Skip to main content
Erschienen in: European Radiology 11/2021

23.04.2021 | Oncology

Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques

verfasst von: Girish Bathla, Sarv Priya, Yanan Liu, Caitlin Ward, Nam H. Le, Neetu Soni, Ravishankar Pillenahalli Maheshwarappa, Varun Monga, Honghai Zhang, Milan Sonka

Erschienen in: European Radiology | Ausgabe 11/2021

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Despite the robust diagnostic performance of MRI-based radiomic features for differentiating between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) reported on prior studies, the best sequence or a combination of sequences and model performance across various machine learning pipelines remain undefined. Herein, we compare the diagnostic performance of multiple radiomics-based models to differentiate GBM from PCNSL.

Methods

Our retrospective study included 94 patients (34 with PCNSL and 60 with GBM). Model performance was assessed using various MRI sequences across 45 possible model and feature selection combinations for nine different sequence permutations. Predictive performance was assessed using fivefold repeated cross-validation with five repeats. The best and worst performing models were compared to assess differences in performance.

Results

The predictive performance, both using individual and a combination of sequences, was fairly robust across multiple top performing models (AUC: 0.961–0.977) but did show considerable variation between the best and worst performing models. The top performing individual sequences had comparable performance to multiparametric models. The best prediction model in our study used a combination of ADC, FLAIR, and T1-CE achieving the highest AUC of 0.977, while the second ranked model used T1-CE and ADC, achieving a cross-validated AUC of 0.975.

Conclusion

Radiomics-based predictive accuracy can vary considerably, based on the model and feature selection methods as well as the combination of sequences used. Also, models derived from limited sequences show performance comparable to those derived from all five sequences.

