Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3/2010

01.09.2010

Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer

verfasst von: Gagan Deep, Rajesh Agarwal

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3/2010

Einloggen, um Zugang zu erhalten

Abstract

Cancer is a major health problem around the world. Research efforts in the last few decades have been successful in providing better and effective treatments against both early stage and localized cancer, but clinical options against advanced metastatic stage/s of cancer remain limited. The high morbidity and mortality in most of the cancers are attributed to their metastatic spread to distant organs. Due to its extreme clinical relevance, metastasis has been extensively studied and is now understood as a highly complex biological event that involves multiple steps including acquisition of invasiveness by cancer cells, intravasation into circulatory system, survival in the circulation, arrest in microvasculature, extravasation, and growth at distant organs. The increasing understanding of molecular underpinnings of these events has provided excellent opportunity to target metastasis especially through nontoxic and biologically effective nutraceuticals. Silibinin, a popular dietary supplement isolated from milk thistle seed extracts, is one such natural agent that has shown biological efficacy through pleiotropic mechanisms against a variety of cancers and is currently in clinical trials. Recent preclinical studies have also shown strong efficacy of silibinin to target cancer cell’s migratory and invasive characteristics as well as their ability to metastasize to distant organs. Detailed mechanistic analyses revealed that silibinin targets signaling molecules involved in the regulation of epithelial-to-mesenchymal transition, proteases activation, adhesion, motility, invasiveness as well as the supportive tumor-microenvironment components, thereby inhibiting metastasis. Overall, the long history of human use, remarkable nontoxicity, and preclinical efficacy strongly favor the clinical use of silibinin against advanced metastatic cancers.
Literatur
1.
Zurück zum Zitat Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., & Thun, M. J. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.CrossRef Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., & Thun, M. J. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.CrossRef
2.
Zurück zum Zitat Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. Molecular Cancer Therapeutics, 6(10), 2609–2617.PubMedCrossRef Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. Molecular Cancer Therapeutics, 6(10), 2609–2617.PubMedCrossRef
3.
Zurück zum Zitat Tantivejkul, K., Kalikin, L. M., & Pienta, K. J. (2004). Dynamic process of prostate cancer metastasis to bone. Journal of Cellular Biochemistry, 91(4), 706–717.PubMedCrossRef Tantivejkul, K., Kalikin, L. M., & Pienta, K. J. (2004). Dynamic process of prostate cancer metastasis to bone. Journal of Cellular Biochemistry, 91(4), 706–717.PubMedCrossRef
4.
Zurück zum Zitat Hadaschik, B. A., & Gleave, M. E. (2007). Therapeutic options for hormone-refractory prostate cancer in 2007. Urologic Oncology, 25(5), 413–419.PubMed Hadaschik, B. A., & Gleave, M. E. (2007). Therapeutic options for hormone-refractory prostate cancer in 2007. Urologic Oncology, 25(5), 413–419.PubMed
8.
Zurück zum Zitat Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nature Reviews. Cancer, 9(4), 265–273.PubMedCrossRef Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nature Reviews. Cancer, 9(4), 265–273.PubMedCrossRef
11.
Zurück zum Zitat Gupta, G. P., Minn, A. J., Kang, Y., Siegel, P. M., Serganova, I., Cordon-Cardo, C., et al. (2005). Identifying site-specific metastasis genes and functions. Cold Spring Harbor Symposia on Quantitative Biology, 70, 149–158. doi:10.1101/sqb.2005.70.018.PubMedCrossRef Gupta, G. P., Minn, A. J., Kang, Y., Siegel, P. M., Serganova, I., Cordon-Cardo, C., et al. (2005). Identifying site-specific metastasis genes and functions. Cold Spring Harbor Symposia on Quantitative Biology, 70, 149–158. doi:10.​1101/​sqb.​2005.​70.​018.PubMedCrossRef
14.
Zurück zum Zitat Guarino, M., Rubino, B., & Ballabio, G. (2007). The role of epithelial–mesenchymal transition in cancer pathology. Pathology, 39(3), 305–318.PubMedCrossRef Guarino, M., Rubino, B., & Ballabio, G. (2007). The role of epithelial–mesenchymal transition in cancer pathology. Pathology, 39(3), 305–318.PubMedCrossRef
15.
Zurück zum Zitat Christiansen, J. J., & Rajasekaran, A. K. (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Research, 66(17), 8319–8326.PubMedCrossRef Christiansen, J. J., & Rajasekaran, A. K. (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Research, 66(17), 8319–8326.PubMedCrossRef
16.
Zurück zum Zitat Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. N. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.PubMed Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. N. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.PubMed
17.
Zurück zum Zitat Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2007). Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and -independent mechanisms. Blood, 110(1), 133–141. doi:10.1182/blood-2007-01-065995.PubMedCrossRef Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2007). Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and -independent mechanisms. Blood, 110(1), 133–141. doi:10.​1182/​blood-2007-01-065995.PubMedCrossRef
18.
Zurück zum Zitat Karpatkin, S., Pearlstein, E., Salk, P. L., & Yogeeswaran, G. (1981). Role of platelets in tumor cell metastases. Annals of the New York Academy of Sciences, 370, 101–118.PubMedCrossRef Karpatkin, S., Pearlstein, E., Salk, P. L., & Yogeeswaran, G. (1981). Role of platelets in tumor cell metastases. Annals of the New York Academy of Sciences, 370, 101–118.PubMedCrossRef
19.
20.
Zurück zum Zitat Weiss, L. (2000). Metastasis of cancer: A conceptual history from antiquity to the 1990s. Cancer and Metastasis Reviews, 19(3–4, I–XI), 193–383.CrossRef Weiss, L. (2000). Metastasis of cancer: A conceptual history from antiquity to the 1990s. Cancer and Metastasis Reviews, 19(3–4, I–XI), 193–383.CrossRef
21.
Zurück zum Zitat Sugarbaker, E. V. (1979). Cancer metastasis: A product of tumor–host interactions. Current Problems in Cancer, 3(7), 1–59.PubMedCrossRef Sugarbaker, E. V. (1979). Cancer metastasis: A product of tumor–host interactions. Current Problems in Cancer, 3(7), 1–59.PubMedCrossRef
22.
Zurück zum Zitat Batson, O. V. (1940). The function of the vertebral veins and their role in the spread of metastases. Annals of Surgery, 112(1), 138–149.PubMedCrossRef Batson, O. V. (1940). The function of the vertebral veins and their role in the spread of metastases. Annals of Surgery, 112(1), 138–149.PubMedCrossRef
23.
Zurück zum Zitat Coman, D. R., & de Long, R. P. (1951). The role of the vertebral venous system in the metastasis of cancer to the spinal column; experiments with tumor-cell suspensions in rats and rabbits. Cancer, 4(3), 610–618.PubMedCrossRef Coman, D. R., & de Long, R. P. (1951). The role of the vertebral venous system in the metastasis of cancer to the spinal column; experiments with tumor-cell suspensions in rats and rabbits. Cancer, 4(3), 610–618.PubMedCrossRef
24.
Zurück zum Zitat Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26(5), 433–446.CrossRef Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26(5), 433–446.CrossRef
25.
Zurück zum Zitat Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., & Farrar, W. L. (2008). CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 98(4), 756–765.PubMedCrossRef Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., & Farrar, W. L. (2008). CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 98(4), 756–765.PubMedCrossRef
26.
Zurück zum Zitat Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549. doi:S1535610803001326.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549. doi:S153561080300132​6.PubMedCrossRef
28.
Zurück zum Zitat Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827. doi:10.1038/nature04186.PubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827. doi:10.​1038/​nature04186.PubMedCrossRef
30.
Zurück zum Zitat Demicheli, R., Retsky, M. W., Hrushesky, W. J., & Baum, M. (2007). Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: Learning from failures. Nature Clinical Practice. Oncology, 4(12), 699–710. doi:10.1038/ncponc0999.PubMedCrossRef Demicheli, R., Retsky, M. W., Hrushesky, W. J., & Baum, M. (2007). Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: Learning from failures. Nature Clinical Practice. Oncology, 4(12), 699–710. doi:10.​1038/​ncponc0999.PubMedCrossRef
31.
Zurück zum Zitat Demicheli, R., Retsky, M. W., Swartzendruber, D. E., & Bonadonna, G. (1997). Proposal for a new model of breast cancer metastatic development. Annals of Oncology, 8(11), 1075–1080.PubMedCrossRef Demicheli, R., Retsky, M. W., Swartzendruber, D. E., & Bonadonna, G. (1997). Proposal for a new model of breast cancer metastatic development. Annals of Oncology, 8(11), 1075–1080.PubMedCrossRef
32.
Zurück zum Zitat Lawson, D. A., Zong, Y., Memarzadeh, S., Xin, L., Huang, J., & Witte, O. N. (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2610–2615. doi:0913873107.PubMedCrossRef Lawson, D. A., Zong, Y., Memarzadeh, S., Xin, L., Huang, J., & Witte, O. N. (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2610–2615. doi:0913873107.PubMedCrossRef
33.
Zurück zum Zitat Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768. doi:10.1038/nrc2499.PubMedCrossRef Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768. doi:10.​1038/​nrc2499.PubMedCrossRef
34.
Zurück zum Zitat Hurt, E. M., & Farrar, W. L. (2008). Cancer stem cells: The seeds of metastasis? Molecular Interventions, 8(3), 140–142.PubMedCrossRef Hurt, E. M., & Farrar, W. L. (2008). Cancer stem cells: The seeds of metastasis? Molecular Interventions, 8(3), 140–142.PubMedCrossRef
35.
Zurück zum Zitat Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2(8), 563–572.PubMedCrossRef Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2(8), 563–572.PubMedCrossRef
36.
Zurück zum Zitat Fidler, I. J. (1970). Metastasis: Quantitative analysis of distribution and fate of tumor embolilabeled with 125I-5-iodo-2′-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMed Fidler, I. J. (1970). Metastasis: Quantitative analysis of distribution and fate of tumor embolilabeled with 125I-5-iodo-2′-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMed
39.
Zurück zum Zitat Nguyen, N. P., Bishop, M., Borok, T. J., Welsh, J., Hamilton, R., Cohen, D., et al. (2010). Pattern of failure following chemoradiation for locally advanced non-small cell lung cancer: Potential role for stereotactic body radiotherapy. Anticancer Research, 30(3), 953–961. doi:30/3/953.PubMed Nguyen, N. P., Bishop, M., Borok, T. J., Welsh, J., Hamilton, R., Cohen, D., et al. (2010). Pattern of failure following chemoradiation for locally advanced non-small cell lung cancer: Potential role for stereotactic body radiotherapy. Anticancer Research, 30(3), 953–961. doi:30/​3/​953.PubMed
