Skip to main content
Erschienen in: Journal of Neuro-Oncology 1/2011

01.05.2011 | Laboratory Investigation - Human/Animal Tissue

Wilms’ tumor 1 silencing decreases the viability and chemoresistance of glioblastoma cells in vitro: a potential role for IGF-1R de-repression

verfasst von: Mike Y. Chen, Aaron J. Clark, Dana C. Chan, Joy L. Ware, Shawn E. Holt, Archana Chidambaram, Helen L. Fillmore, William C. Broaddus

Erschienen in: Journal of Neuro-Oncology | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

Wilms’ tumor 1 (WT1) is a transcription factor with a multitude of downstream targets that have wide-ranging effects in non-glioma cell lines. Though its expression in glioblastomas is now well-documented, the role of WT1 in these tumors remains poorly defined. We hypothesized that WT1 functions as an oncogene to enhance glioblastoma viability and chemoresistance. WT1’s role was examined by studying the effect of WT1 silencing and overexpression on DNA damage, apoptosis and cell viability. Results indicated that WT1 silencing adversely affected glioblastoma viability, at times, in synergy with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and cisplatin. To investigate other mechanisms through which WT1 could affect viability, we measured cell cycle distribution, senescence, and autophagy. WT1 silencing had no effect on these processes. Lastly, we examined WT1 regulation of IGF-1R expression. Counterintuitively, upregulation of IGF-1R was evident after WT1 silencing. In conclusion, WT1 functions as a survival factor in glioblastomas, possibly through inhibition of IGF-1R expression.
Literatur
1.
Zurück zum Zitat Surawicz TS, McCarthy BJ, Kupelian V et al (1999) Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990–1994. Neuro Oncol 1:14–25PubMed Surawicz TS, McCarthy BJ, Kupelian V et al (1999) Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1990–1994. Neuro Oncol 1:14–25PubMed
2.
Zurück zum Zitat Ballman KV, Buckner JC, Brown PD et al (2007) The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol 9(1):29–38PubMedCrossRef Ballman KV, Buckner JC, Brown PD et al (2007) The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol 9(1):29–38PubMedCrossRef
3.
Zurück zum Zitat Surawicz TS, Davis F, Freels S et al (1998) Brain tumor survival: results from the national cancer data base. J Neurooncol 40:151–160PubMedCrossRef Surawicz TS, Davis F, Freels S et al (1998) Brain tumor survival: results from the national cancer data base. J Neurooncol 40:151–160PubMedCrossRef
4.
Zurück zum Zitat Loeb DM, Evron E, Patel CB et al (2001) Wilms’ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 61:921–925PubMed Loeb DM, Evron E, Patel CB et al (2001) Wilms’ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 61:921–925PubMed
5.
Zurück zum Zitat Miwa H, Beran M, Saunders GF (1992) Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 6(5):405–409 AbstractPubMed Miwa H, Beran M, Saunders GF (1992) Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 6(5):405–409 AbstractPubMed
6.
Zurück zum Zitat Nakahara Y, Okamoto H, Mineta T et al (2004) Expression of the Wilms’ tumor gene product WT1 in glioblastomas and medulloblastomas. Brain Tumor Pathol 21:113–116PubMedCrossRef Nakahara Y, Okamoto H, Mineta T et al (2004) Expression of the Wilms’ tumor gene product WT1 in glioblastomas and medulloblastomas. Brain Tumor Pathol 21:113–116PubMedCrossRef
7.
Zurück zum Zitat Oji Y, Suzuki T, Nakano Y et al (2004) Overexpression of the Wilms’ tumor gene WT1 in primary astrocytic tumors. Cancer Sci 95:822–827PubMedCrossRef Oji Y, Suzuki T, Nakano Y et al (2004) Overexpression of the Wilms’ tumor gene WT1 in primary astrocytic tumors. Cancer Sci 95:822–827PubMedCrossRef
8.
Zurück zum Zitat Zhang L, Lau YK, Xia W et al (1999) Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel. Clin Cancer Res 5:343–353PubMed Zhang L, Lau YK, Xia W et al (1999) Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel. Clin Cancer Res 5:343–353PubMed
9.
