Skip to main content
Erschienen in: Radiological Physics and Technology 3/2019

05.08.2019 | Silicone

Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth–silicon shields in diagnostic radiology

verfasst von: Reza Malekzadeh, Parinaz Mehnati, Mohammad Yousefi Sooteh, Asghar Mesbahi

Erschienen in: Radiological Physics and Technology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Recent studies have shown that the particle size of the shielding material and photon energy has significant effects on the efficiency of radiation-shielding materials. The purpose of the current study was to investigate the shielding properties of the bismuth–silicon (Bi–Si) composite containing varying percentages of micro- and nano-sized Bi particles for low-energy X-rays. Radiation composite shields composed of nano- and micro-sized Bi particles in Si-based matrix were constructed. The mass attenuation coefficients of the designed shields were experimentally assessed for diagnostic radiology energy range. In addition, the mass attenuation coefficients of the composite were comprehensively investigated using the MCNPX Monte Carlo (MC) code and XCOM. The X-ray attenuation for two different micro-sized Bi composites of radii of 50 µm and 0.50 µm showed enhancement in the range of 37–79% and 5–24%, respectively, for mono-energy photons (60–150 keV). Furthermore, the experimental and MC results indicated that nano-structured composites had higher photon attenuation properties (approximately 11–18%) than those of micro-sized samples for poly-energy X-ray photons. The amount of radiation attenuation for lower energies was more than that of higher energies. Thus, it was found that the shielding properties of composites were considerably strengthened by adding Bi nano-particles for lower energy photons.
Literatur
1.
Zurück zum Zitat de Gonzalez AB, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–51.CrossRef de Gonzalez AB, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–51.CrossRef
2.
Zurück zum Zitat Mehnati P, Amirnia A, Jabbari N. Estimating cancer induction risk from abdominopelvic scanning with 6-and 16-slice computed tomography. IJRB. 2017;93(4):416–25.PubMed Mehnati P, Amirnia A, Jabbari N. Estimating cancer induction risk from abdominopelvic scanning with 6-and 16-slice computed tomography. IJRB. 2017;93(4):416–25.PubMed
3.
Zurück zum Zitat Gaikwad D, Obaid SS, Sayyed M, Bhosale R, Awasarmol V, Kumar A, et al. Comparative study of gamma ray shielding competence of WO3–TeO2–PbO glass system to different glasses and concretes. Mater Chem Phys. 2018;213:508–17.CrossRef Gaikwad D, Obaid SS, Sayyed M, Bhosale R, Awasarmol V, Kumar A, et al. Comparative study of gamma ray shielding competence of WO3–TeO2–PbO glass system to different glasses and concretes. Mater Chem Phys. 2018;213:508–17.CrossRef
4.
Zurück zum Zitat Tekin HO, Singh V, Manici T. Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Appl Radiat Isot. 2017;121:122–5.CrossRefPubMed Tekin HO, Singh V, Manici T. Effects of micro-sized and nano-sized WO3 on mass attenuation coefficients of concrete by using MCNPX code. Appl Radiat Isot. 2017;121:122–5.CrossRefPubMed
5.
Zurück zum Zitat Kim J, Seo D, Lee BC, Seo YS, Miller WH. Nano-W dispersed gamma radiation shielding materials. Adv Eng Mater. 2014;16(9):1083–9.CrossRef Kim J, Seo D, Lee BC, Seo YS, Miller WH. Nano-W dispersed gamma radiation shielding materials. Adv Eng Mater. 2014;16(9):1083–9.CrossRef
6.
Zurück zum Zitat Mehnati P, Yousefi Sooteh M, Malekzadeh R, Divband B. Synthesis and characterization of nano Bi2O3 for radiology shield. Nanomed J. 2018;5(4):222–6. Mehnati P, Yousefi Sooteh M, Malekzadeh R, Divband B. Synthesis and characterization of nano Bi2O3 for radiology shield. Nanomed J. 2018;5(4):222–6.
7.
Zurück zum Zitat Malekie S, Hajiloo N. Comparative study of micro and nano size WO3/E44 epoxy composite as gamma radiation shielding using MCNP and experiment. Chin Phys Lett. 2017;34(10):108102.CrossRef Malekie S, Hajiloo N. Comparative study of micro and nano size WO3/E44 epoxy composite as gamma radiation shielding using MCNP and experiment. Chin Phys Lett. 2017;34(10):108102.CrossRef
8.