40.
Zurück zum Zitat Gimbel, M. I., & Paty, P. B. (2004). A current perspective on local excision of rectal cancer. Clinical Colorectal Cancer, 4(1), 26–35. discussion 36–27.PubMedCrossRef Gimbel, M. I., & Paty, P. B. (2004). A current perspective on local excision of rectal cancer. Clinical Colorectal Cancer, 4(1), 26–35. discussion 36–27.PubMedCrossRef
41.
Zurück zum Zitat Wilson, C. M., Tobin, S., & Young, R. C. (2004). The exploding worldwide cancer burden: The impact of cancer on women. International Journal of Gynecological Cancer, 14(1), 1–11. doi:14178.PubMedCrossRef Wilson, C. M., Tobin, S., & Young, R. C. (2004). The exploding worldwide cancer burden: The impact of cancer on women. International Journal of Gynecological Cancer, 14(1), 1–11. doi:14178.PubMedCrossRef
42.
Zurück zum Zitat Magrath, I., & Litvak, J. (1993). Cancer in developing countries: Opportunity and challenge. Journal of the National Cancer Institute, 85(11), 862–874.PubMedCrossRef Magrath, I., & Litvak, J. (1993). Cancer in developing countries: Opportunity and challenge. Journal of the National Cancer Institute, 85(11), 862–874.PubMedCrossRef
43.
Zurück zum Zitat Aggarwal, B. B., Van Kuiken, M. E., Iyer, L. H., Harikumar, K. B., & Sung, B. (2009). Molecular targets of nutraceuticals derived from dietary spices: Potential role in suppression of inflammation and tumorigenesis. Experimental Biology and Medicine (Maywood), 234(8), 825–849. doi:10.3181/0902-MR-78.CrossRef Aggarwal, B. B., Van Kuiken, M. E., Iyer, L. H., Harikumar, K. B., & Sung, B. (2009). Molecular targets of nutraceuticals derived from dietary spices: Potential role in suppression of inflammation and tumorigenesis. Experimental Biology and Medicine (Maywood), 234(8), 825–849. doi:10.​3181/​0902-MR-78.CrossRef
45.
Zurück zum Zitat Agarwal, R., & Deep, G. (2008). Kava, a tonic for relieving the irrational development of natural preventive agents. Cancer Prevention Research (Philadelphia, PA), 1(6), 409–412. Agarwal, R., & Deep, G. (2008). Kava, a tonic for relieving the irrational development of natural preventive agents. Cancer Prevention Research (Philadelphia, PA), 1(6), 409–412.
47.
Zurück zum Zitat Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., Tharakan, S. T., Sung, B., & Anand, P. (2008). Potential of spice-derived phytochemicals for cancer prevention. Planta Medica, 74(13), 1560–1569.PubMedCrossRef Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., Tharakan, S. T., Sung, B., & Anand, P. (2008). Potential of spice-derived phytochemicals for cancer prevention. Planta Medica, 74(13), 1560–1569.PubMedCrossRef
48.
Zurück zum Zitat Agarwal, R., Agarwal, C., Ichikawa, H., Singh, R. P., & Aggarwal, B. B. (2006). Anticancer potential of silymarin: From bench to bed side. Anticancer Research, 26(6B), 4457–4498.PubMed Agarwal, R., Agarwal, C., Ichikawa, H., Singh, R. P., & Aggarwal, B. B. (2006). Anticancer potential of silymarin: From bench to bed side. Anticancer Research, 26(6B), 4457–4498.PubMed
52.
Zurück zum Zitat Bemis, D. L., Katz, A. E., & Buttyan, R. (2006). Clinical trials of natural products as chemopreventive agents for prostate cancer. Expert Opinion on Investigational Drugs, 15(10), 1191–1200.PubMedCrossRef Bemis, D. L., Katz, A. E., & Buttyan, R. (2006). Clinical trials of natural products as chemopreventive agents for prostate cancer. Expert Opinion on Investigational Drugs, 15(10), 1191–1200.PubMedCrossRef
55.
Zurück zum Zitat Flaig, T. W., Glode, M., Gustafson, D., van Bokhoven, A., Tao, Y., Wilson, S., et al. (2010). A study of high-dose oral silybin–phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate, 70(8), 848–855. doi:10.1002/pros.21118.PubMed Flaig, T. W., Glode, M., Gustafson, D., van Bokhoven, A., Tao, Y., Wilson, S., et al. (2010). A study of high-dose oral silybin–phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate, 70(8), 848–855. doi:10.​1002/​pros.​21118.PubMed
56.
Zurück zum Zitat Flaig, T. W., Gustafson, D. L., Su, L. J., Zirrolli, J. A., Crighton, F., Harrison, G. S., et al. (2007). A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investigational New Drugs, 25(2), 139–146.PubMedCrossRef Flaig, T. W., Gustafson, D. L., Su, L. J., Zirrolli, J. A., Crighton, F., Harrison, G. S., et al. (2007). A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investigational New Drugs, 25(2), 139–146.PubMedCrossRef
57.
Zurück zum Zitat Pradhan, S. C., & Girish, C. (2006). Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. The Indian Journal of Medical Research, 124(5), 491–504.PubMed Pradhan, S. C., & Girish, C. (2006). Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. The Indian Journal of Medical Research, 124(5), 491–504.PubMed
58.
Zurück zum Zitat Rainone, F. (2005). Milk thistle. American Family Physician, 72(7), 1285–1288.PubMed Rainone, F. (2005). Milk thistle. American Family Physician, 72(7), 1285–1288.PubMed
60.
Zurück zum Zitat Davis-Searles, P. R., Nakanishi, Y., Kim, N. C., Graf, T. N., Oberlies, N. H., Wani, M. C., et al. (2005). Milk thistle and prostate cancer: Differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Research, 65(10), 4448–4457.PubMedCrossRef Davis-Searles, P. R., Nakanishi, Y., Kim, N. C., Graf, T. N., Oberlies, N. H., Wani, M. C., et al. (2005). Milk thistle and prostate cancer: Differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Research, 65(10), 4448–4457.PubMedCrossRef
61.
Zurück zum Zitat Wen, Z., Dumas, T. E., Schrieber, S. J., Hawke, R. L., Fried, M. W., & Smith, P. C. (2008). Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metabolism and Disposition, 36(1), 65–72.PubMedCrossRef Wen, Z., Dumas, T. E., Schrieber, S. J., Hawke, R. L., Fried, M. W., & Smith, P. C. (2008). Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metabolism and Disposition, 36(1), 65–72.PubMedCrossRef
63.
Zurück zum Zitat Flora, K., Hahn, M., Rosen, H., & Benner, K. (1998). Milk thistle (Silybum marianum) for the therapy of liver disease. The American Journal of Gastroenterology, 93(2), 139–143.PubMedCrossRef Flora, K., Hahn, M., Rosen, H., & Benner, K. (1998). Milk thistle (Silybum marianum) for the therapy of liver disease. The American Journal of Gastroenterology, 93(2), 139–143.PubMedCrossRef
64.
Zurück zum Zitat (2009). Silybin–phosphatidylcholine complex. Monograph. Alternative Medicine Review, 14(4), 385–390. (2009). Silybin–phosphatidylcholine complex. Monograph. Alternative Medicine Review, 14(4), 385–390.
65.
Zurück zum Zitat Kidd, P. M. (2009). Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts. Alternative Medicine Review, 14(3), 226–246.PubMed Kidd, P. M. (2009). Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts. Alternative Medicine Review, 14(3), 226–246.PubMed
66.
Zurück zum Zitat Yanyu, X., Yunmei, S., Zhipeng, C., & Qineng, P. (2006). The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. International Journal of Pharmaceutics, 307(1), 77–82.PubMedCrossRef Yanyu, X., Yunmei, S., Zhipeng, C., & Qineng, P. (2006). The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. International Journal of Pharmaceutics, 307(1), 77–82.PubMedCrossRef
68.
Zurück zum Zitat Kidd, P., & Head, K. (2005). A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin–phosphatidylcholine complex (Siliphos). Alternative Medicine Review, 10(3), 193–203.PubMed Kidd, P., & Head, K. (2005). A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin–phosphatidylcholine complex (Siliphos). Alternative Medicine Review, 10(3), 193–203.PubMed
69.
Zurück zum Zitat Hoh, C., Boocock, D., Marczylo, T., Singh, R., Berry, D. P., Dennison, A. R., et al. (2006). Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: Silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clinical Cancer Research, 12(9), 2944–2950.PubMedCrossRef Hoh, C., Boocock, D., Marczylo, T., Singh, R., Berry, D. P., Dennison, A. R., et al. (2006). Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: Silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clinical Cancer Research, 12(9), 2944–2950.PubMedCrossRef
70.
Zurück zum Zitat Deep, G., Singh, R. P., Agarwal, C., Kroll, D. J., & Agarwal, R. (2006). Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: A comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene, 25(7), 1053–1069.PubMedCrossRef Deep, G., Singh, R. P., Agarwal, C., Kroll, D. J., & Agarwal, R. (2006). Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: A comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene, 25(7), 1053–1069.PubMedCrossRef
71.
Zurück zum Zitat Mateen, S., Tyagi, A., Agarwal, C., Singh, R. P., & Agarwal, R. (2010). Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. Molecular Carcinogenesis, 49(3), 247–258. doi:10.1002/mc.20595.PubMed Mateen, S., Tyagi, A., Agarwal, C., Singh, R. P., & Agarwal, R. (2010). Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. Molecular Carcinogenesis, 49(3), 247–258. doi:10.​1002/​mc.​20595.PubMed
72.
Zurück zum Zitat Zi, X., & Agarwal, R. (1999). Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: Implications for prostate cancer intervention. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7490–7495.PubMedCrossRef Zi, X., & Agarwal, R. (1999). Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: Implications for prostate cancer intervention. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7490–7495.PubMedCrossRef
73.
Zurück zum Zitat Tyagi, A., Agarwal, C., & Agarwal, R. (2002). The cancer preventive flavonoid silibinin causes hypophosphorylation of Rb/p107 and Rb2/p130 via modulation of cell cycle regulators in human prostate carcinoma DU145 cells. Cell Cycle, 1(2), 137–142.PubMedCrossRef Tyagi, A., Agarwal, C., & Agarwal, R. (2002). The cancer preventive flavonoid silibinin causes hypophosphorylation of Rb/p107 and Rb2/p130 via modulation of cell cycle regulators in human prostate carcinoma DU145 cells. Cell Cycle, 1(2), 137–142.PubMedCrossRef
74.
Zurück zum Zitat Kaur, M., Velmurugan, B., Tyagi, A., Deep, G., Katiyar, S., Agarwal, C., et al. (2009). Silibinin suppresses growth and induces apoptotic death of human colorectal carcinoma LoVo cells in culture and tumor xenograft. Molecular Cancer Therapeutics, 8(8), 2366–2374.PubMedCrossRef Kaur, M., Velmurugan, B., Tyagi, A., Deep, G., Katiyar, S., Agarwal, C., et al. (2009). Silibinin suppresses growth and induces apoptotic death of human colorectal carcinoma LoVo cells in culture and tumor xenograft. Molecular Cancer Therapeutics, 8(8), 2366–2374.PubMedCrossRef
75.