Zurück zum Zitat Clark AJ, Dos Santos WG, McCready J et al (2007) Wilms tumor 1 expression in malignant gliomas and correlation of +KTS isoforms with p53 status. J Neurosurg 107:586–592PubMedCrossRef Clark AJ, Dos Santos WG, McCready J et al (2007) Wilms tumor 1 expression in malignant gliomas and correlation of +KTS isoforms with p53 status. J Neurosurg 107:586–592PubMedCrossRef
10.
Zurück zum Zitat Armstrong JF, Pritchard-Jones K, Bickmore WA et al (1993) The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40:85–97PubMedCrossRef Armstrong JF, Pritchard-Jones K, Bickmore WA et al (1993) The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40:85–97PubMedCrossRef
11.
Zurück zum Zitat Pritchard-Jones K, Fleming S, Davidson D et al (1990) The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346:194–197PubMedCrossRef Pritchard-Jones K, Fleming S, Davidson D et al (1990) The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346:194–197PubMedCrossRef
12.
Zurück zum Zitat Haber DA, Sohn RL, Buckler AJ et al (1991) Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA 88:9618–9622PubMedCrossRef Haber DA, Sohn RL, Buckler AJ et al (1991) Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA 88:9618–9622PubMedCrossRef
13.
Zurück zum Zitat Scharnhorst V, Dekker P, van der Eb AJ et al (1999) Internal translation initiation generates novel WT1 protein isoforms with distinct biological properties. J Biol Chem 274:23456–23462PubMedCrossRef Scharnhorst V, Dekker P, van der Eb AJ et al (1999) Internal translation initiation generates novel WT1 protein isoforms with distinct biological properties. J Biol Chem 274:23456–23462PubMedCrossRef
14.
Zurück zum Zitat Sharma PM, Bowman M, Madden SL et al (1994) RNA editing in the Wilms’ tumor susceptibility gene, WT1. Genes Dev 8:720–731PubMedCrossRef Sharma PM, Bowman M, Madden SL et al (1994) RNA editing in the Wilms’ tumor susceptibility gene, WT1. Genes Dev 8:720–731PubMedCrossRef
15.
Zurück zum Zitat Call KM, Glaser T, Ito CY et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520PubMedCrossRef Call KM, Glaser T, Ito CY et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520PubMedCrossRef
16.
Zurück zum Zitat Keilholz U, Menssen HD, Gaiger A et al (2005) Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia 19(8):1318–1323PubMedCrossRef Keilholz U, Menssen HD, Gaiger A et al (2005) Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia 19(8):1318–1323PubMedCrossRef
17.
Zurück zum Zitat Wagner KJ, Roberts SG (2004) Transcriptional regulation by the Wilms’ tumour suppressor protein WT1. Biochem Soc Trans 32:932–935PubMedCrossRef Wagner KJ, Roberts SG (2004) Transcriptional regulation by the Wilms’ tumour suppressor protein WT1. Biochem Soc Trans 32:932–935PubMedCrossRef
18.
Zurück zum Zitat Davies RC, Calvio C, Bratt E et al (1998) WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 12:3217–3225PubMedCrossRef Davies RC, Calvio C, Bratt E et al (1998) WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev 12:3217–3225PubMedCrossRef
19.
Zurück zum Zitat Caricasole A, Duarte A, Larsson SH et al (1996) RNA binding by the Wilms tumor suppressor zinc finger proteins. Proc Natl Acad Sci USA 93:7562–7566PubMedCrossRef Caricasole A, Duarte A, Larsson SH et al (1996) RNA binding by the Wilms tumor suppressor zinc finger proteins. Proc Natl Acad Sci USA 93:7562–7566PubMedCrossRef
20.
Zurück zum Zitat Spraggon L, Dudnakova T, Slight J et al (2007) hnRNP-U directly interacts with WT1 and modulates WT1 transcriptional activation. Oncogene 26(10):1484–1491PubMedCrossRef Spraggon L, Dudnakova T, Slight J et al (2007) hnRNP-U directly interacts with WT1 and modulates WT1 transcriptional activation. Oncogene 26(10):1484–1491PubMedCrossRef
21.
