Skip to main content
Erschienen in: Neurological Sciences 4/2013

01.04.2013 | Review Article

Progress and prospects in neurorehabilitation: clinical applications of stem cells and brain–computer interface for spinal cord lesions

verfasst von: Mariana Gongora, Caroline Peressutti, Sergio Machado, Silmar Teixeira, Bruna Velasques, Pedro Ribeiro

Erschienen in: Neurological Sciences | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Spinal cord injury (SCI) is a disease that affects millions of people worldwide, causing a temporary or permanent impairment of neuromotor functions. Mostly associated to traumatic lesions, but also to other forms of disease, the appropriate treatment is still unsure. In this review, several ongoing studies are presented that aim to provide methods of prevention that ensure quality of life, and rehabilitation trends to patients who suffer from this injury. Stem cell research, highlighted in this review, seeks to reduce damage caused to the tissue, as also provide spinal cord regeneration through the application of several types of stem cells. On the other hand, research using brain–computer interface (BCI) technology proposes the development of interfaces based on the interaction of neural networks with artificial tools to restore motor control and full mobility of the injured area. PubMed, MEDLINE and SciELO data basis analyses were performed to identify studies published from 2000 to date, which describe the link between SCI with stem cells and BCI technology.
Fußnoten
1
The Center for Neuroprosthetics at the École Polytechnique Fédérale de Lausanne (EPFL), in Switzerland, and the Laboratory of Dr. Gordon Cheng at the Technical University of Munich in Germany are the houses of the European headquarters of the WAP and the Latin American headquarters, the Brazilian National Institute of Brain–Machine Interface located in Natal, Brazil [51].
 
Literatur
1.
Zurück zum Zitat Bazley FA, All AH, Thakor NV, Maybhate A (2011) Plasticity associated changes in cortical somatosensory evoked potentials following spinal cord injury in rats. Conf Proc IEEE Eng Med Biol Soc 2011:2005–2008PubMed Bazley FA, All AH, Thakor NV, Maybhate A (2011) Plasticity associated changes in cortical somatosensory evoked potentials following spinal cord injury in rats. Conf Proc IEEE Eng Med Biol Soc 2011:2005–2008PubMed
2.
Zurück zum Zitat Musienko P, Heutschi J, Friedli L, Van den Brand R, Courtine G (2012) Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Exp Neurol 235(1):100–109PubMedCrossRef Musienko P, Heutschi J, Friedli L, Van den Brand R, Courtine G (2012) Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Exp Neurol 235(1):100–109PubMedCrossRef
3.
Zurück zum Zitat Sobani ZA, Quadri SA, Enam SA (2010) Stem cells for spinal cord regeneration: current status. Surg Neurol Int 1:93PubMedCrossRef Sobani ZA, Quadri SA, Enam SA (2010) Stem cells for spinal cord regeneration: current status. Surg Neurol Int 1:93PubMedCrossRef
4.
Zurück zum Zitat Gaspar MIFAS, Cliquet Junior A, Lima VMF, Abreu DCC (2008) Evaluation of ASIA and somatosensory evoked potential in individuals with paraplegia. Coluna 7(3):223–229 Gaspar MIFAS, Cliquet Junior A, Lima VMF, Abreu DCC (2008) Evaluation of ASIA and somatosensory evoked potential in individuals with paraplegia. Coluna 7(3):223–229
5.
Zurück zum Zitat Barros Filho TEP, Oliveira RP, Tsanaclis AM, Barros EMK, Cristante AF, Palma RM et al (2002) An experimental model for the transplantation of fetal central nervous system cells to the injured spinal cord in rats. Rev Hosp Clín Fac Med S Paulo 57(6):257–264PubMedCrossRef Barros Filho TEP, Oliveira RP, Tsanaclis AM, Barros EMK, Cristante AF, Palma RM et al (2002) An experimental model for the transplantation of fetal central nervous system cells to the injured spinal cord in rats. Rev Hosp Clín Fac Med S Paulo 57(6):257–264PubMedCrossRef
6.
