Skip to main content
Erschienen in: Clinical and Experimental Nephrology 3/2018

01.06.2018 | Original article

Effect of Npt2b deletion on intestinal and renal inorganic phosphate (Pi) handling

verfasst von: Kayo Ikuta, Hiroko Segawa, Shohei Sasaki, Ai Hanazaki, Toru Fujii, Aoi Kushi, Yuka Kawabata, Ruri Kirino, Sumire Sasaki, Miwa Noguchi, Ichiro Kaneko, Sawako Tatsumi, Otoya Ueda, Naoko A. Wada, Hiromi Tateishi, Mami Kakefuda, Yosuke Kawase, Shuichi Ohtomo, Yasuhiro Ichida, Akira Maeda, Kou-ichi Jishage, Naoshi Horiba, Ken-ichi Miyamoto

Erschienen in: Clinical and Experimental Nephrology | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Hyperphosphatemia is common in chronic kidney disease and is associated with morbidity and mortality. The intestinal Na+-dependent phosphate transporter Npt2b is thought to be an important molecular target for the prevention of hyperphosphatemia. The role of Npt2b in the net absorption of inorganic phosphate (Pi), however, is controversial.

Methods

In the present study, we made tamoxifen-inducible Npt2b conditional knockout (CKO) mice to analyze systemic Pi metabolism, including intestinal Pi absorption.

Results

Although the Na+-dependent Pi transport in brush-border membrane vesicle uptake levels was significantly decreased in the distal intestine of Npt2b CKO mice compared with control mice, plasma Pi and fecal Pi excretion levels were not significantly different. Data obtained using the intestinal loop technique showed that Pi uptake in Npt2b CKO mice was not affected at a Pi concentration of 4 mM, which is considered the typical luminal Pi concentration after meals in mice. Claudin, which may be involved in paracellular pathways, as well as claudin-2, 12, and 15 protein levels were significantly decreased in the Npt2b CKO mice. Thus, Npt2b deficiency did not affect Pi absorption within the range of Pi concentrations that normally occurs after meals.