Zurück zum Zitat Nambiar S, Osei EK, Yeow JT. Polymer nanocomposite-based shielding against diagnostic X-rays. J App Polym Sci. 2013;127(6):4939–46.CrossRef Nambiar S, Osei EK, Yeow JT. Polymer nanocomposite-based shielding against diagnostic X-rays. J App Polym Sci. 2013;127(6):4939–46.CrossRef
9.
Zurück zum Zitat Verdipoor K, Alemi A, Mesbahi A. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding. Radiat Phys Chem. 2018;147:85–90.CrossRef Verdipoor K, Alemi A, Mesbahi A. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding. Radiat Phys Chem. 2018;147:85–90.CrossRef
10.
Zurück zum Zitat Aghaz A, Faghihi R, Mortazavi S, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and nano WO3 in diagnostic X-ray energy range. IJRR. 2016;14(2):127.CrossRef Aghaz A, Faghihi R, Mortazavi S, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and nano WO3 in diagnostic X-ray energy range. IJRR. 2016;14(2):127.CrossRef
11.
Zurück zum Zitat Botelho M, Künzel R, Okuno E, Levenhagen RS, Basegio T, Bergmann CP. X-ray transmission through nanostructured and microstructured CuO materials. App Radiat Isot. 2011;69(2):527–30.CrossRef Botelho M, Künzel R, Okuno E, Levenhagen RS, Basegio T, Bergmann CP. X-ray transmission through nanostructured and microstructured CuO materials. App Radiat Isot. 2011;69(2):527–30.CrossRef
12.
Zurück zum Zitat Rawal SP. Metal-matrix composites for space applications. JOM. 2001;53(4):14–7.CrossRef Rawal SP. Metal-matrix composites for space applications. JOM. 2001;53(4):14–7.CrossRef
13.
Zurück zum Zitat Wagatsuma K, Oda K, Miwa K, Inaji M, Sakata M, Toyohara J, Ishiwata J, Sasaki M, Ishii K. Effects of a novel tungsten-impregnated rubber neck shield on the quality of cerebral images acquired using 15O-labeled gas. Radiol Phys Technol. 2017;10(4):422–30.CrossRefPubMed Wagatsuma K, Oda K, Miwa K, Inaji M, Sakata M, Toyohara J, Ishiwata J, Sasaki M, Ishii K. Effects of a novel tungsten-impregnated rubber neck shield on the quality of cerebral images acquired using 15O-labeled gas. Radiol Phys Technol. 2017;10(4):422–30.CrossRefPubMed
14.
Zurück zum Zitat Mehnati P, Malekzadeh R, Sooteh MY. Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol. 2019;12(1):6–25.CrossRefPubMed Mehnati P, Malekzadeh R, Sooteh MY. Use of bismuth shield for protection of superficial radiosensitive organs in patients undergoing computed tomography: a literature review and meta-analysis. Radiol Phys Technol. 2019;12(1):6–25.CrossRefPubMed
15.
Zurück zum Zitat Mehnati P, Sooteh YM, Malekzadeh R, Divband B, Refahi S. Breast conservation from radiation damage by using nano bismuth shields in chest CT scan. Crescent J Med Biol Sci. 2019;6(1):46–50. Mehnati P, Sooteh YM, Malekzadeh R, Divband B, Refahi S. Breast conservation from radiation damage by using nano bismuth shields in chest CT scan. Crescent J Med Biol Sci. 2019;6(1):46–50.
16.
Zurück zum Zitat Mehnati P, Malekzadeh R, Sooteh MY, Refahi S. Assessment of the efficiency of new bismuth composite shields in radiation dose decline to breast during chest CT. Egypt J Radiol Nucl Med. 2018;49(4):1187–9.CrossRef Mehnati P, Malekzadeh R, Sooteh MY, Refahi S. Assessment of the efficiency of new bismuth composite shields in radiation dose decline to breast during chest CT. Egypt J Radiol Nucl Med. 2018;49(4):1187–9.CrossRef
17.
Zurück zum Zitat Mesbahi A, Ghiasi H. Shielding properties of the ordinary concrete loaded with micro-and nano-particles against neutron and gamma radiations. App Radiat Isot. 2018;136:27–31.CrossRef Mesbahi A, Ghiasi H. Shielding properties of the ordinary concrete loaded with micro-and nano-particles against neutron and gamma radiations. App Radiat Isot. 2018;136:27–31.CrossRef
18.
Zurück zum Zitat Mahmoud ME, El-Khatib AM, Badawi MS, Rashed AR, El-Sharkawy RM, Thabet AA. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat Phys Chem. 2018;145:160–73.CrossRef Mahmoud ME, El-Khatib AM, Badawi MS, Rashed AR, El-Sharkawy RM, Thabet AA. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat Phys Chem. 2018;145:160–73.CrossRef
19.
Zurück zum Zitat Tekin H, Sayyed M, Issa SA. Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat Phys Chem. 2018;150:95–100.CrossRef Tekin H, Sayyed M, Issa SA. Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat Phys Chem. 2018;150:95–100.CrossRef
20.