Zurück zum Zitat Narazaki DK, de Barros Filho TEP, de Oliveira CRGCM, Cristante AF, Iutaka AS, Marcon R, Oliveira RP (2006) Spinal Cord regeneration: the action of neurotrophin-3 in spinal cord injury in rats. Clinics 61(5):453–460PubMedCrossRef Narazaki DK, de Barros Filho TEP, de Oliveira CRGCM, Cristante AF, Iutaka AS, Marcon R, Oliveira RP (2006) Spinal Cord regeneration: the action of neurotrophin-3 in spinal cord injury in rats. Clinics 61(5):453–460PubMedCrossRef
7.
Zurück zum Zitat Suminski AJ, Tkach DC, Hatsopoulos NG (2009) Exploiting multiple sensory modalities in brain–machine interfaces. Neural Netw 22:1224–1234PubMedCrossRef Suminski AJ, Tkach DC, Hatsopoulos NG (2009) Exploiting multiple sensory modalities in brain–machine interfaces. Neural Netw 22:1224–1234PubMedCrossRef
8.
Zurück zum Zitat Filli LB, Weinmann O, Schwab ME (2011) Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. Brain 134(8):2261–2273PubMedCrossRef Filli LB, Weinmann O, Schwab ME (2011) Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome. Brain 134(8):2261–2273PubMedCrossRef
9.
Zurück zum Zitat Choi Kyeong Bo, Lee Choon Dae, Chung Dai-Jin, Lee Sang-Ho (2009) Cervical disc herniation as a cause of Brown-Séquard syndrome. J Korean Neurosurg Soc 46(5):505–510PubMedCrossRef Choi Kyeong Bo, Lee Choon Dae, Chung Dai-Jin, Lee Sang-Ho (2009) Cervical disc herniation as a cause of Brown-Séquard syndrome. J Korean Neurosurg Soc 46(5):505–510PubMedCrossRef
10.
Zurück zum Zitat Ghosh A, Sydekum E, Florent Haiss F, Peduzzi S, Zörner B, Schneider R, Baltes C, Rudin M et al (2009) Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. J Neurosci 29(39):12210–12219PubMedCrossRef Ghosh A, Sydekum E, Florent Haiss F, Peduzzi S, Zörner B, Schneider R, Baltes C, Rudin M et al (2009) Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. J Neurosci 29(39):12210–12219PubMedCrossRef
11.
Zurück zum Zitat Thuret S, Moon LDF, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7(8):628–643PubMedCrossRef Thuret S, Moon LDF, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7(8):628–643PubMedCrossRef
12.
Zurück zum Zitat Neves MA, Mello MP, Antonioli R, Freitas MRG (2007) Functional and clinical scales in management of individuals with traumatic injuries of spinal cord. Rev Neurosci 15(3):234–239 Neves MA, Mello MP, Antonioli R, Freitas MRG (2007) Functional and clinical scales in management of individuals with traumatic injuries of spinal cord. Rev Neurosci 15(3):234–239
13.
Zurück zum Zitat Bydlowski SP, Debes AA, Duarte SA, Janz FL, Cavaglieri RC, Maselli LMF (2009) Células-tronco do líquido amniótico. Ver Brás Hematol Hemoter 31 suppl 11 (in Portuguese) Bydlowski SP, Debes AA, Duarte SA, Janz FL, Cavaglieri RC, Maselli LMF (2009) Células-tronco do líquido amniótico. Ver Brás Hematol Hemoter 31 suppl 11 (in Portuguese)
14.
Zurück zum Zitat Tewarie RSN, Hurtado A, Bartels RH, Grotenhuis A, Oudega M (2009) Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 32(2):105–114 Tewarie RSN, Hurtado A, Bartels RH, Grotenhuis A, Oudega M (2009) Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 32(2):105–114
15.
Zurück zum Zitat Rossi SL, Keirstead HS (2009) Stem cells and spinal cord regeneration. Curr Opin Biotech 20:552–562PubMedCrossRef Rossi SL, Keirstead HS (2009) Stem cells and spinal cord regeneration. Curr Opin Biotech 20:552–562PubMedCrossRef
16.