Conclusion

These findings indicate that abnormal Pi metabolism may also be involved in tight junction molecules such as Cldns that are affected by Npt2b deficiency.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Block GA, Kilpatrick RD, Lowe KA, Wang W, Danese MD. Ckd-mineral and bone disorder and risk of death and cardiovascular hospitalization in patients on hemodialysis. Clin J Am Soc Nephrol. 2013;8:2132–40.CrossRefPubMedPubMedCentral Block GA, Kilpatrick RD, Lowe KA, Wang W, Danese MD. Ckd-mineral and bone disorder and risk of death and cardiovascular hospitalization in patients on hemodialysis. Clin J Am Soc Nephrol. 2013;8:2132–40.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Cannata-Andia JB, Martin KJ. The challenge of controlling phosphorus in chronic kidney disease. Nephrol Dial Transplant. 2016;31:541–7.CrossRefPubMed Cannata-Andia JB, Martin KJ. The challenge of controlling phosphorus in chronic kidney disease. Nephrol Dial Transplant. 2016;31:541–7.CrossRefPubMed
3.
Zurück zum Zitat Vervloet MG, Sezer S, Massy ZA, Johansson L, Cozzolino M, Fouque D, Disease-Mineral E-EWGoCK, Bone D, the European Renal Nutrition Working G. The role of phosphate in kidney disease. Nat Rev Nephrol. 2017;13:27–38.CrossRefPubMed Vervloet MG, Sezer S, Massy ZA, Johansson L, Cozzolino M, Fouque D, Disease-Mineral E-EWGoCK, Bone D, the European Renal Nutrition Working G. The role of phosphate in kidney disease. Nat Rev Nephrol. 2017;13:27–38.CrossRefPubMed
4.
Zurück zum Zitat Wagner CA, Hernando N, Forster IC, Biber J. The slc34 family of sodium-dependent phosphate transporters. Pflugers Archiv. 2014;466:139–53.CrossRefPubMed Wagner CA, Hernando N, Forster IC, Biber J. The slc34 family of sodium-dependent phosphate transporters. Pflugers Archiv. 2014;466:139–53.CrossRefPubMed
5.
Zurück zum Zitat Ohi A, Hanabusa E, Ueda O, Segawa H, Horiba N, Kaneko I, Kuwahara S, Mukai T, Sasaki S, Tominaga R, Furutani J, Aranami F, Ohtomo S, Oikawa Y, Kawase Y, Wada NA, Tachibe T, Kakefuda M, Tateishi H, Matsumoto K, Tatsumi S, Kido S, Fukushima N, Jishage K, Miyamoto K. Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter npt2b(+)/(−) mice. Am J Physiol Renal Physiol. 2011;301:F1105–13.CrossRefPubMed Ohi A, Hanabusa E, Ueda O, Segawa H, Horiba N, Kaneko I, Kuwahara S, Mukai T, Sasaki S, Tominaga R, Furutani J, Aranami F, Ohtomo S, Oikawa Y, Kawase Y, Wada NA, Tachibe T, Kakefuda M, Tateishi H, Matsumoto K, Tatsumi S, Kido S, Fukushima N, Jishage K, Miyamoto K. Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter npt2b(+)/(−) mice. Am J Physiol Renal Physiol. 2011;301:F1105–13.CrossRefPubMed
7.
Zurück zum Zitat Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, Schiavi SC. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol. 2009;20:2348–58.CrossRefPubMedPubMedCentral Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, Schiavi SC. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol. 2009;20:2348–58.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Labonte ED, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy S, He L, Dy E, Black D, Zhong Z, Langsetmo I, Spencer AG, Bell N, Deshpande D, Navre M, Lewis JG, Jacobs JW, Charmot D. Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in ckd. J Am Soc Nephrol. 2015;26:1138–49.CrossRefPubMed Labonte ED, Carreras CW, Leadbetter MR, Kozuka K, Kohler J, Koo-McCoy S, He L, Dy E, Black D, Zhong Z, Langsetmo I, Spencer AG, Bell N, Deshpande D, Navre M, Lewis JG, Jacobs JW, Charmot D. Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in ckd. J Am Soc Nephrol. 2015;26:1138–49.CrossRefPubMed
9.
Zurück zum Zitat Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, Doschak MR, Cordat E, Alexander RT. The epithelial sodium/proton exchanger, nhe3, is necessary for renal and intestinal calcium (re)absorption. Am J Physiol Renal Physiol. 2012;302:F943–56.CrossRefPubMed Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ, Shull GE, Doschak MR, Cordat E, Alexander RT. The epithelial sodium/proton exchanger, nhe3, is necessary for renal and intestinal calcium (re)absorption. Am J Physiol Renal Physiol. 2012;302:F943–56.CrossRefPubMed
10.
Zurück zum Zitat Osoegawa K, Tateno M, Woon PY, Frengen E, Mammoser AG, Catanese JJ, Hayashizaki Y, de Jong PJ. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 2000;10:116–28.PubMedPubMedCentral Osoegawa K, Tateno M, Woon PY, Frengen E, Mammoser AG, Catanese JJ, Hayashizaki Y, de Jong PJ. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 2000;10:116–28.PubMedPubMedCentral
11.
Zurück zum Zitat Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 1998;20:123–8.CrossRefPubMed Zhang Y, Buchholz F, Muyrers JP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 1998;20:123–8.CrossRefPubMed
12.
