Skip to main content
Erschienen in: Journal of Neurology 5/2021

05.01.2021 | Original Communication

Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use

verfasst von: Marlene Tahedl, Rangariroyashe H. Chipika, Jasmin Lope, Stacey Li Hi Shing, Orla Hardiman, Peter Bede

Erschienen in: Journal of Neurology | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Abstract

Introduction

The majority of imaging studies in ALS infer group-level imaging signatures from group comparisons, as opposed to estimating disease burden in individual patients. In a condition with considerable clinical heterogeneity, the characterisation of individual patterns of pathology is hugely relevant. In this study, we evaluate a strategy to track progressive cortical involvement in single patients by using subject-specific reference cohorts.

Methods

We have interrogated a multi-timepoint longitudinal dataset of 61 ALS patients to demonstrate the utility of estimating cortical disease burden and the expansion of cerebral atrophy over time. We contrast our strategy to the gold-standard approach to gauge the advantages and drawbacks of our method. We modelled the evolution of cortical integrity in a conditional growth model, in which we accounted for age, gender, disability, symptom duration, education and handedness. We hypothesised that the variance associated with demographic variables will be successfully eliminated in our approach.

Results

In our model, the only covariate which modulated the expansion of atrophy was motor disability as measured by the ALSFRS-r (t(153) = − 2.533, p = 0.0123). Using the standard approach, age also significantly influenced progression of CT change (t(153) = − 2.151, p = 0.033) demonstrating the validity and potential clinical utility of our approach.