Zurück zum Zitat Agarwal, C., Singh, R. P., Dhanalakshmi, S., Tyagi, A. K., Tecklenburg, M., Sclafani, R. A., et al. (2003). Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene, 22(51), 8271–8282.PubMedCrossRef Agarwal, C., Singh, R. P., Dhanalakshmi, S., Tyagi, A. K., Tecklenburg, M., Sclafani, R. A., et al. (2003). Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene, 22(51), 8271–8282.PubMedCrossRef
77.
Zurück zum Zitat Wang, H. J., Tashiro, S., Onodera, S., & Ikejima, T. (2008). Inhibition of insulin-like growth factor 1 receptor signaling enhanced silibinin-induced activation of death receptor and mitochondrial apoptotic pathways in human breast cancer MCF-7 cells. Journal of Pharmacological Sciences, 107(3), 260–269. doi:JST.JSTAGE/jphs/08054FP.PubMedCrossRef Wang, H. J., Tashiro, S., Onodera, S., & Ikejima, T. (2008). Inhibition of insulin-like growth factor 1 receptor signaling enhanced silibinin-induced activation of death receptor and mitochondrial apoptotic pathways in human breast cancer MCF-7 cells. Journal of Pharmacological Sciences, 107(3), 260–269. doi:JST.​JSTAGE/​jphs/​08054FP.PubMedCrossRef
78.
Zurück zum Zitat Son, Y. G., Kim, E. H., Kim, J. Y., Kim, S. U., Kwon, T. K., Yoon, A. R., et al. (2007). Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Research, 67(17), 8274–8284.PubMedCrossRef Son, Y. G., Kim, E. H., Kim, J. Y., Kim, S. U., Kwon, T. K., Yoon, A. R., et al. (2007). Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Research, 67(17), 8274–8284.PubMedCrossRef
79.
Zurück zum Zitat Singh, R. P., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2005). Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappab: Implications for angioprevention and antiangiogenic therapy. Oncogene, 24(7), 1188–1202.PubMedCrossRef Singh, R. P., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2005). Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappab: Implications for angioprevention and antiangiogenic therapy. Oncogene, 24(7), 1188–1202.PubMedCrossRef
80.
Zurück zum Zitat Raina, K., Rajamanickam, S., Singh, R. P., Deep, G., Chittezhath, M., & Agarwal, R. (2008). Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Research, 68(16), 6822–6830.PubMedCrossRef Raina, K., Rajamanickam, S., Singh, R. P., Deep, G., Chittezhath, M., & Agarwal, R. (2008). Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Research, 68(16), 6822–6830.PubMedCrossRef
81.
Zurück zum Zitat Singh, R. P., Deep, G., Chittezhath, M., Kaur, M., Dwyer-Nield, L. D., Malkinson, A. M., et al. (2006). Effect of silibinin on the growth and progression of primary lung tumors in mice. Journal of the National Cancer Institute, 98(12), 846–855.PubMedCrossRef Singh, R. P., Deep, G., Chittezhath, M., Kaur, M., Dwyer-Nield, L. D., Malkinson, A. M., et al. (2006). Effect of silibinin on the growth and progression of primary lung tumors in mice. Journal of the National Cancer Institute, 98(12), 846–855.PubMedCrossRef
82.
Zurück zum Zitat Singh, R. P., Sharma, G., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2003). Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiology, Biomarkers & Prevention, 12(9), 933–939. Singh, R. P., Sharma, G., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2003). Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiology, Biomarkers & Prevention, 12(9), 933–939.
83.
Zurück zum Zitat Singh, R. P., & Agarwal, R. (2006). Prostate cancer chemoprevention by silibinin: Bench to bedside. Molecular Carcinogenesis, 45(6), 436–442.PubMedCrossRef Singh, R. P., & Agarwal, R. (2006). Prostate cancer chemoprevention by silibinin: Bench to bedside. Molecular Carcinogenesis, 45(6), 436–442.PubMedCrossRef
85.
Zurück zum Zitat Singh, R. P., & Agarwal, R. (2004). Prostate cancer prevention by silibinin. Current Cancer Drug Targets, 4(1), 1–11.PubMedCrossRef Singh, R. P., & Agarwal, R. (2004). Prostate cancer prevention by silibinin. Current Cancer Drug Targets, 4(1), 1–11.PubMedCrossRef
86.
Zurück zum Zitat Singh, R. P., Raina, K., Deep, G., Chan, D., & Agarwal, R. (2009). Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clinical Cancer Research, 15(2), 613–621.PubMedCrossRef Singh, R. P., Raina, K., Deep, G., Chan, D., & Agarwal, R. (2009). Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clinical Cancer Research, 15(2), 613–621.PubMedCrossRef
88.
Zurück zum Zitat Tyagi, A., Sharma, Y., Agarwal, C., & Agarwal, R. (2008). Silibinin impairs constitutively active TGFalpha-EGFR autocrine loop in advanced human prostate carcinoma cells. Pharmaceutical Research, 25(9), 2143–2150.PubMedCrossRef Tyagi, A., Sharma, Y., Agarwal, C., & Agarwal, R. (2008). Silibinin impairs constitutively active TGFalpha-EGFR autocrine loop in advanced human prostate carcinoma cells. Pharmaceutical Research, 25(9), 2143–2150.PubMedCrossRef
90.
Zurück zum Zitat Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial–mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14(23), 7773–7780. doi:10.1158/1078-0432.CCR-08-1309/14/23/7773.PubMedCrossRef Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial–mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14(23), 7773–7780. doi:10.​1158/​1078-0432.​CCR-08-1309/​14/​23/​7773.PubMedCrossRef
91.
Zurück zum Zitat Mokhtari, M. J., Motamed, N., & Shokrgozar, M. A. (2008). Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biology International, 32(8), 888–892.PubMedCrossRef Mokhtari, M. J., Motamed, N., & Shokrgozar, M. A. (2008). Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biology International, 32(8), 888–892.PubMedCrossRef
92.
Zurück zum Zitat Wu, K., Zeng, J., Li, L., Fan, J., Zhang, D., Xue, Y., et al. (2010). Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncology Reports, 23(6), 1545–1552.PubMedCrossRef Wu, K., Zeng, J., Li, L., Fan, J., Zhang, D., Xue, Y., et al. (2010). Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncology Reports, 23(6), 1545–1552.PubMedCrossRef
93.
Zurück zum Zitat Wu, K. J., Zeng, J., Zhu, G. D., Zhang, L. L., Zhang, D., Li, L., et al. (2009). Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacologica Sinica, 30(8), 1162–1168. doi:10.1038/aps.2009.94.PubMedCrossRef Wu, K. J., Zeng, J., Zhu, G. D., Zhang, L. L., Zhang, D., Li, L., et al. (2009). Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacologica Sinica, 30(8), 1162–1168. doi:10.​1038/​aps.​2009.​94.PubMedCrossRef
94.
Zurück zum Zitat Deep, G., Gangar, S. C., & Agarwal, R. (2010). Silibinin inhibits epithelial to mesenchymal transition in prostate cancer cells: Role of E-cadherin and beyond. Proceedings of the 101th AACR Annual Meeting, Washington DC, April 2010. Abstract number 5650. Deep, G., Gangar, S. C., & Agarwal, R. (2010). Silibinin inhibits epithelial to mesenchymal transition in prostate cancer cells: Role of E-cadherin and beyond. Proceedings of the 101th AACR Annual Meeting, Washington DC, April 2010. Abstract number 5650.
95.
Zurück zum Zitat Handorean, A. M., Yang, K., Robbins, E. W., Flaig, T. W., & Iczkowski, K. A. (2009). Silibinin suppresses CD44 expression in prostate cancer cells. American Journal of Translational Research, 1(1), 80–86.PubMed Handorean, A. M., Yang, K., Robbins, E. W., Flaig, T. W., & Iczkowski, K. A. (2009). Silibinin suppresses CD44 expression in prostate cancer cells. American Journal of Translational Research, 1(1), 80–86.PubMed
97.
Zurück zum Zitat Kim, J. H., Kim, K., Jin, H. M., Song, I., Youn, B. U., Lee, J., et al. (2009). Silibinin inhibits osteoclast differentiation mediated by TNF family members. Molecules and Cells. doi:10.1007/s10059-009-0123-y. Kim, J. H., Kim, K., Jin, H. M., Song, I., Youn, B. U., Lee, J., et al. (2009). Silibinin inhibits osteoclast differentiation mediated by TNF family members. Molecules and Cells. doi:10.​1007/​s10059-009-0123-y.
98.
Zurück zum Zitat Gangar, S. C., Deep, G., & Agarwal, R. (2010). Silibinin inhibits advanced human prostate carcinoma-induced osteoclastogenesis. Proceedings of the 101th AACR Annual Meeting, Washington DC, April 2010. Abstract number 5661. Gangar, S. C., Deep, G., & Agarwal, R. (2010). Silibinin inhibits advanced human prostate carcinoma-induced osteoclastogenesis. Proceedings of the 101th AACR Annual Meeting, Washington DC, April 2010. Abstract number 5661.
99.
Zurück zum Zitat Provinciali, M., Papalini, F., Orlando, F., Pierpaoli, S., Donnini, A., Morazzoni, P., et al. (2007). Effect of the silybin–phosphatidylcholine complex (IdB 1016) on the development of mammary tumors in HER-2/neu transgenic mice. Cancer Research, 67(5), 2022–2029.PubMedCrossRef Provinciali, M., Papalini, F., Orlando, F., Pierpaoli, S., Donnini, A., Morazzoni, P., et al. (2007). Effect of the silybin–phosphatidylcholine complex (IdB 1016) on the development of mammary tumors in HER-2/neu transgenic mice. Cancer Research, 67(5), 2022–2029.PubMedCrossRef
100.
Zurück zum Zitat Lee, S. O., Jeong, Y. J., Im, H. G., Kim, C. H., Chang, Y. C., & Lee, I. S. (2007). Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochemical and Biophysical Research Communications, 354(1), 165–171.PubMedCrossRef Lee, S. O., Jeong, Y. J., Im, H. G., Kim, C. H., Chang, Y. C., & Lee, I. S. (2007). Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochemical and Biophysical Research Communications, 354(1), 165–171.PubMedCrossRef
101.
Zurück zum Zitat Chen, P. N., Hsieh, Y. S., Chiang, C. L., Chiou, H. L., Yang, S. F., & Chu, S. C. (2006). Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. Journal of Dental Research, 85(3), 220–225.PubMedCrossRef Chen, P. N., Hsieh, Y. S., Chiang, C. L., Chiou, H. L., Yang, S. F., & Chu, S. C. (2006). Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. Journal of Dental Research, 85(3), 220–225.PubMedCrossRef
102.
Zurück zum Zitat Chu, S. C., Chiou, H. L., Chen, P. N., Yang, S. F., & Hsieh, Y. S. (2004). Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Molecular Carcinogenesis, 40(3), 143–149.PubMedCrossRef Chu, S. C., Chiou, H. L., Chen, P. N., Yang, S. F., & Hsieh, Y. S. (2004). Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Molecular Carcinogenesis, 40(3), 143–149.PubMedCrossRef
103.
Zurück zum Zitat Hsieh, Y. S., Chu, S. C., Yang, S. F., Chen, P. N., Liu, Y. C., & Lu, K. H. (2007). Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis, 28(5), 977–987. doi:10.1093/carcin/bgl221.PubMedCrossRef Hsieh, Y. S., Chu, S. C., Yang, S. F., Chen, P. N., Liu, Y. C., & Lu, K. H. (2007). Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis, 28(5), 977–987. doi:10.​1093/​carcin/​bgl221.PubMedCrossRef
105.
107.
Zurück zum Zitat Vihinen, P., & Kahari, V. M. (2002). Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. International Journal of Cancer, 99(2), 157–166. doi:10.1002/ijc.10329.CrossRef Vihinen, P., & Kahari, V. M. (2002). Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. International Journal of Cancer, 99(2), 157–166. doi:10.​1002/​ijc.​10329.CrossRef
108.