Zurück zum Zitat Jones R, Lebkowski J, McNiece I (2010) Stem Cells. Biol Blood Marrow Transplant 16(1 suppl):S115–S118PubMedCrossRef Jones R, Lebkowski J, McNiece I (2010) Stem Cells. Biol Blood Marrow Transplant 16(1 suppl):S115–S118PubMedCrossRef
17.
Zurück zum Zitat Bydlowski SP, Debes AA, Maselli LMF, Janz FL (2009) Características biológicas das células-tronco mesenquimais. Rev Bras Hematol Hemoter 31(1 suppl):25–35CrossRef Bydlowski SP, Debes AA, Maselli LMF, Janz FL (2009) Características biológicas das células-tronco mesenquimais. Rev Bras Hematol Hemoter 31(1 suppl):25–35CrossRef
18.
Zurück zum Zitat Ichim TE, Solano F, Lara F, Paris E, Ugalde F, Rodriguez JP et al (2010) Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int Arch Med 11(3):30CrossRef Ichim TE, Solano F, Lara F, Paris E, Ugalde F, Rodriguez JP et al (2010) Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report. Int Arch Med 11(3):30CrossRef
19.
Zurück zum Zitat Wright KT, Masri WE, Osman A, Chowdhury J, Johnson WEB (2011) Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 29:169–178PubMedCrossRef Wright KT, Masri WE, Osman A, Chowdhury J, Johnson WEB (2011) Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 29:169–178PubMedCrossRef
20.
Zurück zum Zitat Wu S, Suzuki Y, Ejiri Y, Noda T, Bai H, Kitada M et al (2003) Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 72:343–351PubMedCrossRef Wu S, Suzuki Y, Ejiri Y, Noda T, Bai H, Kitada M et al (2003) Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 72:343–351PubMedCrossRef
21.
Zurück zum Zitat Abdallah BM, Kassem M (2008) Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15(2):109–116PubMedCrossRef Abdallah BM, Kassem M (2008) Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther 15(2):109–116PubMedCrossRef
22.
Zurück zum Zitat Zietlow R, Lane EL, Dunnett SB, Rosser AE (2008) Human stem cells for CNS repair. Cell Tissue Res 331:301–322PubMedCrossRef Zietlow R, Lane EL, Dunnett SB, Rosser AE (2008) Human stem cells for CNS repair. Cell Tissue Res 331:301–322PubMedCrossRef
23.
Zurück zum Zitat Gögel S, Gubernator M, Minger SL (2011) Progress and prospects: stem cells and neurological diseases. Gene Ther 18:1–6PubMedCrossRef Gögel S, Gubernator M, Minger SL (2011) Progress and prospects: stem cells and neurological diseases. Gene Ther 18:1–6PubMedCrossRef
24.
Zurück zum Zitat Liverman CT, Altevogt M, Joy JE, Johnson RT (2005) Spinal cord injury: progress, promise, and priorities. The National Academies Press, Washington Liverman CT, Altevogt M, Joy JE, Johnson RT (2005) Spinal cord injury: progress, promise, and priorities. The National Academies Press, Washington
25.
Zurück zum Zitat Zhang YW, Denham J, Thies RS (2000) Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev 15:943–952CrossRef Zhang YW, Denham J, Thies RS (2000) Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev 15:943–952CrossRef
26.
Zurück zum Zitat Glazova M, Pak ES, Moretto J, Hollis S, Brewer KL, Murashov AK (2009) Pre-differentiated embryonic stem cells promote neuronal regeneration by cross-coupling of BDNF and IL-6 signaling pathways in the host tissue. J Neurotrauma 26(7):1029–1042PubMedCrossRef Glazova M, Pak ES, Moretto J, Hollis S, Brewer KL, Murashov AK (2009) Pre-differentiated embryonic stem cells promote neuronal regeneration by cross-coupling of BDNF and IL-6 signaling pathways in the host tissue. J Neurotrauma 26(7):1029–1042PubMedCrossRef
27.