Conclusion

Our strategy of estimating the extent of cortical atrophy in individual patients with ALS successfully corrects for demographic factors and captures relevant cortical changes associated with clinical disability. Our approach provides a framework to interpret single T1-weighted images in ALS and offers an opportunity to track cortical propagation patterns both at individual subject level and at cohort level.
Literatur
1.
Zurück zum Zitat Eisen, A., et al., Amyotrophic lateral sclerosis: a long preclinical period? J Neurol Neurosurg Psychiatry, 2014. Eisen, A., et al., Amyotrophic lateral sclerosis: a long preclinical period? J Neurol Neurosurg Psychiatry, 2014.
2.
Zurück zum Zitat Querin G et al (2019) Presymptomatic spinal cord pathology in c9orf72 mutation carriers: A longitudinal neuroimaging study. Ann Neurol 86(2):158–167PubMedCrossRef Querin G et al (2019) Presymptomatic spinal cord pathology in c9orf72 mutation carriers: A longitudinal neuroimaging study. Ann Neurol 86(2):158–167PubMedCrossRef
3.
Zurück zum Zitat Lulé, D.E., et al., Deficits in verbal fluency in presymptomatic C9orf72 mutation gene carriers-a developmental disorder. J Neurol Neurosurg Psychiatry, 2020. Lulé, D.E., et al., Deficits in verbal fluency in presymptomatic C9orf72 mutation gene carriers-a developmental disorder. J Neurol Neurosurg Psychiatry, 2020.
4.
Zurück zum Zitat Miller T et al (2020) Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 383(2):109–119PubMedCrossRef Miller T et al (2020) Phase 1–2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med 383(2):109–119PubMedCrossRef
5.
Zurück zum Zitat Mitsumoto H, Brooks BR, Silani V (2014) Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 13(11):1127–1138PubMedCrossRef Mitsumoto H, Brooks BR, Silani V (2014) Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 13(11):1127–1138PubMedCrossRef
6.
Zurück zum Zitat Chipika RH et al (2019) Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS. Front Neurol 10:229PubMedPubMedCentralCrossRef Chipika RH et al (2019) Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS. Front Neurol 10:229PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Schuster C et al (2015) Presymptomatic and longitudinal neuroimaging in neurodegeneration–from snapshots to motion picture: a systematic review. J Neurol Neurosurg Psychiatry 86(10):1089–1096PubMedCrossRef Schuster C et al (2015) Presymptomatic and longitudinal neuroimaging in neurodegeneration–from snapshots to motion picture: a systematic review. J Neurol Neurosurg Psychiatry 86(10):1089–1096PubMedCrossRef
8.
Zurück zum Zitat Proudfoot M, Bede P, Turner MR (2018) Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Front Neurol 9:1148PubMedCrossRef Proudfoot M, Bede P, Turner MR (2018) Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Front Neurol 9:1148PubMedCrossRef
9.
Zurück zum Zitat Schuster C, Hardiman O, Bede P (2016) Development of an Automated MRI-Based Diagnostic Protocol for Amyotrophic Lateral Sclerosis Using Disease-Specific Pathognomonic Features: A Quantitative Disease-State Classification Study. PLoS ONE 11(12):e0167331PubMedPubMedCentralCrossRef Schuster C, Hardiman O, Bede P (2016) Development of an Automated MRI-Based Diagnostic Protocol for Amyotrophic Lateral Sclerosis Using Disease-Specific Pathognomonic Features: A Quantitative Disease-State Classification Study. PLoS ONE 11(12):e0167331PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Chipika, R.H., et al., The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J Neurol, 2020. Chipika, R.H., et al., The presymptomatic phase of amyotrophic lateral sclerosis: are we merely scratching the surface? J Neurol, 2020.
12.
Zurück zum Zitat Floeter MK, Gendron TF (2018) Biomarkers for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Associated With Hexanucleotide Expansion Mutations in C9orf72. Front Neurol 9:1063PubMedPubMedCentralCrossRef Floeter MK, Gendron TF (2018) Biomarkers for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Associated With Hexanucleotide Expansion Mutations in C9orf72. Front Neurol 9:1063PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Blasco H et al (2018) A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS ONE 13(6):e0198116PubMedPubMedCentralCrossRef Blasco H et al (2018) A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS ONE 13(6):e0198116PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Omer T et al (2017) Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotroph Lateral Scler Frontotemporal Degener 18(7–8):611–623PubMedCrossRef Omer T et al (2017) Neuroimaging patterns along the ALS-FTD spectrum: a multiparametric imaging study. Amyotroph Lateral Scler Frontotemporal Degener 18(7–8):611–623PubMedCrossRef
