Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2012

01.12.2012

Mesenchymal–epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer

verfasst von: N. P. A. Devika Gunasinghe, Alan Wells, Erik W. Thompson, Honor J. Hugo

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2012

Einloggen, um Zugang zu erhalten

Abstract

As yet, there is no cure for metastatic breast cancer. Historically, considerable research effort has been concentrated on understanding the processes of metastasis, how a primary tumour locally invades and systemically disseminates using the phenotypic switching mechanism of epithelial to mesenchymal transition (EMT); however, much less is understood about how metastases are then formed. Breast cancer metastases often look (and may even function) as ‘normal’ breast tissue, a bizarre observation against the backdrop of the organ structure of the lung, liver, bone or brain. Mesenchymal to epithelial transition (MET), the opposite of EMT, has been proposed as a mechanism for establishment of the metastatic neoplasm, leading to questions such as: Can MET be clearly demonstrated in vivo? What factors cause this phenotypic switch within the cancer cell? Are these signals/factors derived from the metastatic site (soil) or expressed by the cancer cells themselves (seed)? How do the cancer cells then grow into a detectable secondary tumour and further disseminate? And finally—Can we design and develop therapies that may combat this dissemination switch? This review aims to address these important questions by evaluating long-standing paradigms and novel emerging concepts in the field of epithelial mesencyhmal plasticity.
Literatur
1.
Zurück zum Zitat Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.CrossRef Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.CrossRef
2.
Zurück zum Zitat Desantis, C., Siegel, R., Bandi, P., & Jemal, A. (2011). Breast cancer statistics, 2011. CA: A Cancer Journal for Clinicians, 61, 408–418.CrossRef Desantis, C., Siegel, R., Bandi, P., & Jemal, A. (2011). Breast cancer statistics, 2011. CA: A Cancer Journal for Clinicians, 61, 408–418.CrossRef
3.
Zurück zum Zitat Jones, S. E. (2008). Metastatic breast cancer: the treatment challenge. Clinical Breast Cancer, 8, 224–233.PubMedCrossRef Jones, S. E. (2008). Metastatic breast cancer: the treatment challenge. Clinical Breast Cancer, 8, 224–233.PubMedCrossRef
4.
Zurück zum Zitat Lopez-Tarruella, S., & Martin, M. (2009). Recent advances in systemic therapy: advances in adjuvant systemic chemotherapy of early breast cancer. Breast Cancer Research, 11, 204.PubMedCrossRef Lopez-Tarruella, S., & Martin, M. (2009). Recent advances in systemic therapy: advances in adjuvant systemic chemotherapy of early breast cancer. Breast Cancer Research, 11, 204.PubMedCrossRef
5.
Zurück zum Zitat Fisher, B., Jeong, J. H., Bryant, J., et al. (2004). Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet, 364, 858–868.PubMedCrossRef Fisher, B., Jeong, J. H., Bryant, J., et al. (2004). Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials. Lancet, 364, 858–868.PubMedCrossRef
6.
Zurück zum Zitat Early Breast Cancer Trialists' Collaborative Group. (1998). Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet, 352, 930–942.CrossRef Early Breast Cancer Trialists' Collaborative Group. (1998). Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet, 352, 930–942.CrossRef
8.
Zurück zum Zitat Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80, 1529–1537.PubMedCrossRef Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80, 1529–1537.PubMedCrossRef
9.
Zurück zum Zitat Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.PubMedCrossRef Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.PubMedCrossRef
10.
Zurück zum Zitat Weidner, N., Folkman, J., Pozza, F., et al. (1992). Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Journal of the National Cancer Institute, 84, 1875–1887.PubMedCrossRef Weidner, N., Folkman, J., Pozza, F., et al. (1992). Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Journal of the National Cancer Institute, 84, 1875–1887.PubMedCrossRef
11.
Zurück zum Zitat Folkman, J., & Shing, Y. (1992). Angiogenesis. Journal of Biological Chemistry, 267, 10931–10934.PubMed Folkman, J., & Shing, Y. (1992). Angiogenesis. Journal of Biological Chemistry, 267, 10931–10934.PubMed
12.
Zurück zum Zitat Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.PubMed Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.PubMed
13.
