, G. A., Raams, A., Lalai, A. S., Robinson, A. R., Appeldoorn, E., et al. (2006). A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 444, 1038–1043.PubMedCrossRef
Zurück zum Zitat Nikonenko, I., Jourdain, P., Alberi, S., Toni, N., & Muller, D. (2002). Activity-induced changes of spine morphology. Hippocampus, 12, 585–591.PubMedCrossRef Nikonenko, I., Jourdain, P., Alberi, S., Toni, N., & Muller, D. (2002). Activity-induced changes of spine morphology. Hippocampus, 12, 585–591.PubMedCrossRef
Zurück zum Zitat Pasquier, F., Boulogne, A., Leys, D., & Fontaine, P. (2006). Diabetes mellitus and dementia. Diabetes & Metabolism, 32, 403–414.PubMedCrossRef Pasquier, F., Boulogne, A., Leys, D., & Fontaine, P. (2006). Diabetes mellitus and dementia. Diabetes & Metabolism, 32, 403–414.PubMedCrossRef
Zurück zum Zitat Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–5643.PubMedCrossRef Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–5643.PubMedCrossRef
Zurück zum Zitat Pysh, J. J., & Weiss, M. (1979). Exercise during development induces an increase in Purkinje cell dendritic tree size. Science, 206, 230–232.PubMedCrossRef Pysh, J. J., & Weiss, M. (1979). Exercise during development induces an increase in Purkinje cell dendritic tree size. Science, 206, 230–232.PubMedCrossRef
Zurück zum Zitat Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307.PubMedCrossRef Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307.PubMedCrossRef
Zurück zum Zitat Sapolsky, R. M. (1986). Glucocorticoid toxicity in the hippocampus, reversal by supplementation with brain fuels. Journal of Neuroscience, 6, 2240–2244.PubMed Sapolsky, R. M. (1986). Glucocorticoid toxicity in the hippocampus, reversal by supplementation with brain fuels. Journal of Neuroscience, 6, 2240–2244.PubMed
Zurück zum Zitat Sauvage, M. M., Fortin, N. J., Owens, C. B., Yonelinas, A. P., & Eichenbaum, H. (2008). Recognition memory, opposite effects of hippocampal damage on recollection and familiarity. Nature Neuroscience, 11, 16–18.PubMedCrossRef Sauvage, M. M., Fortin, N. J., Owens, C. B., Yonelinas, A. P., & Eichenbaum, H. (2008). Recognition memory, opposite effects of hippocampal damage on recollection and familiarity. Nature Neuroscience, 11, 16–18.PubMedCrossRef
Zurück zum Zitat Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429, 184–187.PubMedCrossRef Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429, 184–187.PubMedCrossRef
Zurück zum Zitat Sorra, K. E., & Harris, K. M. (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 10, 501–511.PubMedCrossRef Sorra, K. E., & Harris, K. M. (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 10, 501–511.PubMedCrossRef
Zurück zum Zitat Squire, L. R., Wixted, J. T., & Clark, R. E. (2007). Recognition memory and the medial temporal lobe, a new perspective. Nature Reviews in the Neurosciences, 8, 872–883.PubMedCrossRef Squire, L. R., Wixted, J. T., & Clark, R. E. (2007). Recognition memory and the medial temporal lobe, a new perspective. Nature Reviews in the Neurosciences, 8, 872–883.PubMedCrossRef
Zurück zum Zitat Stranahan, A. M., Arumugam, T. V., Cutler, R. G., Lee, K., Egan, J. M., & Mattson, M. P. (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neuroscience, 11(3), 309–317.PubMedCrossRef Stranahan, A. M., Arumugam, T. V., Cutler, R. G., Lee, K., Egan, J. M., & Mattson, M. P. (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neuroscience, 11(3), 309–317.PubMedCrossRef
Zurück zum Zitat Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.PubMedCrossRef Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.PubMedCrossRef
Zurück zum Zitat Stranahan, A. M., Khalil, D., & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17, 1017–1022.PubMedCrossRef Stranahan, A. M., Khalil, D., & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17, 1017–1022.PubMedCrossRef
Zurück zum Zitat Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.PubMedCrossRef Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.PubMedCrossRef
Zurück zum Zitat Tataranni, P. A. (2000). Mechanisms of weight gain in humans. European Review for Medical and Pharmacological Sciences, 4, 1–7.PubMed Tataranni, P. A. (2000). Mechanisms of weight gain in humans. European Review for Medical and Pharmacological Sciences, 4, 1–7.PubMed