15.
Zurück zum Zitat Bede P, Querin G, Pradat PF (2018) The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. Curr Opin Neurol 31(4):431–438PubMedCrossRef Bede P, Querin G, Pradat PF (2018) The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. Curr Opin Neurol 31(4):431–438PubMedCrossRef
16.
Zurück zum Zitat Menke, R.A.L., et al., The two-year progression of structural and functional cerebral MRI in amyotrophic lateral sclerosis. NeuroImage: Clinical, 2018. 17: p. 953–961. Menke, R.A.L., et al., The two-year progression of structural and functional cerebral MRI in amyotrophic lateral sclerosis. NeuroImage: Clinical, 2018. 17: p. 953–961.
17.
Zurück zum Zitat Trojsi, F., et al., Neurodegeneration of brain networks in the amyotrophic lateral sclerosis-frontotemporal lobar degeneration (ALS-FTLD) continuum: evidence from MRI and MEG studies. CNS Spectr, 2017: p. 1–10. Trojsi, F., et al., Neurodegeneration of brain networks in the amyotrophic lateral sclerosis-frontotemporal lobar degeneration (ALS-FTLD) continuum: evidence from MRI and MEG studies. CNS Spectr, 2017: p. 1–10.
18.
Zurück zum Zitat Trojsi, F., et al., Hippocampal connectivity in Amyotrophic Lateral Sclerosis (ALS): more than Papez circuit impairment. Brain Imaging Behav, 2020. Trojsi, F., et al., Hippocampal connectivity in Amyotrophic Lateral Sclerosis (ALS): more than Papez circuit impairment. Brain Imaging Behav, 2020.
19.
Zurück zum Zitat Bede P et al (2016) The selective anatomical vulnerability of ALS: “disease-defining” and “disease-defying” brain regions. Amyotroph Lateral Scler Frontotemporal Degener 17(7–8):561–570PubMedCrossRef Bede P et al (2016) The selective anatomical vulnerability of ALS: “disease-defining” and “disease-defying” brain regions. Amyotroph Lateral Scler Frontotemporal Degener 17(7–8):561–570PubMedCrossRef
20.
21.
Zurück zum Zitat Agosta F et al (2009) Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: A tensor based morphometry study. Amyotroph Lateral Scler 10(3):168–174PubMedCrossRef Agosta F et al (2009) Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: A tensor based morphometry study. Amyotroph Lateral Scler 10(3):168–174PubMedCrossRef
22.
Zurück zum Zitat Bede P, Hardiman O (2018) Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotroph Lateral Scler Frontotemporal Degener 19(3–4):232–241PubMedCrossRef Bede P, Hardiman O (2018) Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotroph Lateral Scler Frontotemporal Degener 19(3–4):232–241PubMedCrossRef
24.
Zurück zum Zitat Schuster C, Hardiman O, Bede P (2017) Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurol 17(1):73PubMedPubMedCentralCrossRef Schuster C, Hardiman O, Bede P (2017) Survival prediction in Amyotrophic lateral sclerosis based on MRI measures and clinical characteristics. BMC Neurol 17(1):73PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Welsh RC, Jelsone-Swain LM, Foerster BR (2013) The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Front Hum Neurosci 7:251PubMedPubMedCentralCrossRef Welsh RC, Jelsone-Swain LM, Foerster BR (2013) The utility of independent component analysis and machine learning in the identification of the amyotrophic lateral sclerosis diseased brain. Front Hum Neurosci 7:251PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Grollemund V et al (2019) Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, Pitfalls, and Future Directions. Front Neurosci 13:135PubMedPubMedCentralCrossRef Grollemund V et al (2019) Machine Learning in Amyotrophic Lateral Sclerosis: Achievements, Pitfalls, and Future Directions. Front Neurosci 13:135PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Querin G et al (2018) Multimodal spinal cord MRI offers accurate diagnostic classification in ALS. J Neurol Neurosurg Psychiatry 89(11):1220–1221PubMedCrossRef Querin G et al (2018) Multimodal spinal cord MRI offers accurate diagnostic classification in ALS. J Neurol Neurosurg Psychiatry 89(11):1220–1221PubMedCrossRef