Zurück zum Zitat Kiaris, H., Chatzistamou, I., Kalofoutis, C., Koutselini, H., Piperi, C., & Kalofoutis, A. (2004). Tumour-stroma interactions in carcinogenesis: basic aspects and perspectives. Molecular and Cellular Biochemistry, 261, 117–122.PubMedCrossRef Kiaris, H., Chatzistamou, I., Kalofoutis, C., Koutselini, H., Piperi, C., & Kalofoutis, A. (2004). Tumour-stroma interactions in carcinogenesis: basic aspects and perspectives. Molecular and Cellular Biochemistry, 261, 117–122.PubMedCrossRef
14.
Zurück zum Zitat Pupa, S. M., Menard, S., Forti, S., & Tagliabue, E. (2002). New insights into the role of extracellular matrix during tumor onset and progression. Journal of Cellular Physiology, 192, 259–267.PubMedCrossRef Pupa, S. M., Menard, S., Forti, S., & Tagliabue, E. (2002). New insights into the role of extracellular matrix during tumor onset and progression. Journal of Cellular Physiology, 192, 259–267.PubMedCrossRef
15.
Zurück zum Zitat Wells, A., Chao, Y. L., Grahovac, J., Wu, Q., & Lauffenburger, D. A. (2011). Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Frontiers in Bioscience, 16, 815–837.PubMedCrossRef Wells, A., Chao, Y. L., Grahovac, J., Wu, Q., & Lauffenburger, D. A. (2011). Epithelial and mesenchymal phenotypic switchings modulate cell motility in metastasis. Frontiers in Bioscience, 16, 815–837.PubMedCrossRef
16.
Zurück zum Zitat Kienast, Y., von Baumgarten, L., Fuhrmann, M., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16, 116–122.PubMedCrossRef Kienast, Y., von Baumgarten, L., Fuhrmann, M., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16, 116–122.PubMedCrossRef
17.
Zurück zum Zitat Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., et al. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.PubMedCrossRef Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., et al. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.PubMedCrossRef
18.
Zurück zum Zitat Howlett, A. R., & Bissell, M. J. (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biology, 2, 79–89.PubMed Howlett, A. R., & Bissell, M. J. (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biology, 2, 79–89.PubMed
19.
Zurück zum Zitat Jechlinger, M., Grunert, S., & Beug, H. (2002). Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling. Journal of Mammary Gland Biology and Neoplasia, 7, 415–432.PubMedCrossRef Jechlinger, M., Grunert, S., & Beug, H. (2002). Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling. Journal of Mammary Gland Biology and Neoplasia, 7, 415–432.PubMedCrossRef
20.
Zurück zum Zitat de Herreros, A. G., Peiro, S., Nassour, M., & Savagner, P. (2010). Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. Journal of Mammary Gland Biology and Neoplasia, 15, 135–147.PubMedCrossRef de Herreros, A. G., Peiro, S., Nassour, M., & Savagner, P. (2010). Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. Journal of Mammary Gland Biology and Neoplasia, 15, 135–147.PubMedCrossRef
21.
Zurück zum Zitat Creighton, C. J., Chang, J. C., & Rosen, J. M. (2010). Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 253–260.PubMedCrossRef Creighton, C. J., Chang, J. C., & Rosen, J. M. (2010). Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 253–260.PubMedCrossRef
22.
Zurück zum Zitat Wang, Y., & Zhou, B. P. (2011). Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chinese Journal of Cancer, 30, 603–611.PubMedCrossRef Wang, Y., & Zhou, B. P. (2011). Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chinese Journal of Cancer, 30, 603–611.PubMedCrossRef
23.
Zurück zum Zitat Chao, Y. L., Shepard, C. R., & Wells, A. (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Molecular Cancer, 9, 179.PubMedCrossRef Chao, Y. L., Shepard, C. R., & Wells, A. (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Molecular Cancer, 9, 179.PubMedCrossRef
24.
Zurück zum Zitat Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Research, 66, 11271–11278.PubMedCrossRef Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Research, 66, 11271–11278.PubMedCrossRef
25.