Zurück zum Zitat Itoh, T., Tanioka, M., Matsuda, H., Nishimoto, H., Yoshioka, T., Suzuki, R., et al. (1999). Experimental metastasis is suppressed in MMP-9-deficient mice. Clinical & Experimental Metastasis, 17(2), 177–181.CrossRef Itoh, T., Tanioka, M., Matsuda, H., Nishimoto, H., Yoshioka, T., Suzuki, R., et al. (1999). Experimental metastasis is suppressed in MMP-9-deficient mice. Clinical & Experimental Metastasis, 17(2), 177–181.CrossRef
109.
Zurück zum Zitat Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T., Nishimoto, H., & Itohara, S. (1998). Reduced angiogenesis and tumor progression in gelatinase a-deficient mice. Cancer Research, 58(5), 1048–1051.PubMed Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T., Nishimoto, H., & Itohara, S. (1998). Reduced angiogenesis and tumor progression in gelatinase a-deficient mice. Cancer Research, 58(5), 1048–1051.PubMed
110.
Zurück zum Zitat Garbisa, S., Scagliotti, G., Masiero, L., Di Francesco, C., Caenazzo, C., Onisto, M., et al. (1992). Correlation of serum metalloproteinase levels with lung cancer metastasis and response to therapy. Cancer Research, 52(16), 4548–4549.PubMed Garbisa, S., Scagliotti, G., Masiero, L., Di Francesco, C., Caenazzo, C., Onisto, M., et al. (1992). Correlation of serum metalloproteinase levels with lung cancer metastasis and response to therapy. Cancer Research, 52(16), 4548–4549.PubMed
111.
Zurück zum Zitat Noe, V., Fingleton, B., Jacobs, K., Crawford, H. C., Vermeulen, S., Steelant, W., et al. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. Journal of Cell Science, 114(Pt 1), 111–118.PubMed Noe, V., Fingleton, B., Jacobs, K., Crawford, H. C., Vermeulen, S., Steelant, W., et al. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. Journal of Cell Science, 114(Pt 1), 111–118.PubMed
112.
Zurück zum Zitat Li, X., & Wu, J. F. (2010). Recent developments in patent anti-cancer agents targeting the matrix metalloproteinases (MMPs). Recent Patents on Anticancer Drug Discovery, 5(2), 109–141. doi:E-Pub PRA-ABS-Li-18.CrossRef Li, X., & Wu, J. F. (2010). Recent developments in patent anti-cancer agents targeting the matrix metalloproteinases (MMPs). Recent Patents on Anticancer Drug Discovery, 5(2), 109–141. doi:E-Pub PRA-ABS-Li-18.CrossRef
113.
Zurück zum Zitat Gomez, D. E., Alonso, D. F., Yoshiji, H., & Thorgeirsson, U. P. (1997). Tissue inhibitors of metalloproteinases: Structure, regulation and biological functions. European Journal of Cell Biology, 74(2), 111–122.PubMed Gomez, D. E., Alonso, D. F., Yoshiji, H., & Thorgeirsson, U. P. (1997). Tissue inhibitors of metalloproteinases: Structure, regulation and biological functions. European Journal of Cell Biology, 74(2), 111–122.PubMed
114.
Zurück zum Zitat Chen, P. N., Hsieh, Y. S., Chiou, H. L., & Chu, S. C. (2005). Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chemico-Biological Interactions, 156(2–3), 141–150.PubMedCrossRef Chen, P. N., Hsieh, Y. S., Chiou, H. L., & Chu, S. C. (2005). Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chemico-Biological Interactions, 156(2–3), 141–150.PubMedCrossRef
115.
Zurück zum Zitat Momeny, M., Khorramizadeh, M. R., Ghaffari, S. H., Yousefi, M., Yekaninejad, M. S., Esmaeili, R., et al. (2008). Effects of silibinin on cell growth and invasive properties of a human hepatocellular carcinoma cell line, HepG-2, through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. European Journal of Pharmacology, 591(1–3), 13–20. doi:10.1016/j.ejphar.2008.06.011/S0014-2999(08)00625-0.PubMedCrossRef Momeny, M., Khorramizadeh, M. R., Ghaffari, S. H., Yousefi, M., Yekaninejad, M. S., Esmaeili, R., et al. (2008). Effects of silibinin on cell growth and invasive properties of a human hepatocellular carcinoma cell line, HepG-2, through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. European Journal of Pharmacology, 591(1–3), 13–20. doi:10.​1016/​j.​ejphar.​2008.​06.​011/​S0014-2999(08)00625-0.PubMedCrossRef
116.
Zurück zum Zitat Momeny, M., Malehmir, M., Zakidizaji, M., Ghasemi, R., Ghadimi, H., Shokrgozar, M. A., et al. (2010). Silibinin inhibits invasive properties of human glioblastoma U87MG cells through suppression of cathepsin B and nuclear factor kappa b-mediated induction of matrix metalloproteinase 9. Anticancer Drugs, 21(3), 252–260.PubMedCrossRef Momeny, M., Malehmir, M., Zakidizaji, M., Ghasemi, R., Ghadimi, H., Shokrgozar, M. A., et al. (2010). Silibinin inhibits invasive properties of human glioblastoma U87MG cells through suppression of cathepsin B and nuclear factor kappa b-mediated induction of matrix metalloproteinase 9. Anticancer Drugs, 21(3), 252–260.PubMedCrossRef
118.
Zurück zum Zitat Mohanam, S., Sawaya, R. E., Yamamoto, M., Bruner, J. M., Nicholson, G. L., & Rao, J. S. (1994). Proteolysis and invasiveness of brain tumors: Role of urokinase-type plasminogen activator receptor. Journal of Neurooncology, 22(2), 153–160.CrossRef Mohanam, S., Sawaya, R. E., Yamamoto, M., Bruner, J. M., Nicholson, G. L., & Rao, J. S. (1994). Proteolysis and invasiveness of brain tumors: Role of urokinase-type plasminogen activator receptor. Journal of Neurooncology, 22(2), 153–160.CrossRef
119.
Zurück zum Zitat Mohanam, S., Gladson, C. L., Rao, C. N., & Rao, J. S. (1999). Biological significance of the expression of urokinase-type plasminogen activator receptors (uPARs) in brain tumors. Frontiers in Bioscience, 4, D178–D187.PubMedCrossRef Mohanam, S., Gladson, C. L., Rao, C. N., & Rao, J. S. (1999). Biological significance of the expression of urokinase-type plasminogen activator receptors (uPARs) in brain tumors. Frontiers in Bioscience, 4, D178–D187.PubMedCrossRef
121.
Zurück zum Zitat Huang, C., Jacobson, K., & Schaller, M. D. (2004). A role for JNK-paxillin signaling in cell migration. Cell Cycle, 3(1), 4–6. doi:601.PubMed Huang, C., Jacobson, K., & Schaller, M. D. (2004). A role for JNK-paxillin signaling in cell migration. Cell Cycle, 3(1), 4–6. doi:601.PubMed
122.
Zurück zum Zitat Wu, W. S., Wu, J. R., & Hu, C. T. (2008). Signal cross talks for sustained MAPK activation and cell migration: The potential role of reactive oxygen species. Cancer and Metastasis Reviews, 27(2), 303–314. doi:10.1007/s10555-008-9112-4.PubMedCrossRef Wu, W. S., Wu, J. R., & Hu, C. T. (2008). Signal cross talks for sustained MAPK activation and cell migration: The potential role of reactive oxygen species. Cancer and Metastasis Reviews, 27(2), 303–314. doi:10.​1007/​s10555-008-9112-4.PubMedCrossRef
123.
Zurück zum Zitat Silletti, S., Yebra, M., Perez, B., Cirulli, V., McMahon, M., & Montgomery, A. M. (2004). Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to l1 cell adhesion molecule-dependent motility and invasion. The Journal of Biological Chemistry, 279(28), 28880–28888. doi:10.1074/jbc.M404075200.PubMedCrossRef Silletti, S., Yebra, M., Perez, B., Cirulli, V., McMahon, M., & Montgomery, A. M. (2004). Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to l1 cell adhesion molecule-dependent motility and invasion. The Journal of Biological Chemistry, 279(28), 28880–28888. doi:10.​1074/​jbc.​M404075200.PubMedCrossRef
124.
Zurück zum Zitat Singh, R. P., Dhanalakshmi, S., Mohan, S., Agarwal, C., & Agarwal, R. (2006). Silibinin inhibits UVB- and epidermal growth factor-induced mitogenic and cell survival signaling involving activator protein-1 and nuclear factor-kappab in mouse epidermal JB6 cells. Molecular Cancer Therapeutics, 5(5), 1145–1153.PubMedCrossRef Singh, R. P., Dhanalakshmi, S., Mohan, S., Agarwal, C., & Agarwal, R. (2006). Silibinin inhibits UVB- and epidermal growth factor-induced mitogenic and cell survival signaling involving activator protein-1 and nuclear factor-kappab in mouse epidermal JB6 cells. Molecular Cancer Therapeutics, 5(5), 1145–1153.PubMedCrossRef
125.
Zurück zum Zitat Gu, M., Dhanalakshmi, S., Mohan, S., Singh, R. P., & Agarwal, R. (2005). Silibinin inhibits ultraviolet B radiation-induced mitogenic and survival signaling, and associated biological responses in SKH-1 mouse skin. Carcinogenesis, 26(8), 1404–1413.PubMedCrossRef Gu, M., Dhanalakshmi, S., Mohan, S., Singh, R. P., & Agarwal, R. (2005). Silibinin inhibits ultraviolet B radiation-induced mitogenic and survival signaling, and associated biological responses in SKH-1 mouse skin. Carcinogenesis, 26(8), 1404–1413.PubMedCrossRef
126.
Zurück zum Zitat Mallikarjuna, G., Dhanalakshmi, S., Singh, R. P., Agarwal, C., & Agarwal, R. (2004). Silibinin protects against photocarcinogenesis via modulation of cell cycle regulators, mitogen-activated protein kinases, and Akt signaling. Cancer Research, 64(17), 6349–6356.PubMedCrossRef Mallikarjuna, G., Dhanalakshmi, S., Singh, R. P., Agarwal, C., & Agarwal, R. (2004). Silibinin protects against photocarcinogenesis via modulation of cell cycle regulators, mitogen-activated protein kinases, and Akt signaling. Cancer Research, 64(17), 6349–6356.PubMedCrossRef
127.
Zurück zum Zitat Tyagi, A., Singh, R. P., Ramasamy, K., Raina, K., Redente, E. F., Dwyer-Nield, L. D., et al. (2009). Growth inhibition and regression of lung tumors by silibinin: Modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappab and signal transducers and activators of transcription 3. Cancer Prevention Research (Philadelphia, PA), 2(1), 74–83. doi:10.1158/1940-6207.CAPR-08-0095/2/1/74. Tyagi, A., Singh, R. P., Ramasamy, K., Raina, K., Redente, E. F., Dwyer-Nield, L. D., et al. (2009). Growth inhibition and regression of lung tumors by silibinin: Modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappab and signal transducers and activators of transcription 3. Cancer Prevention Research (Philadelphia, PA), 2(1), 74–83. doi:10.​1158/​1940-6207.​CAPR-08-0095/​2/​1/​74.
128.
Zurück zum Zitat Singh, R. P., Gu, M., & Agarwal, R. (2008). Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Research, 68(6), 2043–2050.PubMedCrossRef Singh, R. P., Gu, M., & Agarwal, R. (2008). Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Research, 68(6), 2043–2050.PubMedCrossRef
129.
Zurück zum Zitat Singh, R. P., Deep, G., Blouin, M. J., Pollak, M. N., & Agarwal, R. (2007). Silibinin suppresses in vivo growth of human prostate carcinoma PC-3 tumor xenograft. Carcinogenesis, 28(12), 2567–2574.PubMedCrossRef Singh, R. P., Deep, G., Blouin, M. J., Pollak, M. N., & Agarwal, R. (2007). Silibinin suppresses in vivo growth of human prostate carcinoma PC-3 tumor xenograft. Carcinogenesis, 28(12), 2567–2574.PubMedCrossRef
130.
Zurück zum Zitat Gu, M., Singh, R. P., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2007). Silibinin inhibits inflammatory and angiogenic attributes in photocarcinogenesis in SKH-1 hairless mice. Cancer Research, 67(7), 3483–3491.PubMedCrossRef Gu, M., Singh, R. P., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2007). Silibinin inhibits inflammatory and angiogenic attributes in photocarcinogenesis in SKH-1 hairless mice. Cancer Research, 67(7), 3483–3491.PubMedCrossRef
131.