28.
30.
Zurück zum Zitat Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4):1181–1196PubMedCrossRef Reuter M, Rosas HD, Fischl B (2010) Highly accurate inverse consistent registration: a robust approach. Neuroimage 53(4):1181–1196PubMedCrossRef
31.
Zurück zum Zitat van der Burgh HK et al (2020) Multimodal longitudinal study of structural brain involvement in amyotrophic lateral sclerosis. Neurology 94(24):e2592–e2604PubMedPubMedCentralCrossRef van der Burgh HK et al (2020) Multimodal longitudinal study of structural brain involvement in amyotrophic lateral sclerosis. Neurology 94(24):e2592–e2604PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Brooks BR et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299PubMedCrossRef Brooks BR et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1(5):293–299PubMedCrossRef
33.
Zurück zum Zitat Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I Segmentation and surface reconstruction. Neuroimage 9(2):179–194PubMedCrossRef Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I Segmentation and surface reconstruction. Neuroimage 9(2):179–194PubMedCrossRef
34.
Zurück zum Zitat Fischl, B., M.I. Sereno, and A.M. Dale, Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 1999. 9(2): p. 195–207. Fischl, B., M.I. Sereno, and A.M. Dale, Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 1999. 9(2): p. 195–207.
36.
Zurück zum Zitat Dickie EW et al (2019) Ciftify: A framework for surface-based analysis of legacy MR acquisitions. Neuroimage 197:818–826PubMedCrossRef Dickie EW et al (2019) Ciftify: A framework for surface-based analysis of legacy MR acquisitions. Neuroimage 197:818–826PubMedCrossRef
37.
Zurück zum Zitat Schaefer A et al (2018) Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex 28(9):3095–3114PubMedCrossRef Schaefer A et al (2018) Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex 28(9):3095–3114PubMedCrossRef
38.
Zurück zum Zitat Yeo BT et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165PubMedCrossRef Yeo BT et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165PubMedCrossRef
39.
Zurück zum Zitat McFarquhar M et al (2016) Multivariate and repeated measures (MRM): A new toolbox for dependent and multimodal group-level neuroimaging data. Neuroimage 132:373–389PubMedCrossRef McFarquhar M et al (2016) Multivariate and repeated measures (MRM): A new toolbox for dependent and multimodal group-level neuroimaging data. Neuroimage 132:373–389PubMedCrossRef
40.
Zurück zum Zitat Pinheiro, J., et al., nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1, 2016. R Core Team. Pinheiro, J., et al., nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1, 2016. R Core Team.
41.
Zurück zum Zitat Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974PubMedCrossRef Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38(4):963–974PubMedCrossRef
42.
Zurück zum Zitat Luders, E., A.W. Toga, and P.M. Thompson, Why size matters: Differences in brain volume account for apparent sex differences in callosal anatomy: The sexual dimorphism of the corpus callosum. Neuroimage, 2013. 84c: p. 820–824. Luders, E., A.W. Toga, and P.M. Thompson, Why size matters: Differences in brain volume account for apparent sex differences in callosal anatomy: The sexual dimorphism of the corpus callosum. Neuroimage, 2013. 84c: p. 820–824.
43.
Zurück zum Zitat Bede P et al (2014) Sexual dimorphism in ALS: exploring gender-specific neuroimaging signatures. Amyotroph Lateral Scler Frontotemporal Degener 15(3–4):235–243PubMedCrossRef Bede P et al (2014) Sexual dimorphism in ALS: exploring gender-specific neuroimaging signatures. Amyotroph Lateral Scler Frontotemporal Degener 15(3–4):235–243PubMedCrossRef
44.
Zurück zum Zitat Menzler K et al (2011) Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage 54(4):2557–2562PubMedCrossRef Menzler K et al (2011) Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage 54(4):2557–2562PubMedCrossRef
45.
Zurück zum Zitat Agosta F, Spinelli EG, Filippi M (2018) Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 18(5):395–406PubMedCrossRef Agosta F, Spinelli EG, Filippi M (2018) Neuroimaging in amyotrophic lateral sclerosis: current and emerging uses. Expert Rev Neurother 18(5):395–406PubMedCrossRef
