Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 2/2007

01.06.2007

Auditory Prosthesis with a Penetrating Nerve Array

verfasst von: John C. Middlebrooks, Russell L. Snyder

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

Contemporary auditory prostheses (“cochlear implants”) employ arrays of stimulating electrodes implanted in the scala tympani of the cochlea. Such arrays have been implanted in some 100,000 profoundly or severely deaf people worldwide and arguably are the most successful of present-day neural prostheses. Nevertheless, most implant users show poor understanding of speech in noisy backgrounds, poor pitch recognition, and poor spatial hearing, even when using bilateral implants. Many of these limitations can be attributed to the remote location of stimulating electrodes relative to excitable cochlear neural elements. That is, a scala tympani electrode array lies within a bony compartment filled with electrically conductive fluid. Moreover, scala tympani arrays typically do not extend to the apical turn of the cochlea in which low frequencies are represented. In the present study, we have tested in an animal model an alternative to the conventional cochlear implant: a multielectrode array implanted directly into the auditory nerve. We monitored the specificity of stimulation of the auditory pathway by recording extracellular unit activity at 32 sites along the tonotopic axis of the inferior colliculus. The results demonstrate the activation of specific auditory nerve populations throughout essentially the entire frequency range that is represented by characteristic frequencies in the inferior colliculus. Compared to conventional scala tympani stimulation, thresholds for neural excitation are as much as 50-fold lower and interference between electrodes stimulated simultaneously is markedly reduced. The results suggest that if an intraneural stimulating array were incorporated into an auditory prosthesis system for humans, it could offer substantial improvement in hearing replacement compared to contemporary cochlear implants.
Literatur
Zurück zum Zitat Arnesen AR, Osen KK. The cochlear nerve in the cat: topography, cochleotopy, and fiber spectrum. J. Comp. Neur. 178:661–678, 1978.PubMedCrossRef Arnesen AR, Osen KK. The cochlear nerve in the cat: topography, cochleotopy, and fiber spectrum. J. Comp. Neur. 178:661–678, 1978.PubMedCrossRef
Zurück zum Zitat Arts HA, Jones DA, Anderson DJ. Prosthetic stimulation of the auditory system with intraneural electrodes. Ann. Otol. Rhinol. Laryngol. 112(Suppl 191):20–25, 2003. Arts HA, Jones DA, Anderson DJ. Prosthetic stimulation of the auditory system with intraneural electrodes. Ann. Otol. Rhinol. Laryngol. 112(Suppl 191):20–25, 2003.
Zurück zum Zitat Baumann U, Nobbe A. The cochlear implant electrode-pitch function. Hear. Res. 213:34–42, 2006.PubMedCrossRef Baumann U, Nobbe A. The cochlear implant electrode-pitch function. Hear. Res. 213:34–42, 2006.PubMedCrossRef
Zurück zum Zitat Bernstein LR, Trahiotis C. Lateralization of sinusoidally amplitude-modulated tones: effects of spectral locus and temporal variation. J. Acoust. Soc. Am. 78:514–523, 1985.PubMedCrossRef Bernstein LR, Trahiotis C. Lateralization of sinusoidally amplitude-modulated tones: effects of spectral locus and temporal variation. J. Acoust. Soc. Am. 78:514–523, 1985.PubMedCrossRef
Zurück zum Zitat Bernstein LR, Trahiotis C. Detection of interaural delay in high-frequency sinusoidally amplitude-modulated tones, two-tone complexes, and bands of noise. J. Acoust. Soc. Am. 95:3561–3567, 1994.PubMedCrossRef Bernstein LR, Trahiotis C. Detection of interaural delay in high-frequency sinusoidally amplitude-modulated tones, two-tone complexes, and bands of noise. J. Acoust. Soc. Am. 95:3561–3567, 1994.PubMedCrossRef
Zurück zum Zitat Bernstein LR, Trahiotis C. Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli.” J. Acoust. Soc. Am. 112:1026–1036, 2002.PubMedCrossRef Bernstein LR, Trahiotis C. Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli.” J. Acoust. Soc. Am. 112:1026–1036, 2002.PubMedCrossRef