Zurück zum Zitat Zhang Y, Muyrers JP, Testa G, Stewart AF. DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol. 2000;18:1314–7.CrossRefPubMed Zhang Y, Muyrers JP, Testa G, Stewart AF. DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol. 2000;18:1314–7.CrossRefPubMed
13.
Zurück zum Zitat Tominaga T, Abe H, Ueda O, Goto C, Nakahara K, Murakami T, Matsubara T, Mima A, Nagai K, Araoka T, Kishi S, Fukushima N, Jishage K, Doi T. Activation of bone morphogenetic protein 4 signaling leads to glomerulosclerosis that mimics diabetic nephropathy. J Biol Chem. 2011;286:20109–16.CrossRefPubMedPubMedCentral Tominaga T, Abe H, Ueda O, Goto C, Nakahara K, Murakami T, Matsubara T, Mima A, Nagai K, Araoka T, Kishi S, Fukushima N, Jishage K, Doi T. Activation of bone morphogenetic protein 4 signaling leads to glomerulosclerosis that mimics diabetic nephropathy. J Biol Chem. 2011;286:20109–16.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Silva IV, Cebotaru V, Wang H, Wang XT, Wang SS, Guo G, Devuyst O, Thakker RV, Guggino WB, Guggino SE. The clc-5 knockout mouse model of dent’s disease has renal hypercalciuria and increased bone turnover. J Bone Miner Res. 2003;18:615–23.CrossRefPubMed Silva IV, Cebotaru V, Wang H, Wang XT, Wang SS, Guo G, Devuyst O, Thakker RV, Guggino WB, Guggino SE. The clc-5 knockout mouse model of dent’s disease has renal hypercalciuria and increased bone turnover. J Bone Miner Res. 2003;18:615–23.CrossRefPubMed
15.
Zurück zum Zitat Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K. Type iic sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol. 2009;20:104–13.CrossRefPubMedPubMedCentral Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K. Type iic sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol. 2009;20:104–13.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Yoon JY, Woo SI, Kim H, Sun YH, Hahn YS. Fractional exhaled nitric oxide and forced expiratory flow between 25% and 75% of vital capacity in children with controlled asthma. Korean J Pediatrics. 2012;55:330–6.CrossRef Yoon JY, Woo SI, Kim H, Sun YH, Hahn YS. Fractional exhaled nitric oxide and forced expiratory flow between 25% and 75% of vital capacity in children with controlled asthma. Korean J Pediatrics. 2012;55:330–6.CrossRef
17.
Zurück zum Zitat Marks J, Lee GJ, Nadaraja SP, Debnam ES, Unwin RJ. Experimental and regional variations in Na+-dependent and Na+-independent phosphate transport along the rat small intestine and colon. Physiol Reports. 2015;3. Marks J, Lee GJ, Nadaraja SP, Debnam ES, Unwin RJ. Experimental and regional variations in Na+-dependent and Na+-independent phosphate transport along the rat small intestine and colon. Physiol Reports. 2015;3.
18.
Zurück zum Zitat Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29:240–50.CrossRefPubMed Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29:240–50.CrossRefPubMed
19.
Zurück zum Zitat Tanaka Y, Goto T, Kataoka M, Sakuma S, Yamashita S. Impact of luminal fluid volume on the drug absorption after oral administration: analysis based on in vivo drug concentration-time profile in the gastrointestinal tract. J Pharm Sci. 2015;104:3120–7.CrossRefPubMed Tanaka Y, Goto T, Kataoka M, Sakuma S, Yamashita S. Impact of luminal fluid volume on the drug absorption after oral administration: analysis based on in vivo drug concentration-time profile in the gastrointestinal tract. J Pharm Sci. 2015;104:3120–7.CrossRefPubMed
20.
Zurück zum Zitat Furutani J, Segawa H, Aranami F, Kuwahara S, Sugano M, Bannai K, Yamato H, Ito M, Miyamoto K. Dietary inorganic phosphorus regulates the intestinal peptide transporter pept1. J Renal Nutr. 2013;23:e11–20.CrossRef Furutani J, Segawa H, Aranami F, Kuwahara S, Sugano M, Bannai K, Yamato H, Ito M, Miyamoto K. Dietary inorganic phosphorus regulates the intestinal peptide transporter pept1. J Renal Nutr. 2013;23:e11–20.CrossRef
21.
Zurück zum Zitat Thorens B, Sarkar HK, Kaback HR, Lodish HF. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 1988;55:281–90.CrossRefPubMed Thorens B, Sarkar HK, Kaback HR, Lodish HF. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 1988;55:281–90.CrossRefPubMed
22.
Zurück zum Zitat Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type ii sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA. 1998;95:14564–9.CrossRefPubMedPubMedCentral Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type ii sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA. 1998;95:14564–9.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Marks J, Debnam ES, Unwin RJ. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22:481–7.CrossRefPubMedPubMedCentral Marks J, Debnam ES, Unwin RJ. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22:481–7.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Segawa H, Shiozaki Y, Kaneko I, Miyamoto K. The role of sodium-dependent phosphate transporter in phosphate homeostasis. J Nutr Sci Vitaminol. 2015;61(Suppl):S119–21.CrossRefPubMed Segawa H, Shiozaki Y, Kaneko I, Miyamoto K. The role of sodium-dependent phosphate transporter in phosphate homeostasis. J Nutr Sci Vitaminol. 2015;61(Suppl):S119–21.CrossRefPubMed