Zurück zum Zitat Maheswaran S, Englert C, Bennett P et al (1995) The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev 9:2143–2156PubMedCrossRef Maheswaran S, Englert C, Bennett P et al (1995) The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev 9:2143–2156PubMedCrossRef
22.
Zurück zum Zitat Johnstone RW, See RH, Sells SF et al (1996) A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms’ tumor suppressor WT1. Mol Cell Biol 16:6945–6956PubMed Johnstone RW, See RH, Sells SF et al (1996) A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms’ tumor suppressor WT1. Mol Cell Biol 16:6945–6956PubMed
23.
Zurück zum Zitat Scharnhorst V, Dekker P, van der Eb AJ et al (2000) Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions. J Biol Chem 275:10202–10211PubMedCrossRef Scharnhorst V, Dekker P, van der Eb AJ et al (2000) Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions. J Biol Chem 275:10202–10211PubMedCrossRef
24.
Zurück zum Zitat Algar EM, Khromykh T, Smith SI et al (1996) A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines. Oncogene 12:1005–1014PubMed Algar EM, Khromykh T, Smith SI et al (1996) A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines. Oncogene 12:1005–1014PubMed
25.
Zurück zum Zitat Oji Y, Nakamori S, Fujikawa M et al (2004) Overexpression of the Wilms’ tumor gene WT1 in pancreatic ductal adenocarcinoma. Cancer Sci. 95:583–587PubMedCrossRef Oji Y, Nakamori S, Fujikawa M et al (2004) Overexpression of the Wilms’ tumor gene WT1 in pancreatic ductal adenocarcinoma. Cancer Sci. 95:583–587PubMedCrossRef
26.
Zurück zum Zitat Tuna M, Chavez-Reyes A, Tari AM (2005) HER2/neu increases the expression of Wilms’ tumor 1 (WT1) protein to stimulate S-phase proliferation and inhibit apoptosis in breast cancer cells. Oncogene 24:1648–1652PubMedCrossRef Tuna M, Chavez-Reyes A, Tari AM (2005) HER2/neu increases the expression of Wilms’ tumor 1 (WT1) protein to stimulate S-phase proliferation and inhibit apoptosis in breast cancer cells. Oncogene 24:1648–1652PubMedCrossRef
27.
Zurück zum Zitat Zapata-Benavides P, Tuna M, Lopez-Berestein G et al (2002) Downregulation of Wilms’ tumor 1 protein inhibits breast cancer proliferation. Biochem Biophys Res Commun 295:784–790PubMedCrossRef Zapata-Benavides P, Tuna M, Lopez-Berestein G et al (2002) Downregulation of Wilms’ tumor 1 protein inhibits breast cancer proliferation. Biochem Biophys Res Commun 295:784–790PubMedCrossRef
28.
Zurück zum Zitat Oji Y, Ogawa H, Tamaki H et al (1999) Expression of the Wilms’ tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 90:194–204PubMed Oji Y, Ogawa H, Tamaki H et al (1999) Expression of the Wilms’ tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 90:194–204PubMed
29.
Zurück zum Zitat Ware j, Roberts C, Richardson A, London C, Kroecher A, Amantana A, Devi G (2005) WT1: a novel target for antisense mediated prostate tumor therapy (Abstract #594). Poster presentation American Association of Cancer Research 2005, Anaheim CA, 16/04/2005 Ware j, Roberts C, Richardson A, London C, Kroecher A, Amantana A, Devi G (2005) WT1: a novel target for antisense mediated prostate tumor therapy (Abstract #594). Poster presentation American Association of Cancer Research 2005, Anaheim CA, 16/04/2005
30.
Zurück zum Zitat Mayo MW, Wang CY, Drouin SS et al (1999) WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 18:3990–4003PubMedCrossRef Mayo MW, Wang CY, Drouin SS et al (1999) WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 18:3990–4003PubMedCrossRef
31.
Zurück zum Zitat Hewitt SM, Hamada S, McDonnell TJ et al (1995) Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res 55:5386–5389PubMed Hewitt SM, Hamada S, McDonnell TJ et al (1995) Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res 55:5386–5389PubMed
32.