Zurück zum Zitat Chaffer, C. L., Thompson, E. W., & Williams, E. D. (2007). Mesenchymal to epithelial transition in development and disease. Cells, Tissues, Organs, 185, 7–19.PubMedCrossRef Chaffer, C. L., Thompson, E. W., & Williams, E. D. (2007). Mesenchymal to epithelial transition in development and disease. Cells, Tissues, Organs, 185, 7–19.PubMedCrossRef
26.
Zurück zum Zitat Hugo, H., Ackland, M. L., Blick, T., et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.PubMedCrossRef Hugo, H., Ackland, M. L., Blick, T., et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.PubMedCrossRef
28.
Zurück zum Zitat Weinberg, R. A. (2008). Leaving home early: reexamination of the canonical models of tumor progression. Cancer Cell, 14, 283–284.PubMedCrossRef Weinberg, R. A. (2008). Leaving home early: reexamination of the canonical models of tumor progression. Cancer Cell, 14, 283–284.PubMedCrossRef
29.
Zurück zum Zitat Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMedCrossRef Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMedCrossRef
30.
Zurück zum Zitat Blick, T., Hugo, H., Widodo, E., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 235–252.PubMedCrossRef Blick, T., Hugo, H., Widodo, E., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 235–252.PubMedCrossRef
31.
Zurück zum Zitat Mani, S. A., Guo, W., Liao, M. J., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCrossRef Mani, S. A., Guo, W., Liao, M. J., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCrossRef
32.
Zurück zum Zitat Kowalski, P. J., Rubin, M. A., & Kleer, C. G. (2003). E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Research, 5, R217–R222.PubMedCrossRef Kowalski, P. J., Rubin, M. A., & Kleer, C. G. (2003). E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Research, 5, R217–R222.PubMedCrossRef
33.
Zurück zum Zitat Stessels, F., Van den Eynden, G., Van der Auwera, I., et al. (2004). Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. British Journal of Cancer, 90, 1429–1436.PubMedCrossRef Stessels, F., Van den Eynden, G., Van der Auwera, I., et al. (2004). Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. British Journal of Cancer, 90, 1429–1436.PubMedCrossRef
34.
Zurück zum Zitat Chao, Y., Wu, Q., Acquafondata, M., Dhir, R., & Wells, A. (2012). Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenvironment, 5, 19–28.PubMedCrossRef Chao, Y., Wu, Q., Acquafondata, M., Dhir, R., & Wells, A. (2012). Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenvironment, 5, 19–28.PubMedCrossRef
35.
Zurück zum Zitat Korpal, M., Ell, B. J., Buffa, F. M., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17, 1101–1108.PubMedCrossRef Korpal, M., Ell, B. J., Buffa, F. M., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17, 1101–1108.PubMedCrossRef
36.
Zurück zum Zitat Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67, 7972–7976.PubMedCrossRef Hurteau, G. J., Carlson, J. A., Spivack, S. D., & Brock, G. J. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67, 7972–7976.PubMedCrossRef
37.
Zurück zum Zitat Bendoraite, A., Knouf, E. C., Garg, K. S., et al. (2010). Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecologic Oncology, 116, 117–125.PubMedCrossRef Bendoraite, A., Knouf, E. C., Garg, K. S., et al. (2010). Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecologic Oncology, 116, 117–125.PubMedCrossRef
38.
Zurück zum Zitat Brabletz, S., & Brabletz, T. (2010). The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Reports, 11, 670–677.PubMedCrossRef Brabletz, S., & Brabletz, T. (2010). The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Reports, 11, 670–677.PubMedCrossRef
39.
Zurück zum Zitat Gregory, P. A., Bracken, C. P., Smith, E., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22, 1686–1698.PubMedCrossRef Gregory, P. A., Bracken, C. P., Smith, E., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22, 1686–1698.PubMedCrossRef
40.
Zurück zum Zitat Burk, U., Schubert, J., Wellner, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.PubMedCrossRef Burk, U., Schubert, J., Wellner, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.PubMedCrossRef
41.
Zurück zum Zitat Bullock, M. D., Sayan, A. E., Packham, G. K., & Mirnezami, A. H. (2012). MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biology of the Cell, 104, 3–12.PubMedCrossRef Bullock, M. D., Sayan, A. E., Packham, G. K., & Mirnezami, A. H. (2012). MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biology of the Cell, 104, 3–12.PubMedCrossRef
42.