46.
47.
Zurück zum Zitat Bede P et al (2019) Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. Neuroimage Clin 24:102054PubMedPubMedCentralCrossRef Bede P et al (2019) Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. Neuroimage Clin 24:102054PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Chipika RH et al (2020) “Switchboard” malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. Neuroimage Clin 27:102300PubMedPubMedCentralCrossRef Chipika RH et al (2020) “Switchboard” malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. Neuroimage Clin 27:102300PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Bede P et al (2020) Progressive brainstem pathology in motor neuron diseases: Imaging data from amyotrophic lateral sclerosis and primary lateral sclerosis. Data Brief 29:105229PubMedPubMedCentralCrossRef Bede P et al (2020) Progressive brainstem pathology in motor neuron diseases: Imaging data from amyotrophic lateral sclerosis and primary lateral sclerosis. Data Brief 29:105229PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Feron M et al (2018) Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J Neurol 265(9):2125–2136PubMedCrossRef Feron M et al (2018) Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J Neurol 265(9):2125–2136PubMedCrossRef
51.
Zurück zum Zitat Finegan E et al (2019) Primary lateral sclerosis: a distinct entity or part of the ALS spectrum? Amyotroph Lateral Scler Frontotemporal Degener 20(3–4):133–145PubMedCrossRef Finegan E et al (2019) Primary lateral sclerosis: a distinct entity or part of the ALS spectrum? Amyotroph Lateral Scler Frontotemporal Degener 20(3–4):133–145PubMedCrossRef
52.
Zurück zum Zitat Lebouteux MV et al (2014) Revisiting the spectrum of lower motor neuron diseases with snake eyes appearance on magnetic resonance imaging. Eur J Neurol 21(9):1233–1241PubMedCrossRef Lebouteux MV et al (2014) Revisiting the spectrum of lower motor neuron diseases with snake eyes appearance on magnetic resonance imaging. Eur J Neurol 21(9):1233–1241PubMedCrossRef
53.
54.
Zurück zum Zitat Christidi F et al (2020) Neuroimaging data indicate divergent mesial temporal lobe profiles in amyotrophic lateral sclerosis, Alzheimer’s disease and healthy aging. Data Brief 28:104991PubMedCrossRef Christidi F et al (2020) Neuroimaging data indicate divergent mesial temporal lobe profiles in amyotrophic lateral sclerosis, Alzheimer’s disease and healthy aging. Data Brief 28:104991PubMedCrossRef
55.
Zurück zum Zitat Abidi, M., et al., Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. Eur J Neurol, 2019. Abidi, M., et al., Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. Eur J Neurol, 2019.
57.
Zurück zum Zitat Hardiman, O., et al., Neurodegenerative Disorders: A Clinical Guide. 2016 ed. 2016, Springer Cham Heidelberg New York Dordrecht London© Springer International Publishing Switzerland 2016: Springer International Publishing. 1–336. Hardiman, O., et al., Neurodegenerative Disorders: A Clinical Guide. 2016 ed. 2016, Springer Cham Heidelberg New York Dordrecht London© Springer International Publishing Switzerland 2016: Springer International Publishing. 1–336.
58.
Zurück zum Zitat Foerster BR et al (2013) Diagnostic accuracy of diffusion tensor imaging in amyotrophic lateral sclerosis: a systematic review and individual patient data meta-analysis. Acad Radiol 20(9):1099–1106PubMedPubMedCentralCrossRef Foerster BR et al (2013) Diagnostic accuracy of diffusion tensor imaging in amyotrophic lateral sclerosis: a systematic review and individual patient data meta-analysis. Acad Radiol 20(9):1099–1106PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Bede P et al (2018) Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging Behav 12(6):1696–1707PubMedCrossRef Bede P et al (2018) Connectivity-based characterisation of subcortical grey matter pathology in frontotemporal dementia and ALS: a multimodal neuroimaging study. Brain Imaging Behav 12(6):1696–1707PubMedCrossRef
60.
Zurück zum Zitat Westeneng HJ et al (2016) Widespread structural brain involvement in ALS is not limited to the C9orf72 repeat expansion. J Neurol Neurosurg Psychiatry 87(12):1354–1360PubMedCrossRef Westeneng HJ et al (2016) Widespread structural brain involvement in ALS is not limited to the C9orf72 repeat expansion. J Neurol Neurosurg Psychiatry 87(12):1354–1360PubMedCrossRef