Zurück zum Zitat Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K et al (2005) Human embryonic cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal injury. J Neurosci 25:4694–4705PubMedCrossRef Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K et al (2005) Human embryonic cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal injury. J Neurosci 25:4694–4705PubMedCrossRef
28.
Zurück zum Zitat Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead H (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396PubMedCrossRef Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead H (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396PubMedCrossRef
29.
Zurück zum Zitat Priest C, Davies A, Wirth E, Conta A, Polonskaya Y, Polonskowski J (2009) Preclinical development of oligodendrocyte progenitor cells derived from human embryonic stem cells for the treatment of spinal cord injury. Cell Transplant 18:231 Priest C, Davies A, Wirth E, Conta A, Polonskaya Y, Polonskowski J (2009) Preclinical development of oligodendrocyte progenitor cells derived from human embryonic stem cells for the treatment of spinal cord injury. Cell Transplant 18:231
30.
Zurück zum Zitat Rabinovich SS, Seledtsov VI, Poveschenko OV, Senuykov VV, Taraban VY, Yarochno VI et al (2003) Transplantation treatment of spinal cord injury patients. Biomed Pharmacother 57(9):428–433PubMedCrossRef Rabinovich SS, Seledtsov VI, Poveschenko OV, Senuykov VV, Taraban VY, Yarochno VI et al (2003) Transplantation treatment of spinal cord injury patients. Biomed Pharmacother 57(9):428–433PubMedCrossRef
31.
Zurück zum Zitat Yan J, Xu L, Welsh AM, Hatfield G, Hazel T, Johe K et al (2007) Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med. 4(2):e39PubMedCrossRef Yan J, Xu L, Welsh AM, Hatfield G, Hazel T, Johe K et al (2007) Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med. 4(2):e39PubMedCrossRef
32.
Zurück zum Zitat Salazar DL, Uchida N, Hamers FPT, Cummings BJ, Anderson AJ (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS ONE 5(8):e12272PubMedCrossRef Salazar DL, Uchida N, Hamers FPT, Cummings BJ, Anderson AJ (2010) Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS ONE 5(8):e12272PubMedCrossRef
33.
Zurück zum Zitat Féron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S et al (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128:2951–2960PubMedCrossRef Féron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S et al (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128:2951–2960PubMedCrossRef
34.
Zurück zum Zitat Huang H, Chen L, Wang H, Xiu B, Li B, Wang R et al (2003) Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J 116(10):1488–1491PubMed Huang H, Chen L, Wang H, Xiu B, Li B, Wang R et al (2003) Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J 116(10):1488–1491PubMed
35.
Zurück zum Zitat Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, Lazzeri G et al (2010) Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 24:10–22PubMedCrossRef Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, Lazzeri G et al (2010) Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 24:10–22PubMedCrossRef
36.
Zurück zum Zitat Cizková D, Rosocha J, Vanicky I, Jergova S, Cizek M (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26:1165–1178CrossRef Cizková D, Rosocha J, Vanicky I, Jergova S, Cizek M (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26:1165–1178CrossRef
37.
Zurück zum Zitat Ankeny DP, McTigue DM, Jakeman LB (2004) Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 190:17–31PubMedCrossRef Ankeny DP, McTigue DM, Jakeman LB (2004) Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 190:17–31PubMedCrossRef
38.
Zurück zum Zitat Moviglia GA, Viña RF, Brizuela JA, Saslavsky J, Vrsalovic F, Varela G et al (2006) Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy 8(3):202–209PubMedCrossRef Moviglia GA, Viña RF, Brizuela JA, Saslavsky J, Vrsalovic F, Varela G et al (2006) Combined protocol of cell therapy for chronic spinal cord injury. Report on the electrical and functional recovery of two patients. Cytotherapy 8(3):202–209PubMedCrossRef
39.
Zurück zum Zitat Lebedev MA, Tate AJ, Hanson TL, Li Z, O’Doherty JE, Winans JA et al (2011) Future developments in brain–machine interface research. Clinics 66(S1):25–32PubMedCrossRef Lebedev MA, Tate AJ, Hanson TL, Li Z, O’Doherty JE, Winans JA et al (2011) Future developments in brain–machine interface research. Clinics 66(S1):25–32PubMedCrossRef
40.