Zurück zum Zitat Celia-Terrassa, T., Meca-Cortes, O., Mateo, F., et al. (2012). Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation, 122, 1849–1868.PubMedCrossRef Celia-Terrassa, T., Meca-Cortes, O., Mateo, F., et al. (2012). Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation, 122, 1849–1868.PubMedCrossRef
44.
Zurück zum Zitat Mettlin, C. (1999). Global breast cancer mortality statistics. CA: A Cancer Journal for Clinicians, 49, 138–144.CrossRef Mettlin, C. (1999). Global breast cancer mortality statistics. CA: A Cancer Journal for Clinicians, 49, 138–144.CrossRef
45.
Zurück zum Zitat No authors listed (2000). Breast cancer statistics. Journal of the National Cancer Institute, 92, 445. No authors listed (2000). Breast cancer statistics. Journal of the National Cancer Institute, 92, 445.
46.
Zurück zum Zitat Kamo, K., & Sobue, T. (2004). Cancer statistics digest. Mortality trend of prostate, breast, uterus, ovary, bladder and “kidney and other urinary tract” cancer in Japan by birth cohort. Japanese Journal of Clinical Oncology, 34, 561–563.PubMedCrossRef Kamo, K., & Sobue, T. (2004). Cancer statistics digest. Mortality trend of prostate, breast, uterus, ovary, bladder and “kidney and other urinary tract” cancer in Japan by birth cohort. Japanese Journal of Clinical Oncology, 34, 561–563.PubMedCrossRef
47.
Zurück zum Zitat Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198, 11–26.PubMed Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198, 11–26.PubMed
48.
Zurück zum Zitat Berx, G., Staes, K., van Hengel, J., et al. (1995). Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics, 26, 281–289.PubMedCrossRef Berx, G., Staes, K., van Hengel, J., et al. (1995). Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics, 26, 281–289.PubMedCrossRef
49.
Zurück zum Zitat Pecina-Slaus, N. (2003). Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell International, 3, 17.PubMedCrossRef Pecina-Slaus, N. (2003). Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell International, 3, 17.PubMedCrossRef
50.
Zurück zum Zitat Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.PubMedCrossRef Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.PubMedCrossRef
51.
Zurück zum Zitat Wells, A., Yates, C., & Shepard, C. R. (2008). E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clinical & Experimental Metastasis, 25, 621–628.CrossRef Wells, A., Yates, C., & Shepard, C. R. (2008). E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clinical & Experimental Metastasis, 25, 621–628.CrossRef
52.
Zurück zum Zitat Saha, B., Chaiwun, B., Imam, S. S., et al. (2007). Overexpression of E-cadherin protein in metastatic breast cancer cells in bone. Anticancer Research, 27, 3903–3908.PubMed Saha, B., Chaiwun, B., Imam, S. S., et al. (2007). Overexpression of E-cadherin protein in metastatic breast cancer cells in bone. Anticancer Research, 27, 3903–3908.PubMed
53.
Zurück zum Zitat Bastid, J. (2012). EMT in carcinoma progression and dissemination: facts, unanswered questions, and clinical considerations. Cancer and Metastasis Reviews, 31, 277–283.PubMedCrossRef Bastid, J. (2012). EMT in carcinoma progression and dissemination: facts, unanswered questions, and clinical considerations. Cancer and Metastasis Reviews, 31, 277–283.PubMedCrossRef
54.
Zurück zum Zitat Wendt, M. K., Taylor, M. A., Schiemann, B. J., & Schiemann, W. P. (2011). Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Molecular Biology of the Cell, 22, 2423–2435.PubMedCrossRef Wendt, M. K., Taylor, M. A., Schiemann, B. J., & Schiemann, W. P. (2011). Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Molecular Biology of the Cell, 22, 2423–2435.PubMedCrossRef
55.
Zurück zum Zitat Cailleau, R., Olive, M., & Cruciger, Q. V. (1978). Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro, 14, 911–915.PubMedCrossRef Cailleau, R., Olive, M., & Cruciger, Q. V. (1978). Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro, 14, 911–915.PubMedCrossRef
56.