Zurück zum Zitat Bierer JA, Middlebrooks JC. Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration. J. Neurophysiol. 87:478–492, 2002.PubMed Bierer JA, Middlebrooks JC. Auditory cortical images of cochlear-implant stimuli: dependence on electrode configuration. J. Neurophysiol. 87:478–492, 2002.PubMed
Zurück zum Zitat Bierer JA, Middlebrooks JC. Cortical responses to cochlear implant stimulation: channel interactions. J. Assoc. Res. Otolaryngol. 5:32–48, 2004.PubMedCrossRef Bierer JA, Middlebrooks JC. Cortical responses to cochlear implant stimulation: channel interactions. J. Assoc. Res. Otolaryngol. 5:32–48, 2004.PubMedCrossRef
Zurück zum Zitat Boex C, Baud L, Cosendai G, Sigrist A, Kos M-I, Pelizzone M. Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing. J. Assoc. Res. Otolaryngol. 7:110–124, 2006.PubMedCrossRef Boex C, Baud L, Cosendai G, Sigrist A, Kos M-I, Pelizzone M. Acoustic to electric pitch comparisons in cochlear implant subjects with residual hearing. J. Assoc. Res. Otolaryngol. 7:110–124, 2006.PubMedCrossRef
Zurück zum Zitat Cartee LA, van den Honert C, Finley CC, Miller RL. Evaluation of a model of the cochlear neural membrane. I. Physiological measurement of membrane characteristics in response to intrameatal electrical stimulation. Hear. Res. 146:143–152, 2000.PubMedCrossRef Cartee LA, van den Honert C, Finley CC, Miller RL. Evaluation of a model of the cochlear neural membrane. I. Physiological measurement of membrane characteristics in response to intrameatal electrical stimulation. Hear. Res. 146:143–152, 2000.PubMedCrossRef
Zurück zum Zitat Cartee LA, Miller CA, van den Honert C. Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses. Hear. Res. 215:10–21, 2006.PubMedCrossRef Cartee LA, Miller CA, van den Honert C. Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses. Hear. Res. 215:10–21, 2006.PubMedCrossRef
Zurück zum Zitat Fishman KE, Shannon RV, Slattery WH. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J. Speech Lang. Hear. Res. 40:1201–1215, 1997.PubMed Fishman KE, Shannon RV, Slattery WH. Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. J. Speech Lang. Hear. Res. 40:1201–1215, 1997.PubMed
Zurück zum Zitat Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110:1150–1163, 2001.PubMedCrossRef Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110:1150–1163, 2001.PubMedCrossRef
Zurück zum Zitat Goldberg JM, Brown PB. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32:613–636, 1969.PubMed Goldberg JM, Brown PB. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophysiol. 32:613–636, 1969.PubMed
Zurück zum Zitat Green DM, Swets JA. Signal Detection Theory and Psychophysics. New York, Wiley, 1966. Green DM, Swets JA. Signal Detection Theory and Psychophysics. New York, Wiley, 1966.
Zurück zum Zitat Greenwood DD. A cochlear frequency-position function for several species—29 years later. J. Acoust. Soc. Am. 87:2592–2605, 1990.PubMedCrossRef Greenwood DD. A cochlear frequency-position function for several species—29 years later. J. Acoust. Soc. Am. 87:2592–2605, 1990.PubMedCrossRef
Zurück zum Zitat Guinan JJ Jr, Norris BE, Guinan SS. Single auditory units in the superior olivary complex II: locations of unit categories and tonotopic organization. Int. J. Neurosci. 4:147–166, 1972.CrossRef Guinan JJ Jr, Norris BE, Guinan SS. Single auditory units in the superior olivary complex II: locations of unit categories and tonotopic organization. Int. J. Neurosci. 4:147–166, 1972.CrossRef
Zurück zum Zitat Hillman T, Badi AN, Normann RA, Kertesz T, Shelton C. Cochlear nerve stimulation with a 3-dimensional penetrating electrode array. Otol. Neurotol. 24:764–768, 2003.PubMedCrossRef Hillman T, Badi AN, Normann RA, Kertesz T, Shelton C. Cochlear nerve stimulation with a 3-dimensional penetrating electrode array. Otol. Neurotol. 24:764–768, 2003.PubMedCrossRef
Zurück zum Zitat Lehnhardt E, Gnadeberg D, Battmer RD, von Wallenberg E. Experience with the cochlear miniature speech processor in adults and children together with a comparison of unipolar and bipolar modes. ORL J. Otorhinolaryngol. Relat. Spec. 54:308–313, 1992.PubMed Lehnhardt E, Gnadeberg D, Battmer RD, von Wallenberg E. Experience with the cochlear miniature speech processor in adults and children together with a comparison of unipolar and bipolar modes. ORL J. Otorhinolaryngol. Relat. Spec. 54:308–313, 1992.PubMed