Zurück zum Zitat Chittezhath, M., Deep, G., Singh, R. P., Agarwal, C., & Agarwal, R. (2008). Silibinin inhibits cytokine-induced signaling cascades and down-regulates inducible nitric oxide synthase in human lung carcinoma A549 cells. Molecular Cancer Therapeutics, 7(7), 1817–1826.PubMedCrossRef Chittezhath, M., Deep, G., Singh, R. P., Agarwal, C., & Agarwal, R. (2008). Silibinin inhibits cytokine-induced signaling cascades and down-regulates inducible nitric oxide synthase in human lung carcinoma A549 cells. Molecular Cancer Therapeutics, 7(7), 1817–1826.PubMedCrossRef
132.
Zurück zum Zitat Thelen, P., Wuttke, W., Jarry, H., Grzmil, M., & Ringert, R. H. (2004). Inhibition of telomerase activity and secretion of prostate specific antigen by silibinin in prostate cancer cells. Journal d’Urologie, 171(5), 1934–1938. Thelen, P., Wuttke, W., Jarry, H., Grzmil, M., & Ringert, R. H. (2004). Inhibition of telomerase activity and secretion of prostate specific antigen by silibinin in prostate cancer cells. Journal d’Urologie, 171(5), 1934–1938.
133.
Zurück zum Zitat Sharma, Y., Agarwal, C., Singh, A. K., & Agarwal, R. (2001). Inhibitory effect of silibinin on ligand binding to erbB1 and associated mitogenic signaling, growth, and DNA synthesis in advanced human prostate carcinoma cells. Molecular Carcinogenesis, 30(4), 224–236.PubMedCrossRef Sharma, Y., Agarwal, C., Singh, A. K., & Agarwal, R. (2001). Inhibitory effect of silibinin on ligand binding to erbB1 and associated mitogenic signaling, growth, and DNA synthesis in advanced human prostate carcinoma cells. Molecular Carcinogenesis, 30(4), 224–236.PubMedCrossRef
134.
Zurück zum Zitat Deep, G., Oberlies, N. H., Kroll, D. J., & Agarwal, R. (2008). Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. International Journal of Cancer, 123(1), 41–50.CrossRef Deep, G., Oberlies, N. H., Kroll, D. J., & Agarwal, R. (2008). Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. International Journal of Cancer, 123(1), 41–50.CrossRef
135.
Zurück zum Zitat Flaig, T. W., Su, L. J., Harrison, G., Agarwal, R., & Glode, L. M. (2007). Silibinin synergizes with mitoxantrone to inhibit cell growth and induce apoptosis in human prostate cancer cells. International Journal of Cancer, 120(9), 2028–2033.CrossRef Flaig, T. W., Su, L. J., Harrison, G., Agarwal, R., & Glode, L. M. (2007). Silibinin synergizes with mitoxantrone to inhibit cell growth and induce apoptosis in human prostate cancer cells. International Journal of Cancer, 120(9), 2028–2033.CrossRef
136.
Zurück zum Zitat Dhanalakshmi, S., Singh, R. P., Agarwal, C., & Agarwal, R. (2002). Silibinin inhibits constitutive and TNFalpha-induced activation of NF-kappab and sensitizes human prostate carcinoma DU145 cells to TNFalpha-induced apoptosis. Oncogene, 21(11), 1759–1767.PubMedCrossRef Dhanalakshmi, S., Singh, R. P., Agarwal, C., & Agarwal, R. (2002). Silibinin inhibits constitutive and TNFalpha-induced activation of NF-kappab and sensitizes human prostate carcinoma DU145 cells to TNFalpha-induced apoptosis. Oncogene, 21(11), 1759–1767.PubMedCrossRef
137.
Zurück zum Zitat Tyagi, A. K., Singh, R. P., Agarwal, C., Chan, D. C., & Agarwal, R. (2002). Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clinical Cancer Research, 8(11), 3512–3519.PubMed Tyagi, A. K., Singh, R. P., Agarwal, C., Chan, D. C., & Agarwal, R. (2002). Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clinical Cancer Research, 8(11), 3512–3519.PubMed
138.
Zurück zum Zitat Agarwal, C., Tyagi, A., Kaur, M., & Agarwal, R. (2007). Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis, 28(7), 1463–1470.PubMedCrossRef Agarwal, C., Tyagi, A., Kaur, M., & Agarwal, R. (2007). Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis, 28(7), 1463–1470.PubMedCrossRef
139.
Zurück zum Zitat Dhanalakshmi, S., Agarwal, P., Glode, L. M., & Agarwal, R. (2003). Silibinin sensitizes human prostate carcinoma DU145 cells to cisplatin- and carboplatin-induced growth inhibition and apoptotic death. International Journal of Cancer, 106(5), 699–705.CrossRef Dhanalakshmi, S., Agarwal, P., Glode, L. M., & Agarwal, R. (2003). Silibinin sensitizes human prostate carcinoma DU145 cells to cisplatin- and carboplatin-induced growth inhibition and apoptotic death. International Journal of Cancer, 106(5), 699–705.CrossRef
140.
Zurück zum Zitat Roy, S., Kaur, M., Agarwal, C., Tecklenburg, M., Sclafani, R. A., & Agarwal, R. (2007). p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Molecular Cancer Therapeutics, 6(10), 2696–2707.PubMedCrossRef Roy, S., Kaur, M., Agarwal, C., Tecklenburg, M., Sclafani, R. A., & Agarwal, R. (2007). p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Molecular Cancer Therapeutics, 6(10), 2696–2707.PubMedCrossRef
141.
Zurück zum Zitat Tyagi, A., Agarwal, C., & Agarwal, R. (2002). Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb–E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: Role in prostate cancer prevention. Molecular Cancer Therapeutics, 1(7), 525–532.PubMed Tyagi, A., Agarwal, C., & Agarwal, R. (2002). Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb–E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: Role in prostate cancer prevention. Molecular Cancer Therapeutics, 1(7), 525–532.PubMed
142.
Zurück zum Zitat Zi, X., Zhang, J., Agarwal, R., & Pollak, M. (2000). Silibinin up-regulates insulin-like growth factor-binding protein 3 expression and inhibits proliferation of androgen-independent prostate cancer cells. Cancer Research, 60(20), 5617–5620.PubMed Zi, X., Zhang, J., Agarwal, R., & Pollak, M. (2000). Silibinin up-regulates insulin-like growth factor-binding protein 3 expression and inhibits proliferation of androgen-independent prostate cancer cells. Cancer Research, 60(20), 5617–5620.PubMed
143.
Zurück zum Zitat Thelen, P., Jarry, H., Ringert, R. H., & Wuttke, W. (2004). Silibinin down-regulates prostate epithelium-derived Ets transcription factor in LNCaP prostate cancer cells. Planta Medica, 70(5), 397–400.PubMedCrossRef Thelen, P., Jarry, H., Ringert, R. H., & Wuttke, W. (2004). Silibinin down-regulates prostate epithelium-derived Ets transcription factor in LNCaP prostate cancer cells. Planta Medica, 70(5), 397–400.PubMedCrossRef
144.
Zurück zum Zitat Tyagi, A., Bhatia, N., Condon, M. S., Bosland, M. C., Agarwal, C., & Agarwal, R. (2002). Antiproliferative and apoptotic effects of silibinin in rat prostate cancer cells. The Prostate, 53(3), 211–217. doi:10.1002/pros.10146.PubMedCrossRef Tyagi, A., Bhatia, N., Condon, M. S., Bosland, M. C., Agarwal, C., & Agarwal, R. (2002). Antiproliferative and apoptotic effects of silibinin in rat prostate cancer cells. The Prostate, 53(3), 211–217. doi:10.​1002/​pros.​10146.PubMedCrossRef
145.
Zurück zum Zitat Zhu, W., Zhang, J. S., & Young, C. Y. (2001). Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis, 22(9), 1399–1403.PubMedCrossRef Zhu, W., Zhang, J. S., & Young, C. Y. (2001). Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis, 22(9), 1399–1403.PubMedCrossRef
146.
Zurück zum Zitat Bhatia, N., Zhao, J., Wolf, D. M., & Agarwal, R. (1999). Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: Comparison with silymarin. Cancer Letters, 147(1–2), 77–84.PubMedCrossRef Bhatia, N., Zhao, J., Wolf, D. M., & Agarwal, R. (1999). Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: Comparison with silymarin. Cancer Letters, 147(1–2), 77–84.PubMedCrossRef
147.
Zurück zum Zitat Deep, G., Raina, K., Singh, R. P., Oberlies, N. H., Kroll, D. J., & Agarwal, R. (2008). Isosilibinin inhibits advanced human prostate cancer growth in athymic nude mice: Comparison with silymarin and silibinin. International Journal of Cancer, 123(12), 2750–2758.CrossRef Deep, G., Raina, K., Singh, R. P., Oberlies, N. H., Kroll, D. J., & Agarwal, R. (2008). Isosilibinin inhibits advanced human prostate cancer growth in athymic nude mice: Comparison with silymarin and silibinin. International Journal of Cancer, 123(12), 2750–2758.CrossRef
148.
Zurück zum Zitat Singh, R. P., Dhanalakshmi, S., Tyagi, A. K., Chan, D. C., Agarwal, C., & Agarwal, R. (2002). Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Research, 62(11), 3063–3069.PubMed Singh, R. P., Dhanalakshmi, S., Tyagi, A. K., Chan, D. C., Agarwal, C., & Agarwal, R. (2002). Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Research, 62(11), 3063–3069.PubMed
150.
Zurück zum Zitat Verschoyle, R. D., Greaves, P., Patel, K., Marsden, D. A., Brown, K., Steward, W. P., et al. (2008). Evaluation of the cancer chemopreventive efficacy of silibinin in genetic mouse models of prostate and intestinal carcinogenesis: Relationship with silibinin levels. European Journal of Cancer, 44(6), 898–906.PubMedCrossRef Verschoyle, R. D., Greaves, P., Patel, K., Marsden, D. A., Brown, K., Steward, W. P., et al. (2008). Evaluation of the cancer chemopreventive efficacy of silibinin in genetic mouse models of prostate and intestinal carcinogenesis: Relationship with silibinin levels. European Journal of Cancer, 44(6), 898–906.PubMedCrossRef
151.
Zurück zum Zitat Dhanalakshmi, S., Agarwal, C., Singh, R. P., & Agarwal, R. (2005). Silibinin up-regulates DNA-protein kinase-dependent p53 activation to enhance UVB-induced apoptosis in mouse epithelial JB6 cells. The Journal of Biological Chemistry, 280(21), 20375–20383.PubMedCrossRef Dhanalakshmi, S., Agarwal, C., Singh, R. P., & Agarwal, R. (2005). Silibinin up-regulates DNA-protein kinase-dependent p53 activation to enhance UVB-induced apoptosis in mouse epithelial JB6 cells. The Journal of Biological Chemistry, 280(21), 20375–20383.PubMedCrossRef
152.
Zurück zum Zitat Dhanalakshmi, S., Mallikarjuna, G. U., Singh, R. P., & Agarwal, R. (2004). Dual efficacy of silibinin in protecting or enhancing ultraviolet B radiation-caused apoptosis in HaCaT human immortalized keratinocytes. Carcinogenesis, 25(1), 99–106.PubMedCrossRef Dhanalakshmi, S., Mallikarjuna, G. U., Singh, R. P., & Agarwal, R. (2004). Dual efficacy of silibinin in protecting or enhancing ultraviolet B radiation-caused apoptosis in HaCaT human immortalized keratinocytes. Carcinogenesis, 25(1), 99–106.PubMedCrossRef
153.
Zurück zum Zitat Mohan, S., Dhanalakshmi, S., Mallikarjuna, G. U., Singh, R. P., & Agarwal, R. (2004). Silibinin modulates UVB-induced apoptosis via mitochondrial proteins, caspases activation, and mitogen-activated protein kinase signaling in human epidermoid carcinoma A431 cells. Biochemical and Biophysical Research Communications, 320(1), 183–189.PubMedCrossRef Mohan, S., Dhanalakshmi, S., Mallikarjuna, G. U., Singh, R. P., & Agarwal, R. (2004). Silibinin modulates UVB-induced apoptosis via mitochondrial proteins, caspases activation, and mitogen-activated protein kinase signaling in human epidermoid carcinoma A431 cells. Biochemical and Biophysical Research Communications, 320(1), 183–189.PubMedCrossRef
154.