Zurück zum Zitat JdR Millán, Rupp R, Müller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M et al (2010) Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci. 4:161 JdR Millán, Rupp R, Müller-Putz GR, Murray-Smith R, Giugliemma C, Tangermann M et al (2010) Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci. 4:161
41.
Zurück zum Zitat Birbaumer N, Cohen LG (2007) Brain–computer interfaces: communication and restoration of movement in paralysis. J Physiol 579(3):621–636PubMedCrossRef Birbaumer N, Cohen LG (2007) Brain–computer interfaces: communication and restoration of movement in paralysis. J Physiol 579(3):621–636PubMedCrossRef
42.
Zurück zum Zitat Partil PG, Turner DA (2008) The development of brain–machine interface neuroprosthetic devices. Neurotherapeutic 5(1):137–146CrossRef Partil PG, Turner DA (2008) The development of brain–machine interface neuroprosthetic devices. Neurotherapeutic 5(1):137–146CrossRef
43.
Zurück zum Zitat Fagg AH, Hatsopoulos NG, de Lafuente V, Moxon KA, Nemati S, Rebesco JM et al (2007) Biomimetic brain machine interfaces for the control of movement. J Neurosci 27(44):11842–11846PubMedCrossRef Fagg AH, Hatsopoulos NG, de Lafuente V, Moxon KA, Nemati S, Rebesco JM et al (2007) Biomimetic brain machine interfaces for the control of movement. J Neurosci 27(44):11842–11846PubMedCrossRef
44.
Zurück zum Zitat Krepki R, Blankertz B, Curio G, Müller KR (2007) The Berlin Brain-Computer Interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimed Tools Appl Krepki R, Blankertz B, Curio G, Müller KR (2007) The Berlin Brain-Computer Interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimed Tools Appl
45.
Zurück zum Zitat Kreilinger A, Kaiser V, Breitwieser C, Williamson J, Neuper C, Müller-Putz GR (2011) Switching between manual control and brain–computer interface using long term and short term quality measures. Front Neurosci 5:147PubMed Kreilinger A, Kaiser V, Breitwieser C, Williamson J, Neuper C, Müller-Putz GR (2011) Switching between manual control and brain–computer interface using long term and short term quality measures. Front Neurosci 5:147PubMed
46.
Zurück zum Zitat Liao LD, Chen CY, Wang IJ, Chen SF, Li SY, Chen Bw et al (2012) Gaming control using a wearable and wireless EEG-based brain–computer interface device with novel dry foam-based sensors. J Neuroeng Rehabil 28(9):5CrossRef Liao LD, Chen CY, Wang IJ, Chen SF, Li SY, Chen Bw et al (2012) Gaming control using a wearable and wireless EEG-based brain–computer interface device with novel dry foam-based sensors. J Neuroeng Rehabil 28(9):5CrossRef
47.
Zurück zum Zitat Doud AJ, Lucas JP, Pisansky MT, He B (2011) Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain–computer interface. PLoS ONE 6(10):e26322PubMedCrossRef Doud AJ, Lucas JP, Pisansky MT, He B (2011) Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain–computer interface. PLoS ONE 6(10):e26322PubMedCrossRef
48.
Zurück zum Zitat Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain–machine interface. Curr Opin Neurobiol 14:720–726PubMedCrossRef Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain–machine interface. Curr Opin Neurobiol 14:720–726PubMedCrossRef
49.
Zurück zum Zitat Lebedev MA, Nicolelis MAL (2006) Brain–machine interfaces: past, present and future. Trends Neurosci 29(9):536–546PubMedCrossRef Lebedev MA, Nicolelis MAL (2006) Brain–machine interfaces: past, present and future. Trends Neurosci 29(9):536–546PubMedCrossRef
50.
Zurück zum Zitat Friehs GM, Zerris VA, Ojakangas CL, Fellows MR, Donoghue JP (2004) Brain–machine and brain–computer Interfaces. Stroke. 35[suppl I]:2702–2705 Friehs GM, Zerris VA, Ojakangas CL, Fellows MR, Donoghue JP (2004) Brain–machine and brain–computer Interfaces. Stroke. 35[suppl I]:2702–2705
51.