Zurück zum Zitat Brinkley, B. R., Beall, P. T., Wible, L. J., Mace, M. L., Turner, D. S., & Cailleau, R. M. (1980). Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Research, 40, 3118–3129.PubMed Brinkley, B. R., Beall, P. T., Wible, L. J., Mace, M. L., Turner, D. S., & Cailleau, R. M. (1980). Variations in cell form and cytoskeleton in human breast carcinoma cells in vitro. Cancer Research, 40, 3118–3129.PubMed
57.
Zurück zum Zitat Thompson, E. W., Paik, S., Brunner, N., et al. (1992). Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. Journal of Cellular Physiology, 150, 534–544.PubMedCrossRef Thompson, E. W., Paik, S., Brunner, N., et al. (1992). Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. Journal of Cellular Physiology, 150, 534–544.PubMedCrossRef
58.
Zurück zum Zitat Sheikh, M. S., Shao, Z. M., Hussain, A., & Fontana, J. A. (1993). The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Research, 53, 3226–3228.PubMed Sheikh, M. S., Shao, Z. M., Hussain, A., & Fontana, J. A. (1993). The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma. Cancer Research, 53, 3226–3228.PubMed
59.
Zurück zum Zitat Maemura, M., Akiyama, S. K., Woods, V. L., Jr., & Dickson, R. B. (1995). Expression and ligand binding of alpha 2 beta 1 integrin on breast carcinoma cells. Clinical & Experimental Metastasis, 13, 223–235.CrossRef Maemura, M., Akiyama, S. K., Woods, V. L., Jr., & Dickson, R. B. (1995). Expression and ligand binding of alpha 2 beta 1 integrin on breast carcinoma cells. Clinical & Experimental Metastasis, 13, 223–235.CrossRef
60.
Zurück zum Zitat Hiraguri, S., Godfrey, T., Nakamura, H., et al. (1998). Mechanisms of inactivation of E-cadherin in breast cancer cell lines. Cancer Research, 58, 1972–1977.PubMed Hiraguri, S., Godfrey, T., Nakamura, H., et al. (1998). Mechanisms of inactivation of E-cadherin in breast cancer cell lines. Cancer Research, 58, 1972–1977.PubMed
61.
Zurück zum Zitat Pishvaian, M. J., Feltes, C. M., Thompson, P., Bussemakers, M. J., Schalken, J. A., & Byers, S. W. (1999). Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Research, 59, 947–952.PubMed Pishvaian, M. J., Feltes, C. M., Thompson, P., Bussemakers, M. J., Schalken, J. A., & Byers, S. W. (1999). Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Research, 59, 947–952.PubMed
62.
Zurück zum Zitat Jo, M., Lester, R. D., Montel, V., Eastman, B., Takimoto, S., & Gonias, S. L. (2009). Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. Journal of Biological Chemistry, 284, 22825–22833.PubMedCrossRef Jo, M., Lester, R. D., Montel, V., Eastman, B., Takimoto, S., & Gonias, S. L. (2009). Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. Journal of Biological Chemistry, 284, 22825–22833.PubMedCrossRef
63.
Zurück zum Zitat Lester, R. D., Jo, M., Montel, V., Takimoto, S., & Gonias, S. L. (2007). uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. The Journal of Cell Biology, 178, 425–436.PubMedCrossRef Lester, R. D., Jo, M., Montel, V., Takimoto, S., & Gonias, S. L. (2007). uPAR induces epithelial-mesenchymal transition in hypoxic breast cancer cells. The Journal of Cell Biology, 178, 425–436.PubMedCrossRef
64.
Zurück zum Zitat Lo, H. W., Hsu, S. C., Xia, W., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67, 9066–9076.PubMedCrossRef Lo, H. W., Hsu, S. C., Xia, W., et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Research, 67, 9066–9076.PubMedCrossRef
65.
Zurück zum Zitat Bonnomet, A., Syne, L., Brysse, A., et al. (2011). A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. (In press) Bonnomet, A., Syne, L., Brysse, A., et al. (2011). A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. (In press)
66.