Zurück zum Zitat Liberman MC. The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J. Acoust. Soc. Am. 72:1441–1449, 1982.PubMedCrossRef Liberman MC. The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J. Acoust. Soc. Am. 72:1441–1449, 1982.PubMedCrossRef
Zurück zum Zitat Licklider JCR, Webster JC, Hedlun JM. On the frequency limits of binaural beats. J. Acoust. Soc. Am. 22:468–473, 1950.CrossRef Licklider JCR, Webster JC, Hedlun JM. On the frequency limits of binaural beats. J. Acoust. Soc. Am. 22:468–473, 1950.CrossRef
Zurück zum Zitat Lusted HS, Simmons FB. Interaction of cortical evoked potentials to electric and acoustic stimuli. J. Acoust. Soc. Am. 76:449–455, 1984.PubMedCrossRef Lusted HS, Simmons FB. Interaction of cortical evoked potentials to electric and acoustic stimuli. J. Acoust. Soc. Am. 76:449–455, 1984.PubMedCrossRef
Zurück zum Zitat Macmillan NA, Creelman CD. Detection Theory: A User’s Guide. Mahwah, Elrbaum, 2005. Macmillan NA, Creelman CD. Detection Theory: A User’s Guide. Mahwah, Elrbaum, 2005.
Zurück zum Zitat Macpherson EA, Middlebrooks JC. Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J. Acoust. Soc. Am. 111:2219–2236, 2002.PubMedCrossRef Macpherson EA, Middlebrooks JC. Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J. Acoust. Soc. Am. 111:2219–2236, 2002.PubMedCrossRef
Zurück zum Zitat Majdak P, Laback B, Baumgartner W-D. Effects of interaural time differences in fine structure and envelope on lateral discrimination in electric hearing. J. Acoust. Soc. Am. 120:2190–2201, 2006.PubMedCrossRef Majdak P, Laback B, Baumgartner W-D. Effects of interaural time differences in fine structure and envelope on lateral discrimination in electric hearing. J. Acoust. Soc. Am. 120:2190–2201, 2006.PubMedCrossRef
Zurück zum Zitat McDermott HJ. Music perception with cochlear implants: a review. Trends Amplif. 8:49–82, 2004.PubMedCrossRef McDermott HJ. Music perception with cochlear implants: a review. Trends Amplif. 8:49–82, 2004.PubMedCrossRef
Zurück zum Zitat Mens LHM, Berenstein CK. Speech perception with mono- and quadrupolar electrode configurations: a crossover study. Otol. Neurotol. 26:957–964, 2005.PubMedCrossRef Mens LHM, Berenstein CK. Speech perception with mono- and quadrupolar electrode configurations: a crossover study. Otol. Neurotol. 26:957–964, 2005.PubMedCrossRef
Zurück zum Zitat Middlebrooks JC. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds. J. Acoust. Soc. Am. 116:452–468, 2004.PubMedCrossRef Middlebrooks JC. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds. J. Acoust. Soc. Am. 116:452–468, 2004.PubMedCrossRef
Zurück zum Zitat Middlebrooks JC. Transmission of temporal information from a cochlear implant to the auditory cortex. Abstr. Assoc. Res. Otolaryngol. 28: Program #584, 2005. Middlebrooks JC. Transmission of temporal information from a cochlear implant to the auditory cortex. Abstr. Assoc. Res. Otolaryngol. 28: Program #584, 2005.
Zurück zum Zitat Nuetzel JM, Hafter ER. Discrimination of interaural delays in complex waveforms: spectral effects. J. Acoust. Soc. Am. 69:1112–1118, 1981.CrossRef Nuetzel JM, Hafter ER. Discrimination of interaural delays in complex waveforms: spectral effects. J. Acoust. Soc. Am. 69:1112–1118, 1981.CrossRef
Zurück zum Zitat Nuttall AL, Marques DM, Lawrence M. Effects of perilymphatic perfusion with neomycin on the cochlear microphonic potential in the guinea pig. Acta Otolaryngol. 83:393–400, 1977.PubMed Nuttall AL, Marques DM, Lawrence M. Effects of perilymphatic perfusion with neomycin on the cochlear microphonic potential in the guinea pig. Acta Otolaryngol. 83:393–400, 1977.PubMed
Zurück zum Zitat Osen KK. The intrinsic organization of the cochlear nuclei in the cat. Acta Otolarygol. 67:352–359, 1969. Osen KK. The intrinsic organization of the cochlear nuclei in the cat. Acta Otolarygol. 67:352–359, 1969.