61.
Zurück zum Zitat Finegan E et al (2019) The clinical and radiological profile of primary lateral sclerosis: a population-based study. J Neurol 266(11):2718–2733PubMedCrossRef Finegan E et al (2019) The clinical and radiological profile of primary lateral sclerosis: a population-based study. J Neurol 266(11):2718–2733PubMedCrossRef
63.
Zurück zum Zitat Finegan E et al (2019) Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. Neuroimage Clin 24:102089PubMedPubMedCentralCrossRef Finegan E et al (2019) Widespread subcortical grey matter degeneration in primary lateral sclerosis: a multimodal imaging study with genetic profiling. Neuroimage Clin 24:102089PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Bede P et al (2017) Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns. Neuroimage Clin 15:653–658PubMedPubMedCentralCrossRef Bede P et al (2017) Virtual brain biopsies in amyotrophic lateral sclerosis: Diagnostic classification based on in vivo pathological patterns. Neuroimage Clin 15:653–658PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Grollemund V et al (2020) Development and validation of a 1-year survival prognosis estimation model for Amyotrophic Lateral Sclerosis using manifold learning algorithm UMAP. Sci Rep 10(1):13378PubMedPubMedCentralCrossRef Grollemund V et al (2020) Development and validation of a 1-year survival prognosis estimation model for Amyotrophic Lateral Sclerosis using manifold learning algorithm UMAP. Sci Rep 10(1):13378PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Agosta F et al (2010) MRI predictors of long-term evolution in amyotrophic lateral sclerosis. Eur J Neurosci 32(9):1490–1496PubMedCrossRef Agosta F et al (2010) MRI predictors of long-term evolution in amyotrophic lateral sclerosis. Eur J Neurosci 32(9):1490–1496PubMedCrossRef
67.
Zurück zum Zitat Westeneng, H.J., et al., Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol, 2018. Westeneng, H.J., et al., Prognosis for patients with amyotrophic lateral sclerosis: development and validation of a personalised prediction model. Lancet Neurol, 2018.
69.
Zurück zum Zitat Filippi M et al (1998) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 43(4):499–506PubMedCrossRef Filippi M et al (1998) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 43(4):499–506PubMedCrossRef
70.
Zurück zum Zitat Househam E, Swash M (2000) Diagnostic delay in amyotrophic lateral sclerosis: what scope for improvement? J Neurol Sci 180(1–2):76–81PubMedCrossRef Househam E, Swash M (2000) Diagnostic delay in amyotrophic lateral sclerosis: what scope for improvement? J Neurol Sci 180(1–2):76–81PubMedCrossRef
71.
Zurück zum Zitat Kraemer M, Buerger M, Berlit P (2010) Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 112(2):103–105PubMedCrossRef Kraemer M, Buerger M, Berlit P (2010) Diagnostic problems and delay of diagnosis in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 112(2):103–105PubMedCrossRef
72.
Zurück zum Zitat Zoccolella S et al (2006) Predictors of delay in the diagnosis and clinical trial entry of amyotrophic lateral sclerosis patients: a population-based study. J Neurol Sci 250(1–2):45–49PubMedCrossRef Zoccolella S et al (2006) Predictors of delay in the diagnosis and clinical trial entry of amyotrophic lateral sclerosis patients: a population-based study. J Neurol Sci 250(1–2):45–49PubMedCrossRef
73.
Zurück zum Zitat Elamin M et al (2017) Identifying behavioural changes in ALS: Validation of the Beaumont Behavioural Inventory (BBI). Amyotroph Lateral Scler Frontotemporal Degener 18(1–2):68–73PubMedCrossRef Elamin M et al (2017) Identifying behavioural changes in ALS: Validation of the Beaumont Behavioural Inventory (BBI). Amyotroph Lateral Scler Frontotemporal Degener 18(1–2):68–73PubMedCrossRef
74.
Zurück zum Zitat Cedarbaum, J.M., et al., The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci, 1999. 169(1–2): p. 13–21. Cedarbaum, J.M., et al., The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci, 1999. 169(1–2): p. 13–21.
75.
Zurück zum Zitat Burke T et al (2017) Visual encoding, consolidation, and retrieval in amyotrophic lateral sclerosis: executive function as a mediator, and predictor of performance. Amyotroph Lateral Scler Frontotemporal Degener 18(3–4):193–201PubMedCrossRef Burke T et al (2017) Visual encoding, consolidation, and retrieval in amyotrophic lateral sclerosis: executive function as a mediator, and predictor of performance. Amyotroph Lateral Scler Frontotemporal Degener 18(3–4):193–201PubMedCrossRef