Zurück zum Zitat Bhatia, N., Agarwal, C., & Agarwal, R. (2001). Differential responses of skin cancer-chemopreventive agents silibinin, quercetin, and epigallocatechin 3-gallate on mitogenic signaling and cell cycle regulators in human epidermoid carcinoma A431 cells. Nutrition and Cancer, 39(2), 292–299.PubMedCrossRef Bhatia, N., Agarwal, C., & Agarwal, R. (2001). Differential responses of skin cancer-chemopreventive agents silibinin, quercetin, and epigallocatechin 3-gallate on mitogenic signaling and cell cycle regulators in human epidermoid carcinoma A431 cells. Nutrition and Cancer, 39(2), 292–299.PubMedCrossRef
155.
Zurück zum Zitat Svobodova, A., Zdarilova, A., Walterova, D., & Vostalova, J. (2007). Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. Journal of Dermatological Science, 48(3), 213–224.PubMedCrossRef Svobodova, A., Zdarilova, A., Walterova, D., & Vostalova, J. (2007). Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. Journal of Dermatological Science, 48(3), 213–224.PubMedCrossRef
156.
Zurück zum Zitat Singh, R. P., Tyagi, A. K., Zhao, J., & Agarwal, R. (2002). Silymarin inhibits growth and causes regression of established skin tumors in sencar mice via modulation of mitogen-activated protein kinases and induction of apoptosis. Carcinogenesis, 23(3), 499–510.PubMedCrossRef Singh, R. P., Tyagi, A. K., Zhao, J., & Agarwal, R. (2002). Silymarin inhibits growth and causes regression of established skin tumors in sencar mice via modulation of mitogen-activated protein kinases and induction of apoptosis. Carcinogenesis, 23(3), 499–510.PubMedCrossRef
157.
Zurück zum Zitat Gu, M., Dhanalakshmi, S., Singh, R. P., & Agarwal, R. (2005). Dietary feeding of silibinin prevents early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis. Cancer Epidemiology, Biomarkers & Prevention, 14(5), 1344–1349.CrossRef Gu, M., Dhanalakshmi, S., Singh, R. P., & Agarwal, R. (2005). Dietary feeding of silibinin prevents early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis. Cancer Epidemiology, Biomarkers & Prevention, 14(5), 1344–1349.CrossRef
158.
Zurück zum Zitat Dhanalakshmi, S., Mallikarjuna, G. U., Singh, R. P., & Agarwal, R. (2004). Silibinin prevents ultraviolet radiation-caused skin damages in SKH-1 hairless mice via a decrease in thymine dimer positive cells and an up-regulation of p53-p21/Cip1 in epidermis. Carcinogenesis, 25(8), 1459–1465.PubMedCrossRef Dhanalakshmi, S., Mallikarjuna, G. U., Singh, R. P., & Agarwal, R. (2004). Silibinin prevents ultraviolet radiation-caused skin damages in SKH-1 hairless mice via a decrease in thymine dimer positive cells and an up-regulation of p53-p21/Cip1 in epidermis. Carcinogenesis, 25(8), 1459–1465.PubMedCrossRef
159.
Zurück zum Zitat Gu, M., Singh, R. P., Dhanalakshmi, S., Mohan, S., & Agarwal, R. (2006). Differential effect of silibinin on E2F transcription factors and associated biological events in chronically UVB-exposed skin versus tumors in SKH-1 hairless mice. Molecular Cancer Therapeutics, 5(8), 2121–2129.PubMedCrossRef Gu, M., Singh, R. P., Dhanalakshmi, S., Mohan, S., & Agarwal, R. (2006). Differential effect of silibinin on E2F transcription factors and associated biological events in chronically UVB-exposed skin versus tumors in SKH-1 hairless mice. Molecular Cancer Therapeutics, 5(8), 2121–2129.PubMedCrossRef
160.
Zurück zum Zitat Zhao, J., & Agarwal, R. (1999). Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: Implications in cancer chemoprevention. Carcinogenesis, 20(11), 2101–2108.PubMedCrossRef Zhao, J., & Agarwal, R. (1999). Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: Implications in cancer chemoprevention. Carcinogenesis, 20(11), 2101–2108.PubMedCrossRef
161.
Zurück zum Zitat Sharma, G., Singh, R. P., Chan, D. C., & Agarwal, R. (2003). Silibinin induces growth inhibition and apoptotic cell death in human lung carcinoma cells. Anticancer Research, 23(3B), 2649–2655.PubMed Sharma, G., Singh, R. P., Chan, D. C., & Agarwal, R. (2003). Silibinin induces growth inhibition and apoptotic cell death in human lung carcinoma cells. Anticancer Research, 23(3B), 2649–2655.PubMed
162.
Zurück zum Zitat Singh, R. P., Mallikarjuna, G. U., Sharma, G., Dhanalakshmi, S., Tyagi, A. K., Chan, D. C., et al. (2004). Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappab-mediated inducible chemoresistance. Clinical Cancer Research, 10(24), 8641–8647.PubMedCrossRef Singh, R. P., Mallikarjuna, G. U., Sharma, G., Dhanalakshmi, S., Tyagi, A. K., Chan, D. C., et al. (2004). Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappab-mediated inducible chemoresistance. Clinical Cancer Research, 10(24), 8641–8647.PubMedCrossRef
163.
Zurück zum Zitat Yan, Y., Wang, Y., Tan, Q., Lubet, R. A., & You, M. (2005). Efficacy of deguelin and silibinin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice. Neoplasia, 7(12), 1053–1057.PubMedCrossRef Yan, Y., Wang, Y., Tan, Q., Lubet, R. A., & You, M. (2005). Efficacy of deguelin and silibinin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice. Neoplasia, 7(12), 1053–1057.PubMedCrossRef
164.
Zurück zum Zitat Kaur, M., Velmurugan, B., Tyagi, A., Agarwal, C., Singh, R. P., & Agarwal, R. (2010). Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia, 12(5), 415–424.PubMed Kaur, M., Velmurugan, B., Tyagi, A., Agarwal, C., Singh, R. P., & Agarwal, R. (2010). Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia, 12(5), 415–424.PubMed
165.
Zurück zum Zitat Hogan, F. S., Krishnegowda, N. K., Mikhailova, M., & Kahlenberg, M. S. (2007). Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. The Journal of Surgical Research, 143(1), 58–65.PubMedCrossRef Hogan, F. S., Krishnegowda, N. K., Mikhailova, M., & Kahlenberg, M. S. (2007). Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. The Journal of Surgical Research, 143(1), 58–65.PubMedCrossRef
166.
Zurück zum Zitat Yang, S. H., Lin, J. K., Huang, C. J., Chen, W. S., Li, S. Y., & Chiu, J. H. (2005). Silibinin inhibits angiogenesis via Flt-1, but not KDR, receptor up-regulation. The Journal of Surgical Research, 128(1), 140–146.PubMed Yang, S. H., Lin, J. K., Huang, C. J., Chen, W. S., Li, S. Y., & Chiu, J. H. (2005). Silibinin inhibits angiogenesis via Flt-1, but not KDR, receptor up-regulation. The Journal of Surgical Research, 128(1), 140–146.PubMed
167.
Zurück zum Zitat Yang, S. H., Lin, J. K., Chen, W. S., & Chiu, J. H. (2003). Anti-angiogenic effect of silymarin on colon cancer LoVo cell line. The Journal of Surgical Research, 113(1), 133–138.PubMedCrossRef Yang, S. H., Lin, J. K., Chen, W. S., & Chiu, J. H. (2003). Anti-angiogenic effect of silymarin on colon cancer LoVo cell line. The Journal of Surgical Research, 113(1), 133–138.PubMedCrossRef
168.
Zurück zum Zitat Rajamanickam, S., Kaur, M., Velmurugan, B., Singh, R. P., & Agarwal, R. (2009). Silibinin suppresses spontaneous tumorigenesis in APC min/+ mouse model by modulating beta-catenin pathway. Pharmaceutical Research, 26(12), 2558–2567.PubMedCrossRef Rajamanickam, S., Kaur, M., Velmurugan, B., Singh, R. P., & Agarwal, R. (2009). Silibinin suppresses spontaneous tumorigenesis in APC min/+ mouse model by modulating beta-catenin pathway. Pharmaceutical Research, 26(12), 2558–2567.PubMedCrossRef
169.
Zurück zum Zitat Sangeetha, N., Felix, A. J., & Nalini, N. (2009). Silibinin modulates biotransforming microbial enzymes and prevents 1, 2-dimethylhydrazine-induced preneoplastic changes in experimental colon cancer. European Journal of Cancer Prevention, 18(5), 385–394.PubMedCrossRef Sangeetha, N., Felix, A. J., & Nalini, N. (2009). Silibinin modulates biotransforming microbial enzymes and prevents 1, 2-dimethylhydrazine-induced preneoplastic changes in experimental colon cancer. European Journal of Cancer Prevention, 18(5), 385–394.PubMedCrossRef
170.
Zurück zum Zitat Sangeetha, N., Aranganathan, S., & Nalini, N. (2010). Silibinin ameliorates oxidative stress induced aberrant crypt foci and lipid peroxidation in 1, 2 dimethylhydrazine induced rat colon cancer. Investigational New Drugs, 28(3), 225–233. doi:10.1007/s10637-009-9237-5.PubMedCrossRef Sangeetha, N., Aranganathan, S., & Nalini, N. (2010). Silibinin ameliorates oxidative stress induced aberrant crypt foci and lipid peroxidation in 1, 2 dimethylhydrazine induced rat colon cancer. Investigational New Drugs, 28(3), 225–233. doi:10.​1007/​s10637-009-9237-5.PubMedCrossRef
171.
Zurück zum Zitat Velmurugan, B., Singh, R. P., Tyagi, A., & Agarwal, R. (2008). Inhibition of azoxymethane-induced colonic aberrant crypt foci formation by silibinin in male fisher 344 rats. Cancer Prevention Research (Philadelphia, PA), 1(5), 376–384. Velmurugan, B., Singh, R. P., Tyagi, A., & Agarwal, R. (2008). Inhibition of azoxymethane-induced colonic aberrant crypt foci formation by silibinin in male fisher 344 rats. Cancer Prevention Research (Philadelphia, PA), 1(5), 376–384.
172.
Zurück zum Zitat Tyagi, A. K., Agarwal, C., Chan, D. C., & Agarwal, R. (2004). Synergistic anti-cancer effects of silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma MCF-7 and MDA-MB468 cells. Oncology Reports, 11(2), 493–499.PubMed Tyagi, A. K., Agarwal, C., Chan, D. C., & Agarwal, R. (2004). Synergistic anti-cancer effects of silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma MCF-7 and MDA-MB468 cells. Oncology Reports, 11(2), 493–499.PubMed
173.
Zurück zum Zitat Wang, H. J., Wei, X. F., Jiang, Y. Y., Huang, H., Yang, Y., Fan, S. M., et al. (2010). Silibinin induces the generation of nitric oxide in human breast cancer MCF-7 cells. Free Radical Research, 44(5), 577–584. doi:10.3109/10715761003692495.PubMedCrossRef Wang, H. J., Wei, X. F., Jiang, Y. Y., Huang, H., Yang, Y., Fan, S. M., et al. (2010). Silibinin induces the generation of nitric oxide in human breast cancer MCF-7 cells. Free Radical Research, 44(5), 577–584. doi:10.​3109/​1071576100369249​5.PubMedCrossRef
174.
Zurück zum Zitat Zi, X., Feyes, D. K., & Agarwal, R. (1998). Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: Induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. Clinical Cancer Research, 4(4), 1055–1064.PubMed Zi, X., Feyes, D. K., & Agarwal, R. (1998). Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: Induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. Clinical Cancer Research, 4(4), 1055–1064.PubMed
178.
Zurück zum Zitat Scambia, G., De Vincenzo, R., Ranelletti, F. O., Panici, P. B., Ferrandina, G., D’Agostino, G., et al. (1996). Antiproliferative effect of silybin on gynaecological malignancies: Synergism with cisplatin and doxorubicin. European Journal of Cancer, 32A(5), 877–882.PubMedCrossRef Scambia, G., De Vincenzo, R., Ranelletti, F. O., Panici, P. B., Ferrandina, G., D’Agostino, G., et al. (1996). Antiproliferative effect of silybin on gynaecological malignancies: Synergism with cisplatin and doxorubicin. European Journal of Cancer, 32A(5), 877–882.PubMedCrossRef
179.