Zurück zum Zitat Li R, Gu Y, Wang Y, Yang Z, Li M, Zhang Z. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater Res Express. 2017;4(3):035035.CrossRef Li R, Gu Y, Wang Y, Yang Z, Li M, Zhang Z. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater Res Express. 2017;4(3):035035.CrossRef
21.
Zurück zum Zitat Zhou D, Zhang Q-P, Zheng J, Wu Y, Zhao Y, Zhou Y-L. Co-shielding of neutron and γ-ray with bismuth borate nanoparticles fabricated via a facile sol-gel method. Inorgan Chem Commun. 2017;77:55–8.CrossRef Zhou D, Zhang Q-P, Zheng J, Wu Y, Zhao Y, Zhou Y-L. Co-shielding of neutron and γ-ray with bismuth borate nanoparticles fabricated via a facile sol-gel method. Inorgan Chem Commun. 2017;77:55–8.CrossRef
22.
Zurück zum Zitat Hayati H, Mesbahi A, Nazarpoor M. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purpose. Radiol Phys Technol. 2016;9(1):37–43.CrossRefPubMed Hayati H, Mesbahi A, Nazarpoor M. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purpose. Radiol Phys Technol. 2016;9(1):37–43.CrossRefPubMed
23.
Zurück zum Zitat Mesbahi A, Jamali F. Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. BioImpacts. 2013;3(1):29.PubMed Mesbahi A, Jamali F. Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. BioImpacts. 2013;3(1):29.PubMed
24.
Zurück zum Zitat Mehnati P, Arash M, Akhlaghi P. Bismuth–silicon and bismuth–polyurethane composite shields for breast protection in chest computed tomography examinations. J Med Phys. 2018;43(1):61.PubMedPubMedCentral Mehnati P, Arash M, Akhlaghi P. Bismuth–silicon and bismuth–polyurethane composite shields for breast protection in chest computed tomography examinations. J Med Phys. 2018;43(1):61.PubMedPubMedCentral
25.
Zurück zum Zitat Bjärngard BE, Shackford H. Attenuation in high-energy X-ray beams. Med Phys. 1994;21(7):1069–73.CrossRefPubMed Bjärngard BE, Shackford H. Attenuation in high-energy X-ray beams. Med Phys. 1994;21(7):1069–73.CrossRefPubMed
26.
Zurück zum Zitat Mesbahi A, Alizadeh G, Seyed-Oskoee G, Azarpeyvand A-A. A new barite–colemanite concrete with lower neutron production in radiation therapy bunkers. Ann Nucl Energy. 2013;51:107–11.CrossRef Mesbahi A, Alizadeh G, Seyed-Oskoee G, Azarpeyvand A-A. A new barite–colemanite concrete with lower neutron production in radiation therapy bunkers. Ann Nucl Energy. 2013;51:107–11.CrossRef
27.
Zurück zum Zitat Poludniowski G, Landry G, DeBlois F, Evans P, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes. Phys Med Biol. 2009;54(19):N433.CrossRefPubMed Poludniowski G, Landry G, DeBlois F, Evans P, Verhaegen F. SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes. Phys Med Biol. 2009;54(19):N433.CrossRefPubMed
28.
Zurück zum Zitat Shirmardi S, Singh V, Medhat M, Adeli R, Saniei E. MCNP modeling of attenuation coefficients of steel, red brass, pearl and beryl in comparison with experimental and XCOM data. J Nucl Energy Sci Power Gener Technol. 2016;5:2. Shirmardi S, Singh V, Medhat M, Adeli R, Saniei E. MCNP modeling of attenuation coefficients of steel, red brass, pearl and beryl in comparison with experimental and XCOM data. J Nucl Energy Sci Power Gener Technol. 2016;5:2.
29.
Zurück zum Zitat Dong M, Sayyed M, Lakshminarayana G, Ersundu MÇ, Ersundu A, Nayar P, et al. Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. JNCS. 2017;468:12–6. Dong M, Sayyed M, Lakshminarayana G, Ersundu MÇ, Ersundu A, Nayar P, et al. Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code. JNCS. 2017;468:12–6.
30.
Zurück zum Zitat Yu D, Shu-Quan C, Hong-Xu Z, Chao R, Bin K, Ming-Zhu D, et al. Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chin Phys Lett. 2012;29(10):108102.CrossRef Yu D, Shu-Quan C, Hong-Xu Z, Chao R, Bin K, Ming-Zhu D, et al. Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chin Phys Lett. 2012;29(10):108102.CrossRef
Metadaten
Titel
Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth–silicon shields in diagnostic radiology
verfasst von
Reza Malekzadeh
Parinaz Mehnati
Mohammad Yousefi Sooteh
Asghar Mesbahi
Publikationsdatum
05.08.2019
Verlag
Springer Singapore
Erschienen in
Radiological Physics and Technology / Ausgabe 3/2019
Print ISSN: 1865-0333
Elektronische ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-019-00529-3

Weitere Artikel der Ausgabe 3/2019

Radiological Physics and Technology 3/2019 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.