Key Points

Radiomics-based diagnostic performance of various machine learning models for differentiating glioblastoma and PCNSL varies considerably.
ML models using limited or multiple MRI sequences can provide comparable performance, based on the chosen model.
Embedded feature selection models perform better than models using a priori feature reduction.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. AJNR Am J Neuroradiol 38(6):1145–1150 Alcaide-Leon P, Dufort P, Geraldo AF et al (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. AJNR Am J Neuroradiol 38(6):1145–1150
2.
Zurück zum Zitat Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol 21(Suppl 5):v1–v100CrossRef Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol 21(Suppl 5):v1–v100CrossRef
3.
Zurück zum Zitat Chen Y, Li Z, Wu G et al (2018) Primary central nervous system lymphoma and glioblastoma differentiation based on conventional magnetic resonance imaging by high-throughput SIFT features. Int J Neurosci 128(7):608–618CrossRef Chen Y, Li Z, Wu G et al (2018) Primary central nervous system lymphoma and glioblastoma differentiation based on conventional magnetic resonance imaging by high-throughput SIFT features. Int J Neurosci 128(7):608–618CrossRef
4.
Zurück zum Zitat Bathla G, Hegde A (2016) Lymphomatous involvement of the central nervous system. Clin Radiol 71(6):602–609CrossRef Bathla G, Hegde A (2016) Lymphomatous involvement of the central nervous system. Clin Radiol 71(6):602–609CrossRef
5.
Zurück zum Zitat Yang Z, Feng P, Wen T, Wan M, Hong X (2017) Differentiation of glioblastoma and lymphoma using feature extraction and support vector machine. CNS Neurol Disord Drug Targets 16(2):160–168CrossRef Yang Z, Feng P, Wen T, Wan M, Hong X (2017) Differentiation of glioblastoma and lymphoma using feature extraction and support vector machine. CNS Neurol Disord Drug Targets 16(2):160–168CrossRef
6.
Zurück zum Zitat Choi YS, Lee HJ, Ahn SS et al (2017) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient. Eur Radiol 27(4):1344–1351CrossRef Choi YS, Lee HJ, Ahn SS et al (2017) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using the initial area under the curve derived from dynamic contrast-enhanced MR and the apparent diffusion coefficient. Eur Radiol 27(4):1344–1351CrossRef
7.
Zurück zum Zitat Kickingereder P, Sahm F, Wiestler B et al (2014) Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation. AJNR Am J Neuroradiol 35(8):1503–1508CrossRef Kickingereder P, Sahm F, Wiestler B et al (2014) Evaluation of microvascular permeability with dynamic contrast-enhanced MRI for the differentiation of primary CNS lymphoma and glioblastoma: radiologic-pathologic correlation. AJNR Am J Neuroradiol 35(8):1503–1508CrossRef
8.
Zurück zum Zitat Kickingereder P, Wiestler B, Sahm F et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272(3):843–850CrossRef Kickingereder P, Wiestler B, Sahm F et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272(3):843–850CrossRef
9.
Zurück zum Zitat Nakajima S, Okada T, Yamamoto A et al (2015) Differentiation between primary central nervous system lymphoma and glioblastoma: a comparative study of parameters derived from dynamic susceptibility contrast-enhanced perfusion-weighted MRI. Clin Radiol 70(12):1393–1399CrossRef Nakajima S, Okada T, Yamamoto A et al (2015) Differentiation between primary central nervous system lymphoma and glioblastoma: a comparative study of parameters derived from dynamic susceptibility contrast-enhanced perfusion-weighted MRI. Clin Radiol 70(12):1393–1399CrossRef
10.
Zurück zum Zitat Toh CH, Castillo M, Wong AM et al (2008) Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am J Neuroradiol 29(3):471–475CrossRef Toh CH, Castillo M, Wong AM et al (2008) Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am J Neuroradiol 29(3):471–475CrossRef
11.
Zurück zum Zitat Kang D, Park JE, Kim YH et al (2018) Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol 20(9):1251–1261CrossRef Kang D, Park JE, Kim YH et al (2018) Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation. Neuro Oncol 20(9):1251–1261CrossRef
12.
Zurück zum Zitat Kim Y, Cho HH, Kim ST, Park H, Nam D, Kong DS (2018) Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Neuroradiology 60(12):1297–1305CrossRef Kim Y, Cho HH, Kim ST, Park H, Nam D, Kong DS (2018) Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI. Neuroradiology 60(12):1297–1305CrossRef
13.
Zurück zum Zitat Kunimatsu A, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O (2018) Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci 17(1):50–57CrossRef Kunimatsu A, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O (2018) Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci 17(1):50–57CrossRef
14.
Zurück zum Zitat Kunimatsu A, Kunimatsu N, Yasaka K et al (2019) Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma. Magn Reson Med Sci 18(1):44–52CrossRef Kunimatsu A, Kunimatsu N, Yasaka K et al (2019) Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma. Magn Reson Med Sci 18(1):44–52CrossRef
15.
Zurück zum Zitat Liu S, Fan X, Zhang C et al (2019) MR imaging based fractal analysis for differentiating primary CNS lymphoma and glioblastoma. Eur Radiol 29(3):1348–1354CrossRef Liu S, Fan X, Zhang C et al (2019) MR imaging based fractal analysis for differentiating primary CNS lymphoma and glioblastoma. Eur Radiol 29(3):1348–1354CrossRef
16.
Zurück zum Zitat Nakagawa M, Nakaura T, Namimoto T et al (2018) Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma. Eur J Radiol 108:147–154CrossRef Nakagawa M, Nakaura T, Namimoto T et al (2018) Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma. Eur J Radiol 108:147–154CrossRef
17.
Zurück zum Zitat Suh HB, Choi YS, Bae S et al (2018) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol 28(9):3832–3839CrossRef Suh HB, Choi YS, Bae S et al (2018) Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach. Eur Radiol 28(9):3832–3839CrossRef