Zurück zum Zitat Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. The Journal of Cell Biology, 172, 973–981.PubMedCrossRef Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. The Journal of Cell Biology, 172, 973–981.PubMedCrossRef
67.
Zurück zum Zitat Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. American Journal of Pathology, 174, 1588–1593.PubMedCrossRef Klymkowsky, M. W., & Savagner, P. (2009). Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. American Journal of Pathology, 174, 1588–1593.PubMedCrossRef
68.
Zurück zum Zitat Martinez, V., & Azzopardi, J. G. (1979). Invasive lobular carcinoma of the breast: incidence and variants. Histopathology, 3, 467–488.PubMedCrossRef Martinez, V., & Azzopardi, J. G. (1979). Invasive lobular carcinoma of the breast: incidence and variants. Histopathology, 3, 467–488.PubMedCrossRef
69.
Zurück zum Zitat DiCostanzo, D., Rosen, P. P., Gareen, I., Franklin, S., & Lesser, M. (1990). Prognosis in infiltrating lobular carcinoma. An analysis of “classical” and variant tumors. The American Journal of Surgical Pathology, 14, 12–23.PubMedCrossRef DiCostanzo, D., Rosen, P. P., Gareen, I., Franklin, S., & Lesser, M. (1990). Prognosis in infiltrating lobular carcinoma. An analysis of “classical” and variant tumors. The American Journal of Surgical Pathology, 14, 12–23.PubMedCrossRef
70.
Zurück zum Zitat Da Silva, L., Parry, S., Reid, L., et al. (2008). Aberrant expression of E-cadherin in lobular carcinomas of the breast. The American Journal of Surgical Pathology, 32, 773–783.PubMedCrossRef Da Silva, L., Parry, S., Reid, L., et al. (2008). Aberrant expression of E-cadherin in lobular carcinomas of the breast. The American Journal of Surgical Pathology, 32, 773–783.PubMedCrossRef
71.
Zurück zum Zitat Oltean, S., Sorg, B. S., Albrecht, T., et al. (2006). Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 14116–14121.PubMedCrossRef Oltean, S., Sorg, B. S., Albrecht, T., et al. (2006). Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 14116–14121.PubMedCrossRef
72.
Zurück zum Zitat Oltean, S., Febbo, P. G., & Garcia-Blanco, M. A. (2008). Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo. Clinical & Experimental Metastasis, 25, 611–619.CrossRef Oltean, S., Febbo, P. G., & Garcia-Blanco, M. A. (2008). Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo. Clinical & Experimental Metastasis, 25, 611–619.CrossRef
73.
Zurück zum Zitat Tsuji, T., Ibaragi, S., Shima, K., et al. (2008). Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Research, 68, 10377–10386.PubMedCrossRef Tsuji, T., Ibaragi, S., Shima, K., et al. (2008). Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Research, 68, 10377–10386.PubMedCrossRef
74.
Zurück zum Zitat Martorana, A. M., Zheng, G., Crowe, T. C., O’Grady, R. L., & Lyons, J. G. (1998). Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Research, 58, 4970–4979.PubMed Martorana, A. M., Zheng, G., Crowe, T. C., O’Grady, R. L., & Lyons, J. G. (1998). Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Research, 58, 4970–4979.PubMed
75.
Zurück zum Zitat Kleer, C. G., van Golen, K. L., Braun, T., & Merajver, S. D. (2001). Persistent E-cadherin expression in inflammatory breast cancer. Modern Pathology, 14, 458–464.PubMedCrossRef Kleer, C. G., van Golen, K. L., Braun, T., & Merajver, S. D. (2001). Persistent E-cadherin expression in inflammatory breast cancer. Modern Pathology, 14, 458–464.PubMedCrossRef
76.
Zurück zum Zitat Lang, S. H., Sharrard, R. M., Stark, M., Villette, J. M., & Maitland, N. J. (2001). Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. British Journal of Cancer, 85, 590–599.PubMedCrossRef Lang, S. H., Sharrard, R. M., Stark, M., Villette, J. M., & Maitland, N. J. (2001). Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. British Journal of Cancer, 85, 590–599.PubMedCrossRef
77.