Zurück zum Zitat Toni, N., Teng, E. M., Bushong, E. A., Aimone, J. B., Zhao, C., Consiglio, A., et al. (2007). Synapse formation on neurons born in the adult hippocampus. Nature Neuroscience, 10, 727–734.PubMedCrossRef Toni, N., Teng, E. M., Bushong, E. A., Aimone, J. B., Zhao, C., Consiglio, A., et al. (2007). Synapse formation on neurons born in the adult hippocampus. Nature Neuroscience, 10, 727–734.PubMedCrossRef
Zurück zum Zitat Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21, 1628–1634.PubMed Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21, 1628–1634.PubMed
Zurück zum Zitat Van der Borght, K., Havekes, R., Bos, T., Eggen, B. J., & Van der Zee, E. A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.PubMedCrossRef Van der Borght, K., Havekes, R., Bos, T., Eggen, B. J., & Van der Zee, E. A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.PubMedCrossRef
Zurück zum Zitat van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMedCrossRef van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.PubMedCrossRef
Zurück zum Zitat van Praag, H., Kempermann, G., & Gage, F. H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.PubMedCrossRef van Praag, H., Kempermann, G., & Gage, F. H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.PubMedCrossRef
Zurück zum Zitat van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.PubMedCrossRef van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.PubMedCrossRef
Zurück zum Zitat Wang, G. J., Yang, J., Volkow, N. D., Telang, F., Ma, Y., Zhu, W., et al. (2006). Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15641–15645.PubMedCrossRef Wang, G. J., Yang, J., Volkow, N. D., Telang, F., Ma, Y., Zhu, W., et al. (2006). Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15641–15645.PubMedCrossRef
Zurück zum Zitat Watanabe, Y., Gould, E., & McEwen, B. S. (1992). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research, 588, 341–345.PubMedCrossRef Watanabe, Y., Gould, E., & McEwen, B. S. (1992). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research, 588, 341–345.PubMedCrossRef
Zurück zum Zitat Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., et al. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60(12), 1314–1323.PubMedCrossRef Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., et al. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60(12), 1314–1323.PubMedCrossRef
Zurück zum Zitat Yeo, G. S., Connie Hung, C. C., Rochford, J., Keogh, J., Gray, J., Sivaramakrishnan, S., et al. (2004). A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neuroscience, 7, 1187–1189.PubMedCrossRef Yeo, G. S., Connie Hung, C. C., Rochford, J., Keogh, J., Gray, J., Sivaramakrishnan, S., et al. (2004). A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neuroscience, 7, 1187–1189.PubMedCrossRef
Zurück zum Zitat Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neuroscience, 24, 1071–1089.PubMedCrossRef Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neuroscience, 24, 1071–1089.PubMedCrossRef
Zurück zum Zitat Zhang, W. J., Tan, Y. F., Yue, J. T., Vranic, M., & Wojtowicz, J. M. (2008). Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurologica Scandinavica, 117, 205–210.PubMedCrossRef Zhang, W. J., Tan, Y. F., Yue, J. T., Vranic, M., & Wojtowicz, J. M. (2008). Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurologica Scandinavica, 117, 205–210.PubMedCrossRef
Zurück zum Zitat Zhao, C., Teng, E. M., Summers, R. G., Jr., Ming, G. L., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal of Neuroscience, 26, 3–11.PubMedCrossRef Zhao, C., Teng, E. M., Summers, R. G., Jr., Ming, G. L., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal of Neuroscience, 26, 3–11.PubMedCrossRef
Zurück zum Zitat Zhou, Q., Homma, K. J., & Poo, M. M. (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron, 44, 749–757.PubMedCrossRef Zhou, Q., Homma, K. J., & Poo, M. M. (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron, 44, 749–757.PubMedCrossRef
Metadaten
Titel
Impact of Energy Intake and Expenditure on Neuronal Plasticity
verfasst von
Alexis M. Stranahan
Mark P. Mattson
Publikationsdatum
01.12.2008
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 4/2008
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-008-8043-0

Weitere Artikel der Ausgabe 4/2008

NeuroMolecular Medicine 4/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.