Zurück zum Zitat Pfingst BE, Zwolan TA, Holloway LA. Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants. Hear. Res. 112:247–260, 1997.PubMedCrossRef Pfingst BE, Zwolan TA, Holloway LA. Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants. Hear. Res. 112:247–260, 1997.PubMedCrossRef
Zurück zum Zitat Pressnitzer D, Bestel J, Fraysse B. Music to electric ears: pitch and timbre perception by cochlear implant patients. Ann. N.Y. Acad. Sci. 1060:343–345, 2005.PubMedCrossRef Pressnitzer D, Bestel J, Fraysse B. Music to electric ears: pitch and timbre perception by cochlear implant patients. Ann. N.Y. Acad. Sci. 1060:343–345, 2005.PubMedCrossRef
Zurück zum Zitat Rebscher SJ, Snyder RL, Leake PA. The effect of electrode configuration and duration of deafness on threshold and selectivity of responses to intracochlear electrical stimulation. J. Acoust. Soc. Am. 109:2035–2048, 2001.PubMedCrossRef Rebscher SJ, Snyder RL, Leake PA. The effect of electrode configuration and duration of deafness on threshold and selectivity of responses to intracochlear electrical stimulation. J. Acoust. Soc. Am. 109:2035–2048, 2001.PubMedCrossRef
Zurück zum Zitat Rose J, Greenwood, DD, Goldberg, JM, Hind, JE. Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. J. Neurophysiol. 26:294–320, 1963. Rose J, Greenwood, DD, Goldberg, JM, Hind, JE. Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. J. Neurophysiol. 26:294–320, 1963.
Zurück zum Zitat Shannon RV. Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear. Res. 11:157–189, 1983.PubMedCrossRef Shannon RV. Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear. Res. 11:157–189, 1983.PubMedCrossRef
Zurück zum Zitat Shepherd RK, Baxi JH, Hardie NA. Response of inferior colliculus neurons to electrical stimulation of the auditory nerve in neonatally deafened cats. J. Neurophysiol. 82:1363–1380, 1999.PubMed Shepherd RK, Baxi JH, Hardie NA. Response of inferior colliculus neurons to electrical stimulation of the auditory nerve in neonatally deafened cats. J. Neurophysiol. 82:1363–1380, 1999.PubMed
Zurück zum Zitat Simmons FB. Electrical stimulation of the auditory nerve in cats: long term electrophysiological and histological results. Ann. Otol. Rhinol. Laryngol. 88:533–539, 1979.PubMed Simmons FB. Electrical stimulation of the auditory nerve in cats: long term electrophysiological and histological results. Ann. Otol. Rhinol. Laryngol. 88:533–539, 1979.PubMed
Zurück zum Zitat Simmons FB. Electrical stimulation of the auditory nerve in man. Arch. Otorhinolaryngol. 84:24–76, 1966. Simmons FB. Electrical stimulation of the auditory nerve in man. Arch. Otorhinolaryngol. 84:24–76, 1966.
Zurück zum Zitat Simmons FB. Percepts from modiolar (eighth nerve) stimulation. Ann. N.Y. Acad. Sci. 405:259–263, 1983.PubMedCrossRef Simmons FB. Percepts from modiolar (eighth nerve) stimulation. Ann. N.Y. Acad. Sci. 405:259–263, 1983.PubMedCrossRef
Zurück zum Zitat Simmons FB, Epley JM, Lummis RC, Guttman N, Frishkopf LS, Harmon LD, Zwicker E. Auditory nerve: electrical stimulation in man. Science 148:104–106, 1965.PubMedCrossRef Simmons FB, Epley JM, Lummis RC, Guttman N, Frishkopf LS, Harmon LD, Zwicker E. Auditory nerve: electrical stimulation in man. Science 148:104–106, 1965.PubMedCrossRef
Zurück zum Zitat Simmons FB, Mathews RG, Walker MG, White RL. A functioning multichannel auditory nerve stimulator. Acta Otolaryngol. 87:170–175, 1979.PubMed Simmons FB, Mathews RG, Walker MG, White RL. A functioning multichannel auditory nerve stimulator. Acta Otolaryngol. 87:170–175, 1979.PubMed
Zurück zum Zitat Simmons FB, Mongeon CJ, Lewis WR, Huntington DA. Electrical stimulation of the acoustical nerve and inferior colliculus: results in man. Arch. Otolaryngol. 79:67, 1964. Simmons FB, Mongeon CJ, Lewis WR, Huntington DA. Electrical stimulation of the acoustical nerve and inferior colliculus: results in man. Arch. Otolaryngol. 79:67, 1964.