18.
Zurück zum Zitat Wang BT, Liu MX, Chen ZY (2019) Differential diagnostic value of texture feature analysis of magnetic resonance T2 weighted imaging between glioblastoma and primary central neural system lymphoma. Chin Med Sci J 34(1):10–17CrossRef Wang BT, Liu MX, Chen ZY (2019) Differential diagnostic value of texture feature analysis of magnetic resonance T2 weighted imaging between glioblastoma and primary central neural system lymphoma. Chin Med Sci J 34(1):10–17CrossRef
19.
Zurück zum Zitat Wu G, Chen Y, Wang Y et al (2018) Sparse representation-based radiomics for the diagnosis of brain tumors. IEEE Trans Med Imaging 37(4):893–905CrossRef Wu G, Chen Y, Wang Y et al (2018) Sparse representation-based radiomics for the diagnosis of brain tumors. IEEE Trans Med Imaging 37(4):893–905CrossRef
20.
Zurück zum Zitat Xia W, Hu B, Li H et al (2020) Multiparametric-MRI-based radiomics model for differentiating primary central nervous system lymphoma from glioblastoma: development and cross-vendor validation. J Magn Reson Imaging 53(1):242–50CrossRef Xia W, Hu B, Li H et al (2020) Multiparametric-MRI-based radiomics model for differentiating primary central nervous system lymphoma from glioblastoma: development and cross-vendor validation. J Magn Reson Imaging 53(1):242–50CrossRef
21.
Zurück zum Zitat Xiao DD, Yan PF, Wang YX, Osman MS, Zhao HY (2018) Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis. Clin Neurol Neurosurg 173:84–90CrossRef Xiao DD, Yan PF, Wang YX, Osman MS, Zhao HY (2018) Glioblastoma and primary central nervous system lymphoma: preoperative differentiation by using MRI-based 3D texture analysis. Clin Neurol Neurosurg 173:84–90CrossRef
22.
Zurück zum Zitat Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS (2019) Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Sci Rep 9(1):5746CrossRef Yun J, Park JE, Lee H, Ham S, Kim N, Kim HS (2019) Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Sci Rep 9(1):5746CrossRef
23.
Zurück zum Zitat Wang H, Zhou Y, Li L, Hou W, Ma X, Tian R (2020) Current status and quality of radiomics studies in lymphoma: a systematic review. Eur Radiol 30:6228–40CrossRef Wang H, Zhou Y, Li L, Hou W, Ma X, Tian R (2020) Current status and quality of radiomics studies in lymphoma: a systematic review. Eur Radiol 30:6228–40CrossRef
24.
Zurück zum Zitat Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRef Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173CrossRef
25.
Zurück zum Zitat Avants BB, Tustison N, Song G (2009) Advanced normalization tools (ANTS). Insight J 2(365):1–35 Avants BB, Tustison N, Song G (2009) Advanced normalization tools (ANTS). Insight J 2(365):1–35
26.
Zurück zum Zitat Zhang H, Lee K, Chen Z, Kashyap S, Sonka M (2020) LOGISMOS-JEI: Segmentation using optimal graph search and just-enough interaction. In: Handbook of medical image computing and computer assisted intervention. Academic Press, Cambridge, p 249–272 Zhang H, Lee K, Chen Z, Kashyap S, Sonka M (2020) LOGISMOS-JEI: Segmentation using optimal graph search and just-enough interaction. In: Handbook of medical image computing and computer assisted intervention. Academic Press, Cambridge, p 249–272
27.
Zurück zum Zitat van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107CrossRef van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107CrossRef
28.
Zurück zum Zitat Kuhn M, Wickham H (2018) RStudio. recipes: Preprocessing Tools to Create Design Matrices Kuhn M, Wickham H (2018) RStudio. recipes: Preprocessing Tools to Create Design Matrices
29.
Zurück zum Zitat Team RC (2013) R: a language and environment for statistical computing Team RC (2013) R: a language and environment for statistical computing
30.
Zurück zum Zitat Smith BJ (2020) MachineShop: machine learning models and tools. R package version 2.5.0 Smith BJ (2020) MachineShop: machine learning models and tools. R package version 2.5.0
31.
Zurück zum Zitat Bergmeir CN, Benítez Sánchez JM (2012) Neural networks in R using the Stuttgart neural network simulator: RSNNS. American Statistical Association Bergmeir CN, Benítez Sánchez JM (2012) Neural networks in R using the Stuttgart neural network simulator: RSNNS. American Statistical Association
32.
Zurück zum Zitat Bouckaert RR, Frank E (2004) Evaluating the replicability of significance tests for comparing learning algorithms. In: Dai H, Srikant R, Zhang C (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2004. Lecture Notes in Computer Science, vol 3056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24775-3_3 Bouckaert RR, Frank E (2004) Evaluating the replicability of significance tests for comparing learning algorithms. In: Dai H, Srikant R, Zhang C (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2004. Lecture Notes in Computer Science, vol 3056. Springer, Berlin, Heidelberg. https://​doi.​org/​10.​1007/​978-3-540-24775-3_​3
33.
Zurück zum Zitat Nadeau C, Bengio Y (2003) Inference for the generalization error. Mach Learn 52(3):239–281CrossRef Nadeau C, Bengio Y (2003) Inference for the generalization error. Mach Learn 52(3):239–281CrossRef
34.
Zurück zum Zitat Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57(1):289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57(1):289–300
35.
Zurück zum Zitat Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762CrossRef Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762CrossRef
Metadaten
Titel
Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques
verfasst von
Girish Bathla
Sarv Priya
Yanan Liu
Caitlin Ward
Nam H. Le
Neetu Soni
Ravishankar Pillenahalli Maheshwarappa
Varun Monga
Honghai Zhang
Milan Sonka
Publikationsdatum
23.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 11/2021
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-07845-6

Weitere Artikel der Ausgabe 11/2021

European Radiology 11/2021 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.