Zurück zum Zitat Verschoyle, R. D., Brown, K., Steward, W. P., & Gescher, A. J. (2008). Consumption of silibinin, a flavonolignan from milk thistle, and mammary cancer development in the C3(1) SV40 T, t antigen transgenic multiple mammary adenocarcinoma (Tag) mouse. Cancer Chemotherapy and Pharmacology, 62(2), 369–372.PubMedCrossRef Verschoyle, R. D., Brown, K., Steward, W. P., & Gescher, A. J. (2008). Consumption of silibinin, a flavonolignan from milk thistle, and mammary cancer development in the C3(1) SV40 T, t antigen transgenic multiple mammary adenocarcinoma (Tag) mouse. Cancer Chemotherapy and Pharmacology, 62(2), 369–372.PubMedCrossRef
180.
Zurück zum Zitat Qi, L., Singh, R. P., Lu, Y., Agarwal, R., Harrison, G. S., Franzusoff, A., et al. (2003). Epidermal growth factor receptor mediates silibinin-induced cytotoxicity in a rat glioma cell line. Cancer Biology & Therapy, 2(5), 526–531. Qi, L., Singh, R. P., Lu, Y., Agarwal, R., Harrison, G. S., Franzusoff, A., et al. (2003). Epidermal growth factor receptor mediates silibinin-induced cytotoxicity in a rat glioma cell line. Cancer Biology & Therapy, 2(5), 526–531.
181.
Zurück zum Zitat Kim, K. W., Choi, C. H., Kim, T. H., Kwon, C. H., Woo, J. S., & Kim, Y. K. (2009). Silibinin inhibits glioma cell proliferation via Ca2+/ROS/MAPK-dependent mechanism in vitro and glioma tumor growth in vivo. Neurochemical Research, 34(8), 1479–1490. doi:10.1007/s11064-009-9935-6.PubMedCrossRef Kim, K. W., Choi, C. H., Kim, T. H., Kwon, C. H., Woo, J. S., & Kim, Y. K. (2009). Silibinin inhibits glioma cell proliferation via Ca2+/ROS/MAPK-dependent mechanism in vitro and glioma tumor growth in vivo. Neurochemical Research, 34(8), 1479–1490. doi:10.​1007/​s11064-009-9935-6.PubMedCrossRef
182.
Zurück zum Zitat Varghese, L., Agarwal, C., Tyagi, A., Singh, R. P., & Agarwal, R. (2005). Silibinin efficacy against human hepatocellular carcinoma. Clinical Cancer Research, 11(23), 8441–8448.PubMedCrossRef Varghese, L., Agarwal, C., Tyagi, A., Singh, R. P., & Agarwal, R. (2005). Silibinin efficacy against human hepatocellular carcinoma. Clinical Cancer Research, 11(23), 8441–8448.PubMedCrossRef
184.
Zurück zum Zitat Garcia-Maceira, P., & Mateo, J. (2009). Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: Implications for anticancer therapy. Oncogene, 28(3), 313–324. doi:10.1038/onc.2008.398.PubMedCrossRef Garcia-Maceira, P., & Mateo, J. (2009). Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: Implications for anticancer therapy. Oncogene, 28(3), 313–324. doi:10.​1038/​onc.​2008.​398.PubMedCrossRef
186.
Zurück zum Zitat Lah, J. J., Cui, W., & Hu, K. Q. (2007). Effects and mechanisms of silibinin on human hepatoma cell lines. World Journal of Gastroenterology, 13(40), 5299–5305.PubMed Lah, J. J., Cui, W., & Hu, K. Q. (2007). Effects and mechanisms of silibinin on human hepatoma cell lines. World Journal of Gastroenterology, 13(40), 5299–5305.PubMed
187.
Zurück zum Zitat Cui, W., Gu, F., & Hu, K. Q. (2009). Effects and mechanisms of silibinin on human hepatocellular carcinoma xenografts in nude mice. World Journal of Gastroenterology, 15(16), 1943–1950.PubMedCrossRef Cui, W., Gu, F., & Hu, K. Q. (2009). Effects and mechanisms of silibinin on human hepatocellular carcinoma xenografts in nude mice. World Journal of Gastroenterology, 15(16), 1943–1950.PubMedCrossRef
188.
Zurück zum Zitat Zhou, L., Liu, P., Chen, B., Wang, Y., Wang, X., Internati, M. C., et al. (2008). Silibinin restores paclitaxel sensitivity to paclitaxel-resistant human ovarian carcinoma cells. Anticancer Research, 28(2A), 1119–1127.PubMed Zhou, L., Liu, P., Chen, B., Wang, Y., Wang, X., Internati, M. C., et al. (2008). Silibinin restores paclitaxel sensitivity to paclitaxel-resistant human ovarian carcinoma cells. Anticancer Research, 28(2A), 1119–1127.PubMed
189.
Zurück zum Zitat Gallo, D., Giacomelli, S., Ferlini, C., Raspaglio, G., Apollonio, P., Prislei, S., et al. (2003). Antitumour activity of the silybin–phosphatidylcholine complex, IdB 1016, against human ovarian cancer. European Journal of Cancer, 39(16), 2403–2410. doi:S0959804903006245.PubMedCrossRef Gallo, D., Giacomelli, S., Ferlini, C., Raspaglio, G., Apollonio, P., Prislei, S., et al. (2003). Antitumour activity of the silybin–phosphatidylcholine complex, IdB 1016, against human ovarian cancer. European Journal of Cancer, 39(16), 2403–2410. doi:S095980490300624​5.PubMedCrossRef
190.
Zurück zum Zitat Tyagi, A., Singh, R. P., Agarwal, C., & Agarwal, R. (2006). Silibinin activates p53-caspase 2 pathway and causes caspase-mediated cleavage of Cip1/p21 in apoptosis induction in bladder transitional-cell papilloma RT4 cells: Evidence for a regulatory loop between p53 and caspase 2. Carcinogenesis, 27(11), 2269–2280.PubMedCrossRef Tyagi, A., Singh, R. P., Agarwal, C., & Agarwal, R. (2006). Silibinin activates p53-caspase 2 pathway and causes caspase-mediated cleavage of Cip1/p21 in apoptosis induction in bladder transitional-cell papilloma RT4 cells: Evidence for a regulatory loop between p53 and caspase 2. Carcinogenesis, 27(11), 2269–2280.PubMedCrossRef
191.
Zurück zum Zitat Singh, R. P., Tyagi, A., Sharma, G., Mohan, S., & Agarwal, R. (2008). Oral silibinin inhibits in vivo human bladder tumor xenograft growth involving down-regulation of survivin. Clinical Cancer Research, 14(1), 300–308.PubMedCrossRef Singh, R. P., Tyagi, A., Sharma, G., Mohan, S., & Agarwal, R. (2008). Oral silibinin inhibits in vivo human bladder tumor xenograft growth involving down-regulation of survivin. Clinical Cancer Research, 14(1), 300–308.PubMedCrossRef
192.
Zurück zum Zitat Tyagi, A., Agarwal, C., Harrison, G., Glode, L. M., & Agarwal, R. (2004). Silibinin causes cell cycle arrest and apoptosis in human bladder transitional cell carcinoma cells by regulating CDKI–CDK–cyclin cascade, and caspase 3 and PARP cleavages. Carcinogenesis, 25(9), 1711–1720. doi:10.1093/carcin/bgh180bgh180.PubMedCrossRef Tyagi, A., Agarwal, C., Harrison, G., Glode, L. M., & Agarwal, R. (2004). Silibinin causes cell cycle arrest and apoptosis in human bladder transitional cell carcinoma cells by regulating CDKI–CDK–cyclin cascade, and caspase 3 and PARP cleavages. Carcinogenesis, 25(9), 1711–1720. doi:10.​1093/​carcin/​bgh180bgh180.PubMedCrossRef
193.
Zurück zum Zitat Tyagi, A. K., Agarwal, C., Singh, R. P., Shroyer, K. R., Glode, L. M., & Agarwal, R. (2003). Silibinin down-regulates survivin protein and mRNA expression and causes caspases activation and apoptosis in human bladder transitional-cell papilloma RT4 cells. Biochemical and Biophysical Research Communications, 312(4), 1178–1184.PubMedCrossRef Tyagi, A. K., Agarwal, C., Singh, R. P., Shroyer, K. R., Glode, L. M., & Agarwal, R. (2003). Silibinin down-regulates survivin protein and mRNA expression and causes caspases activation and apoptosis in human bladder transitional-cell papilloma RT4 cells. Biochemical and Biophysical Research Communications, 312(4), 1178–1184.PubMedCrossRef
194.
Zurück zum Zitat Tyagi, A., Raina, K., Singh, R. P., Gu, M., Agarwal, C., Harrison, G., et al. (2007). Chemopreventive effects of silymarin and silibinin on N-butyl-N-(4-hydroxybutyl) nitrosamine induced urinary bladder carcinogenesis in male ICR mice. Molecular Cancer Therapeutics, 6(12 Pt 1), 3248–3255.PubMedCrossRef Tyagi, A., Raina, K., Singh, R. P., Gu, M., Agarwal, C., Harrison, G., et al. (2007). Chemopreventive effects of silymarin and silibinin on N-butyl-N-(4-hydroxybutyl) nitrosamine induced urinary bladder carcinogenesis in male ICR mice. Molecular Cancer Therapeutics, 6(12 Pt 1), 3248–3255.PubMedCrossRef
196.
Zurück zum Zitat Danilenko, M., Wang, Q., Wang, X., Levy, J., Sharoni, Y., & Studzinski, G. P. (2003). Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha, 25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Research, 63(6), 1325–1332.PubMed Danilenko, M., Wang, Q., Wang, X., Levy, J., Sharoni, Y., & Studzinski, G. P. (2003). Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha, 25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Research, 63(6), 1325–1332.PubMed
197.
Zurück zum Zitat Kang, S. N., Lee, M. H., Kim, K. M., Cho, D., & Kim, T. S. (2001). Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: Involvement of protein kinase C. Biochemical Pharmacology, 61(12), 1487–1495. doi:S0006295201006268.PubMedCrossRef Kang, S. N., Lee, M. H., Kim, K. M., Cho, D., & Kim, T. S. (2001). Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: Involvement of protein kinase C. Biochemical Pharmacology, 61(12), 1487–1495. doi:S000629520100626​8.PubMedCrossRef
198.
Zurück zum Zitat Cheung, C. W., Vesey, D. A., Nicol, D. L., & Johnson, D. W. (2007). Silibinin inhibits renal cell carcinoma via mechanisms that are independent of insulin-like growth factor-binding protein 3. BJU International, 99(2), 454–460.PubMedCrossRef Cheung, C. W., Vesey, D. A., Nicol, D. L., & Johnson, D. W. (2007). Silibinin inhibits renal cell carcinoma via mechanisms that are independent of insulin-like growth factor-binding protein 3. BJU International, 99(2), 454–460.PubMedCrossRef
199.
Zurück zum Zitat Cheung, C. W., Taylor, P. J., Kirkpatrick, C. M., Vesey, D. A., Gobe, G. C., Winterford, C., et al. (2007). Therapeutic value of orally administered silibinin in renal cell carcinoma: Manipulation of insulin-like growth factor binding protein-3 levels. BJU International, 100(2), 438–444.PubMedCrossRef Cheung, C. W., Taylor, P. J., Kirkpatrick, C. M., Vesey, D. A., Gobe, G. C., Winterford, C., et al. (2007). Therapeutic value of orally administered silibinin in renal cell carcinoma: Manipulation of insulin-like growth factor binding protein-3 levels. BJU International, 100(2), 438–444.PubMedCrossRef
200.
Zurück zum Zitat Bang, C. I., Paik, S. Y., Sun, D. I., Joo, Y. H., & Kim, M. S. (2008). Cell growth inhibition and down-regulation of survivin by silibinin in a laryngeal squamous cell carcinoma cell line. The Annals of Otology, Rhinology, and Laryngology, 117(10), 781–785.PubMed Bang, C. I., Paik, S. Y., Sun, D. I., Joo, Y. H., & Kim, M. S. (2008). Cell growth inhibition and down-regulation of survivin by silibinin in a laryngeal squamous cell carcinoma cell line. The Annals of Otology, Rhinology, and Laryngology, 117(10), 781–785.PubMed
201.
Zurück zum Zitat Kim, S., Choi, M. G., Lee, H. S., Lee, S. K., Kim, S. H., Kim, W. W., et al. (2009). Silibinin suppresses TNF-alpha-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules, 14(11), 4300–4311. doi:10.3390/molecules14114300.PubMedCrossRef Kim, S., Choi, M. G., Lee, H. S., Lee, S. K., Kim, S. H., Kim, W. W., et al. (2009). Silibinin suppresses TNF-alpha-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules, 14(11), 4300–4311. doi:10.​3390/​molecules1411430​0.PubMedCrossRef
Metadaten
Titel
Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer
verfasst von
Gagan Deep
Rajesh Agarwal
Publikationsdatum
01.09.2010
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3/2010
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9237-0