Zurück zum Zitat Skinner MW, Ketten D, Holden LK, Harding GW, Smith PG, Gates GA, Neely JG, Kletzker GR, Brunsden B, Blocker B. CT-Derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J. Assoc. Res. Otolaryngol. 3:332–350, 2002.PubMedCrossRef Skinner MW, Ketten D, Holden LK, Harding GW, Smith PG, Gates GA, Neely JG, Kletzker GR, Brunsden B, Blocker B. CT-Derived estimation of cochlear morphology and electrode array position in relation to word recognition in Nucleus-22 recipients. J. Assoc. Res. Otolaryngol. 3:332–350, 2002.PubMedCrossRef
Zurück zum Zitat Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90, 2002.PubMedCrossRef Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87–90, 2002.PubMedCrossRef
Zurück zum Zitat Snyder RL, Bierer JA, Middlebrooks JC. Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electrical stimulation. J. Assoc. Res. Otolaryngol. 5:305–322, 2004.PubMedCrossRef Snyder RL, Bierer JA, Middlebrooks JC. Topographic spread of inferior colliculus activation in response to acoustic and intracochlear electrical stimulation. J. Assoc. Res. Otolaryngol. 5:305–322, 2004.PubMedCrossRef
Zurück zum Zitat Snyder RL, Rebscher SJ, Cao K, Leake PA, Kelly K. Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: expansion of central representation. Hear. Res. 50:7–34, 1990.PubMedCrossRef Snyder RL, Rebscher SJ, Cao K, Leake PA, Kelly K. Chronic intracochlear electrical stimulation in the neonatally deafened cat. I: expansion of central representation. Hear. Res. 50:7–34, 1990.PubMedCrossRef
Zurück zum Zitat Snyder RL, Rebscher SJ, Leake PA, Kelly K, Cao K. Chronic intracochlear electrical stimulation in the neonatally deafened cat. II. Temporal properties of neurons in the inferior colliculus. Hear. Res. 56:246–264, 1991.PubMedCrossRef Snyder RL, Rebscher SJ, Leake PA, Kelly K, Cao K. Chronic intracochlear electrical stimulation in the neonatally deafened cat. II. Temporal properties of neurons in the inferior colliculus. Hear. Res. 56:246–264, 1991.PubMedCrossRef
Zurück zum Zitat Van Hoesel RJM, Tyler RS. Speech perception, localization, and lateralization with bilateral cochlear implants. J. Acoust. Soc. Am. 113:1617–1630, 2003.PubMedCrossRef Van Hoesel RJM, Tyler RS. Speech perception, localization, and lateralization with bilateral cochlear implants. J. Acoust. Soc. Am. 113:1617–1630, 2003.PubMedCrossRef
Zurück zum Zitat Vandali AE, Sucher C, Tsang DJ, McKay CM, Chew JW, McDermott HJ. Pitch ranking ability of cochlear implant recipients: a comparison of sound-processing strategies. J. Acoust. Soc. Am. 117:3126–3138, 2005.PubMedCrossRef Vandali AE, Sucher C, Tsang DJ, McKay CM, Chew JW, McDermott HJ. Pitch ranking ability of cochlear implant recipients: a comparison of sound-processing strategies. J. Acoust. Soc. Am. 117:3126–3138, 2005.PubMedCrossRef
Zurück zum Zitat von Wallenberg EL, Battmer R-D, Doden I, Gnadeberg MS, Houtle K, Lenarz T. Place-pitch and speech perception measures with bipolar and monopolar electrical stimulation of the cochlea. Ann. Otol. Rhinol. Laryngol. 104(Suppl 166):372–375, 1995. von Wallenberg EL, Battmer R-D, Doden I, Gnadeberg MS, Houtle K, Lenarz T. Place-pitch and speech perception measures with bipolar and monopolar electrical stimulation of the cochlea. Ann. Otol. Rhinol. Laryngol. 104(Suppl 166):372–375, 1995.