76.
78.
Zurück zum Zitat Elamin M et al (2013) Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology 80(17):1590–1597PubMedCrossRef Elamin M et al (2013) Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology 80(17):1590–1597PubMedCrossRef
79.
Zurück zum Zitat Westeneng HJ et al (2015) Subcortical structures in amyotrophic lateral sclerosis. Neurobiol Aging 36(2):1075–1082PubMedCrossRef Westeneng HJ et al (2015) Subcortical structures in amyotrophic lateral sclerosis. Neurobiol Aging 36(2):1075–1082PubMedCrossRef
80.
Zurück zum Zitat Pradat PF, El Mendili MM (2014) Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. Biomed Res Int 2014:467560PubMedPubMedCentralCrossRef Pradat PF, El Mendili MM (2014) Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. Biomed Res Int 2014:467560PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Pradat P-F et al (2009) Extrapyramidal stiffness in patients with amyotrophic lateral sclerosis. Mov Disord 24(14):2143–2148PubMedCrossRef Pradat P-F et al (2009) Extrapyramidal stiffness in patients with amyotrophic lateral sclerosis. Mov Disord 24(14):2143–2148PubMedCrossRef
82.
Zurück zum Zitat Schuster C et al (2016) The segmental diffusivity profile of amyotrophic lateral sclerosis associated white matter degeneration. Eur J Neurol 23(8):1361–1371PubMedCrossRef Schuster C et al (2016) The segmental diffusivity profile of amyotrophic lateral sclerosis associated white matter degeneration. Eur J Neurol 23(8):1361–1371PubMedCrossRef
83.
Zurück zum Zitat Christidi F et al (2014) Uncinate fasciculus microstructure and verbal episodic memory in amyotrophic lateral sclerosis: a diffusion tensor imaging and neuropsychological study. Brain Imaging Behav 8(4):497–505PubMedCrossRef Christidi F et al (2014) Uncinate fasciculus microstructure and verbal episodic memory in amyotrophic lateral sclerosis: a diffusion tensor imaging and neuropsychological study. Brain Imaging Behav 8(4):497–505PubMedCrossRef
84.
Zurück zum Zitat Agosta F et al (2014) Intrahemispheric and interhemispheric structural network abnormalities in PLS and ALS. Hum Brain Mapp 35(4):1710–1722PubMedCrossRef Agosta F et al (2014) Intrahemispheric and interhemispheric structural network abnormalities in PLS and ALS. Hum Brain Mapp 35(4):1710–1722PubMedCrossRef
85.
Zurück zum Zitat Agosta F et al (2014) Resting state functional connectivity alterations in primary lateral sclerosis. Neurobiol Aging 35(4):916–925PubMedCrossRef Agosta F et al (2014) Resting state functional connectivity alterations in primary lateral sclerosis. Neurobiol Aging 35(4):916–925PubMedCrossRef
86.
Zurück zum Zitat Nasseroleslami B et al (2019) Characteristic Increases in EEG Connectivity Correlate With Changes of Structural MRI in Amyotrophic Lateral Sclerosis. Cereb Cortex 29(1):27–41PubMedCrossRef Nasseroleslami B et al (2019) Characteristic Increases in EEG Connectivity Correlate With Changes of Structural MRI in Amyotrophic Lateral Sclerosis. Cereb Cortex 29(1):27–41PubMedCrossRef
87.
Zurück zum Zitat Lule D et al (2010) Neuroimaging of multimodal sensory stimulation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 81(8):899–906PubMedCrossRef Lule D et al (2010) Neuroimaging of multimodal sensory stimulation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 81(8):899–906PubMedCrossRef
88.
Zurück zum Zitat Lule D et al (2007) Brain responses to emotional stimuli in patients with amyotrophic lateral sclerosis (ALS). J Neurol 254(4):519–527PubMedCrossRef Lule D et al (2007) Brain responses to emotional stimuli in patients with amyotrophic lateral sclerosis (ALS). J Neurol 254(4):519–527PubMedCrossRef
Metadaten
Titel
Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use
verfasst von
Marlene Tahedl
Rangariroyashe H. Chipika
Jasmin Lope
Stacey Li Hi Shing
Orla Hardiman
Peter Bede
Publikationsdatum
05.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 5/2021
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-020-10368-7

Weitere Artikel der Ausgabe 5/2021

Journal of Neurology 5/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.