Zurück zum Zitat Kurahara, H., Takao, S., Maemura, K., et al. (2012). Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. Journal of Surgical Oncology, 105, 655–61.PubMedCrossRef Kurahara, H., Takao, S., Maemura, K., et al. (2012). Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. Journal of Surgical Oncology, 105, 655–61.PubMedCrossRef
78.
Zurück zum Zitat Chao, Y., Wu, Q., Shepard, C., & Wells, A. (2012). Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clinical & Experimental Metastasis, 29, 39–50.CrossRef Chao, Y., Wu, Q., Shepard, C., & Wells, A. (2012). Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clinical & Experimental Metastasis, 29, 39–50.CrossRef
79.
Zurück zum Zitat Yates, C. C., Shepard, C. R., Stolz, D. B., & Wells, A. (2007). Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. British Journal of Cancer, 96, 1246–1252.PubMedCrossRef Yates, C. C., Shepard, C. R., Stolz, D. B., & Wells, A. (2007). Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. British Journal of Cancer, 96, 1246–1252.PubMedCrossRef
80.
Zurück zum Zitat Lopes, N., Carvalho, J., Duraes, C., et al. (2012). 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Research, 32, 249–257.PubMed Lopes, N., Carvalho, J., Duraes, C., et al. (2012). 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Research, 32, 249–257.PubMed
81.
Zurück zum Zitat Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28, 15–33.PubMedCrossRef Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28, 15–33.PubMedCrossRef
82.
Zurück zum Zitat Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, 275–292.PubMedCrossRef Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, 275–292.PubMedCrossRef
83.
Zurück zum Zitat Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14, 818–829.PubMedCrossRef Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14, 818–829.PubMedCrossRef
84.
Zurück zum Zitat Jung, A., Schrauder, M., Oswald, U., et al. (2001). The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. American Journal of Pathology, 159, 1613–1617.PubMedCrossRef Jung, A., Schrauder, M., Oswald, U., et al. (2001). The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. American Journal of Pathology, 159, 1613–1617.PubMedCrossRef
85.
Zurück zum Zitat Vega, S., Morales, A. V., Ocana, O. H., Valdes, F., Fabregat, I., & Nieto, M. A. (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes & Development, 18, 1131–1143.CrossRef Vega, S., Morales, A. V., Ocana, O. H., Valdes, F., Fabregat, I., & Nieto, M. A. (2004). Snail blocks the cell cycle and confers resistance to cell death. Genes & Development, 18, 1131–1143.CrossRef
86.
Zurück zum Zitat Mejlvang, J., Kriajevska, M., Vandewalle, C., et al. (2007). Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Molecular Biology of the Cell, 18, 4615–4624.PubMedCrossRef Mejlvang, J., Kriajevska, M., Vandewalle, C., et al. (2007). Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Molecular Biology of the Cell, 18, 4615–4624.PubMedCrossRef
87.
Zurück zum Zitat Rubio, C. A. (2006). Cell proliferation at the leading invasive front of colonic carcinomas. Preliminary observations. Anticancer Research, 26, 2275–2278.PubMed Rubio, C. A. (2006). Cell proliferation at the leading invasive front of colonic carcinomas. Preliminary observations. Anticancer Research, 26, 2275–2278.PubMed
88.
Zurück zum Zitat Rubio, C. A. (2007). Further studies on the arrest of cell proliferation in tumor cells at the invading front of colonic adenocarcinoma. Journal of Gastroenterology and Hepatology, 22, 1877–1881.PubMedCrossRef Rubio, C. A. (2007). Further studies on the arrest of cell proliferation in tumor cells at the invading front of colonic adenocarcinoma. Journal of Gastroenterology and Hepatology, 22, 1877–1881.PubMedCrossRef
89.
Zurück zum Zitat Spaderna, S., Schmalhofer, O., Hlubek, F., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830–840.PubMedCrossRef Spaderna, S., Schmalhofer, O., Hlubek, F., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830–840.PubMedCrossRef
90.
Zurück zum Zitat Gao, D., Joshi, N., Choi, H., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72, 1384–94.PubMedCrossRef Gao, D., Joshi, N., Choi, H., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72, 1384–94.PubMedCrossRef
91.
Zurück zum Zitat Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890.PubMedCrossRef Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890.PubMedCrossRef
92.