Zurück zum Zitat Wardrop P, Whinney D, Rebscher S, Luxford W, Leake P. A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II. Comparison of spiral Clarion and HiFocus II electrodes. Hear. Res. 203:68–79, 2005.PubMedCrossRef Wardrop P, Whinney D, Rebscher S, Luxford W, Leake P. A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II. Comparison of spiral Clarion and HiFocus II electrodes. Hear. Res. 203:68–79, 2005.PubMedCrossRef
Zurück zum Zitat Wightman FL, Kistler DJ. The dominant role of low-frequency interaural time differences in sound localization. J. Acoust. Soc. Am. 91:1648–1661, 1992.PubMedCrossRef Wightman FL, Kistler DJ. The dominant role of low-frequency interaural time differences in sound localization. J. Acoust. Soc. Am. 91:1648–1661, 1992.PubMedCrossRef
Zurück zum Zitat Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM. Better speech recognition with cochlear implants. Nature 352:236–238, 1991.PubMedCrossRef Wilson BS, Finley CC, Lawson DT, Wolford RD, Eddington DK, Rabinowitz WM. Better speech recognition with cochlear implants. Nature 352:236–238, 1991.PubMedCrossRef
Zurück zum Zitat Yost WA. Lateralization of repeated filtered transients. J. Acoust. Soc. Am. 60:178–181, 1976.PubMedCrossRef Yost WA. Lateralization of repeated filtered transients. J. Acoust. Soc. Am. 60:178–181, 1976.PubMedCrossRef
Zurück zum Zitat Yost WA, Wightman FL, Green DM. Lateralization of filtered clicks. J. Acoust. Soc. Am. 50:1526–1531, 1971.PubMedCrossRef Yost WA, Wightman FL, Green DM. Lateralization of filtered clicks. J. Acoust. Soc. Am. 50:1526–1531, 1971.PubMedCrossRef
Zurück zum Zitat Zappia JJ, Hetke JF, Altschuler RA, Niparko JK. Evaluation of a silicon-substrate modiolar eighth nerve implant in a guinea pig. Otolaryngol. Head Neck Surg. 103:575–582, 1990.PubMed Zappia JJ, Hetke JF, Altschuler RA, Niparko JK. Evaluation of a silicon-substrate modiolar eighth nerve implant in a guinea pig. Otolaryngol. Head Neck Surg. 103:575–582, 1990.PubMed
Zurück zum Zitat Zwislocki J, Feldman RS. Just noticeable differences in dichotic phase. J. Acoust. Soc. Am. 28:860–864, 1956.CrossRef Zwislocki J, Feldman RS. Just noticeable differences in dichotic phase. J. Acoust. Soc. Am. 28:860–864, 1956.CrossRef
Zurück zum Zitat Zwolan TA, Kileny PR, Ashbaugh C, Telian SA. Patient performance with the cochlear corporation “20  +  2” implant: bipolar versus monopolar activation. Am. J. Otol. 17:717–723, 1996.PubMed Zwolan TA, Kileny PR, Ashbaugh C, Telian SA. Patient performance with the cochlear corporation “20  +  2” implant: bipolar versus monopolar activation. Am. J. Otol. 17:717–723, 1996.PubMed
Metadaten
Titel
Auditory Prosthesis with a Penetrating Nerve Array
verfasst von
John C. Middlebrooks
Russell L. Snyder
Publikationsdatum
01.06.2007
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 2/2007
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-007-0070-2

Weitere Artikel der Ausgabe 2/2007

Journal of the Association for Research in Otolaryngology 2/2007 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Hörschwäche erhöht Demenzrisiko unabhängig von Beta-Amyloid

29.05.2024 Hörstörungen Nachrichten

Hört jemand im Alter schlecht, nimmt das Hirn- und Hippocampusvolumen besonders schnell ab, was auch mit einem beschleunigten kognitiven Abbau einhergeht. Und diese Prozesse scheinen sich unabhängig von der Amyloidablagerung zu ereignen.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.