25.
Zurück zum Zitat Andrade L, Reboucas NA, Seguro AC. Down-regulation of na + transporters and aqp2 is responsible for acyclovir-induced polyuria and hypophosphatemia. Kidney Int. 2004;65:175–83.CrossRefPubMed Andrade L, Reboucas NA, Seguro AC. Down-regulation of na + transporters and aqp2 is responsible for acyclovir-induced polyuria and hypophosphatemia. Kidney Int. 2004;65:175–83.CrossRefPubMed
26.
Zurück zum Zitat Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, Svelto M, Valenti G. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int. 2004;66:2245–55.CrossRefPubMed Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, Svelto M, Valenti G. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int. 2004;66:2245–55.CrossRefPubMed
27.
Zurück zum Zitat Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of a mammalian intestinal type iib na(+)/p(i) cotransporter. J Membr Biol. 2006;212:177–90.CrossRefPubMed Forster IC, Virkki L, Bossi E, Murer H, Biber J. Electrogenic kinetics of a mammalian intestinal type iib na(+)/p(i) cotransporter. J Membr Biol. 2006;212:177–90.CrossRefPubMed
28.
Zurück zum Zitat Mc HG, Parsons DS. The absorption of inorganic phosphate from the small intestine of the rat. Q J Exp Physiol Cognate Med Sci. 1956;41:398–412.CrossRef Mc HG, Parsons DS. The absorption of inorganic phosphate from the small intestine of the rat. Q J Exp Physiol Cognate Med Sci. 1956;41:398–412.CrossRef
29.
Zurück zum Zitat Breves G, Schroder B. Comparative aspects of gastrointestinal phosphorus metabolism. Nutr Res Rev. 1991;4:125–40.CrossRefPubMed Breves G, Schroder B. Comparative aspects of gastrointestinal phosphorus metabolism. Nutr Res Rev. 1991;4:125–40.CrossRefPubMed
30.
Zurück zum Zitat Barmeyer C, Schulzke JD, Fromm M. Claudin-related intestinal diseases. Semin Cell Dev Biol. 2015;42:30–8.CrossRefPubMed Barmeyer C, Schulzke JD, Fromm M. Claudin-related intestinal diseases. Semin Cell Dev Biol. 2015;42:30–8.CrossRefPubMed
31.
Zurück zum Zitat Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol. 2014;36:166–76.CrossRefPubMed Krug SM, Schulzke JD, Fromm M. Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol. 2014;36:166–76.CrossRefPubMed
32.
Zurück zum Zitat Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: distribution and functional significance in health and diseases. Tissue Barriers. 2013;1:e24978.CrossRefPubMedPubMedCentral Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: distribution and functional significance in health and diseases. Tissue Barriers. 2013;1:e24978.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, Fromm M. Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun. 2009;378:45–50.CrossRefPubMed Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, Fromm M. Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation. Biochem Biophys Res Commun. 2009;378:45–50.CrossRefPubMed
35.
Zurück zum Zitat Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H. Tight junction proteins claudin-2 and -12 are critical for vitamin d-dependent Ca2+ absorption between enterocytes. Mol Biol Cell. 2008;19:1912–21.CrossRefPubMedPubMedCentral Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H. Tight junction proteins claudin-2 and -12 are critical for vitamin d-dependent Ca2+ absorption between enterocytes. Mol Biol Cell. 2008;19:1912–21.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Wada M, Tamura A, Takahashi N, Tsukita S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 2013;144:369–80.CrossRefPubMed Wada M, Tamura A, Takahashi N, Tsukita S. Loss of claudins 2 and 15 from mice causes defects in paracellular Na+ flow and nutrient transport in gut and leads to death from malnutrition. Gastroenterology. 2013;144:369–80.CrossRefPubMed
Metadaten
Titel
Effect of Npt2b deletion on intestinal and renal inorganic phosphate (Pi) handling
verfasst von
Kayo Ikuta
Hiroko Segawa
Shohei Sasaki
Ai Hanazaki
Toru Fujii
Aoi Kushi
Yuka Kawabata
Ruri Kirino
Sumire Sasaki
Miwa Noguchi
Ichiro Kaneko
Sawako Tatsumi
Otoya Ueda
Naoko A. Wada
Hiromi Tateishi
Mami Kakefuda
Yosuke Kawase
Shuichi Ohtomo
Yasuhiro Ichida
Akira Maeda
Kou-ichi Jishage
Naoshi Horiba
Ken-ichi Miyamoto
Publikationsdatum
01.06.2018
Verlag
Springer Singapore
Erschienen in
Clinical and Experimental Nephrology / Ausgabe 3/2018
Print ISSN: 1342-1751
Elektronische ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-017-1497-3

Weitere Artikel der Ausgabe 3/2018

Clinical and Experimental Nephrology 3/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.