Zurück zum Zitat Thomson, S., Buck, E., Petti, F., et al. (2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Research, 65, 9455–9462.PubMedCrossRef Thomson, S., Buck, E., Petti, F., et al. (2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Research, 65, 9455–9462.PubMedCrossRef
93.
Zurück zum Zitat Thomson, S., Petti, F., Sujka-Kwok, I., Epstein, D., & Haley, J. D. (2008). Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clinical & Experimental Metastasis, 25, 843–854.CrossRef Thomson, S., Petti, F., Sujka-Kwok, I., Epstein, D., & Haley, J. D. (2008). Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clinical & Experimental Metastasis, 25, 843–854.CrossRef
94.
Zurück zum Zitat Yauch, R. L., Januario, T., Eberhard, D. A., et al. (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clinical Cancer Research, 11, 8686–8698.PubMedCrossRef Yauch, R. L., Januario, T., Eberhard, D. A., et al. (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clinical Cancer Research, 11, 8686–8698.PubMedCrossRef
95.
Zurück zum Zitat Creighton, C. J., Reid, J. G., & Gunaratne, P. H. (2009). Expression profiling of microRNAs by deep sequencing. Briefings in Bioinformatics, 10, 490–497.PubMedCrossRef Creighton, C. J., Reid, J. G., & Gunaratne, P. H. (2009). Expression profiling of microRNAs by deep sequencing. Briefings in Bioinformatics, 10, 490–497.PubMedCrossRef
96.
Zurück zum Zitat Cooke, V. G., LeBleu, V. S., Keskin, D., et al. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by MET signaling pathway. Cancer Cell, 21, 66–81.PubMedCrossRef Cooke, V. G., LeBleu, V. S., Keskin, D., et al. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by MET signaling pathway. Cancer Cell, 21, 66–81.PubMedCrossRef
97.
Zurück zum Zitat Valdes, F., Alvarez, A. M., Locascio, A., et al. (2002). The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor beta in fetal rat hepatocytes. Molecular Cancer Research, 1, 68–78.PubMed Valdes, F., Alvarez, A. M., Locascio, A., et al. (2002). The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor beta in fetal rat hepatocytes. Molecular Cancer Research, 1, 68–78.PubMed
98.
Zurück zum Zitat Ansieau, S., Bastid, J., Doreau, A., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14, 79–89.PubMedCrossRef Ansieau, S., Bastid, J., Doreau, A., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14, 79–89.PubMedCrossRef
99.
Zurück zum Zitat Gal, A., Sjoblom, T., Fedorova, L., Imreh, S., Beug, H., & Moustakas, A. (2008). Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene, 27, 1218–1230.PubMedCrossRef Gal, A., Sjoblom, T., Fedorova, L., Imreh, S., Beug, H., & Moustakas, A. (2008). Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene, 27, 1218–1230.PubMedCrossRef
100.
Zurück zum Zitat Sayan, A. E., Griffiths, T. R., Pal, R., et al. (2009). SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 14884–14889.PubMedCrossRef Sayan, A. E., Griffiths, T. R., Pal, R., et al. (2009). SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 106, 14884–14889.PubMedCrossRef
101.
Zurück zum Zitat Straub, B. K., Rickelt, S., Zimbelmann, R., et al. (2011). E-N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells. The Journal of Cell Biology, 195, 873–887.PubMedCrossRef Straub, B. K., Rickelt, S., Zimbelmann, R., et al. (2011). E-N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells. The Journal of Cell Biology, 195, 873–887.PubMedCrossRef
102.
Zurück zum Zitat Thiery, J. P. (2002). Epithelial to mesenchymal transitions in tumour progression. Nature Cancer, 2, 442–454.CrossRef Thiery, J. P. (2002). Epithelial to mesenchymal transitions in tumour progression. Nature Cancer, 2, 442–454.CrossRef
Metadaten
Titel
Mesenchymal–epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer
verfasst von
N. P. A. Devika Gunasinghe
Alan Wells
Erik W. Thompson
Honor J. Hugo
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9377-5

Weitere Artikel der Ausgabe 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Zur Ausgabe

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.