Zurück zum Zitat Nicolelis M (2011) Muito além do nosso eu: a nossa neurociência que une cérebros e maquinas—e como ela pode mudar nossas vidas. São Paulo, Companhia das Letras (in portuguese) Nicolelis M (2011) Muito além do nosso eu: a nossa neurociência que une cérebros e maquinas—e como ela pode mudar nossas vidas. São Paulo, Companhia das Letras (in portuguese)
52.
Zurück zum Zitat Mahmoudi B, Sanchez JC (2011) A symbiotic brain–machine interface through value-based decision making. PLoS ONE 6(3):e14760PubMedCrossRef Mahmoudi B, Sanchez JC (2011) A symbiotic brain–machine interface through value-based decision making. PLoS ONE 6(3):e14760PubMedCrossRef
53.
Zurück zum Zitat Scherberger H (2009) Neural control of motor prostheses. Curr Opin Neurobiol 19:1–5CrossRef Scherberger H (2009) Neural control of motor prostheses. Curr Opin Neurobiol 19:1–5CrossRef
54.
Zurück zum Zitat Wang W, Collinger JL, Perez MA, Tyler-Kabara EC, Cohen LG, Birbaumer N et al (2010) Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys Med Rehabil Clin N Am 21:157–178PubMedCrossRef Wang W, Collinger JL, Perez MA, Tyler-Kabara EC, Cohen LG, Birbaumer N et al (2010) Neural interface technology for rehabilitation: exploiting and promoting neuroplasticity. Phys Med Rehabil Clin N Am 21:157–178PubMedCrossRef
55.
Zurück zum Zitat Hatsopoulos NG, Donoghue JP (2009) The science of neural interface system. Annu Rev Neurosci 32:249–266PubMedCrossRef Hatsopoulos NG, Donoghue JP (2009) The science of neural interface system. Annu Rev Neurosci 32:249–266PubMedCrossRef
56.
Zurück zum Zitat Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain–machine interface control. J Neurosci 30(50):16777–16787PubMedCrossRef Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain–machine interface control. J Neurosci 30(50):16777–16787PubMedCrossRef
57.
Zurück zum Zitat Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C (2000) Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 292:211–214PubMedCrossRef Pfurtscheller G, Guger C, Müller G, Krausz G, Neuper C (2000) Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 292:211–214PubMedCrossRef
58.
Zurück zum Zitat Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) Thought-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351:33–36PubMedCrossRef Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) Thought-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351:33–36PubMedCrossRef
59.
Zurück zum Zitat Nicolelis MA, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nat Rev Neurosci 10:530–540PubMedCrossRef Nicolelis MA, Lebedev MA (2009) Principles of neural ensemble physiology underlying the operation of brain–machine interfaces. Nat Rev Neurosci 10:530–540PubMedCrossRef
60.
Zurück zum Zitat O’Doherty JE, Lebedev MA, Hanson TL, Fitzsimmons NA, Nicolelis MA (2009) A brain–machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci 3:20PubMed O’Doherty JE, Lebedev MA, Hanson TL, Fitzsimmons NA, Nicolelis MA (2009) A brain–machine interface instructed by direct intracortical microstimulation. Front Integr Neurosci 3:20PubMed
61.
Zurück zum Zitat Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171PubMedCrossRef Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171PubMedCrossRef
Metadaten
Titel
Progress and prospects in neurorehabilitation: clinical applications of stem cells and brain–computer interface for spinal cord lesions
verfasst von
Mariana Gongora
Caroline Peressutti
Sergio Machado
Silmar Teixeira
Bruna Velasques
Pedro Ribeiro
Publikationsdatum
01.04.2013
Verlag
Springer Milan
Erschienen in
Neurological Sciences / Ausgabe 4/2013
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-012-1232-5

Weitere Artikel der Ausgabe 4/2013

Neurological Sciences 4/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.