Weitere Artikel der Ausgabe 3/2010

Cancer and Metastasis Reviews 3/2010 Zur Ausgabe

NSCLC: Progressionsfreies Überleben unter Osimertinib fast versiebenfacht

06.06.2024 ASCO 2024 Kongressbericht

Erste Ergebnisse der Phase-III-Studie LAURA etablieren Osimertinib als neuen Therapiestandard für Menschen mit nicht-resezierbarem, EGFR-mutiertem, nicht-kleinzelligem Lungenkarzinom im Stadium III, die nach definitiver Radiochemotherapie progressionsfrei sind. Auf der ASCO-Tagung wurden diese beeindruckenden Ergebnisse besprochen.

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Antikörper-Drug-Konjugat verdoppelt PFS bei Multiplem Myelom

05.06.2024 ASCO 2024 Nachrichten

Zwei Phase-3-Studien deuten auf erhebliche Vorteile des Antikörper-Wirkstoff-Konjugats Belantamab-Mafodotin bei vorbehandelten Personen mit Multiplem Myelom: Im Vergleich mit einer Standard-Tripeltherapie wurde das progressionsfreie Überleben teilweise mehr als verdoppelt.

Neuer TKI gegen CML: Höhere Wirksamkeit, seltener Nebenwirkungen

05.06.2024 Chronische myeloische Leukämie Nachrichten

Der Tyrosinkinasehemmer (TKI) Asciminib ist älteren Vertretern dieser Gruppe bei CML offenbar überlegen: Personen mit frisch diagnostizierter CML entwickelten damit in einer Phase-3-Studie häufiger eine gute molekulare Response, aber seltener ernste Nebenwirkungen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.