Zurück zum Zitat Heckman C, Mochon E, Arcinas M et al (1997) The WT1 protein is a negative regulator of the normal bcl-2 allele in t(14;18) lymphomas. J Biol Chem 272:19609–19614PubMedCrossRef Heckman C, Mochon E, Arcinas M et al (1997) The WT1 protein is a negative regulator of the normal bcl-2 allele in t(14;18) lymphomas. J Biol Chem 272:19609–19614PubMedCrossRef
33.
Zurück zum Zitat Loeb DM (2006) WT1 influences apoptosis through transcriptional regulation of Bcl-2 family members. Cell Cycle 5:1249–1253PubMedCrossRef Loeb DM (2006) WT1 influences apoptosis through transcriptional regulation of Bcl-2 family members. Cell Cycle 5:1249–1253PubMedCrossRef
34.
Zurück zum Zitat Damon SE, Plymate SR, Carroll JM et al (2001) Transcriptional regulation of insulin-like growth factor-I receptor gene expression in prostate cancer cells. Endocrinology 142:21–27PubMedCrossRef Damon SE, Plymate SR, Carroll JM et al (2001) Transcriptional regulation of insulin-like growth factor-I receptor gene expression in prostate cancer cells. Endocrinology 142:21–27PubMedCrossRef
35.
Zurück zum Zitat Idelman G, Glaser T, Roberts CT Jr et al (2003) WT1–p53 interactions in insulin-like growth factor-I receptor gene regulation. J Biol Chem 278:3474–3482PubMedCrossRef Idelman G, Glaser T, Roberts CT Jr et al (2003) WT1–p53 interactions in insulin-like growth factor-I receptor gene regulation. J Biol Chem 278:3474–3482PubMedCrossRef
36.
Zurück zum Zitat Tajinda K, Carroll J, Roberts CT Jr (1999) Regulation of insulin-like growth factor I receptor promoter activity by wild-type and mutant versions of the WT1 tumor suppressor. Endocrinology 140:4713–4724PubMedCrossRef Tajinda K, Carroll J, Roberts CT Jr (1999) Regulation of insulin-like growth factor I receptor promoter activity by wild-type and mutant versions of the WT1 tumor suppressor. Endocrinology 140:4713–4724PubMedCrossRef
37.
Zurück zum Zitat Chen Y, Douglass T, Jeffes EW et al (2002) Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a “paraptosis”-induced pathway that promotes systemic immunity against intracranial T9 gliomas. Blood 100:1373–1380PubMedCrossRef Chen Y, Douglass T, Jeffes EW et al (2002) Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a “paraptosis”-induced pathway that promotes systemic immunity against intracranial T9 gliomas. Blood 100:1373–1380PubMedCrossRef
38.
Zurück zum Zitat Jadus MR, Chen Y, Boldaji MT et al (2003) Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytes in vitro and are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins. Cancer Gene Ther 10:411–420PubMedCrossRef Jadus MR, Chen Y, Boldaji MT et al (2003) Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytes in vitro and are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins. Cancer Gene Ther 10:411–420PubMedCrossRef
39.
Zurück zum Zitat Sperandio S, de BI, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381PubMedCrossRef Sperandio S, de BI, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381PubMedCrossRef
40.
Zurück zum Zitat Sperandio S, Poksay K, de BI et al (2004) Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ 11:1066–1075PubMedCrossRef Sperandio S, Poksay K, de BI et al (2004) Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ 11:1066–1075PubMedCrossRef
41.
Zurück zum Zitat Liu Y, Lehar S, Corvi C et al (1998) Expression of the insulin-like growth factor I receptor C terminus as a myristylated protein leads to induction of apoptosis in tumor cells. Cancer Res 58:570–576PubMed Liu Y, Lehar S, Corvi C et al (1998) Expression of the insulin-like growth factor I receptor C terminus as a myristylated protein leads to induction of apoptosis in tumor cells. Cancer Res 58:570–576PubMed
42.
Zurück zum Zitat Hata Y, Sandler A, Loehrer PJ et al (1994) Synergism of taxol and gallium nitrate in human breast carcinoma cells: schedule dependency. Oncol Res 6:19–24PubMed Hata Y, Sandler A, Loehrer PJ et al (1994) Synergism of taxol and gallium nitrate in human breast carcinoma cells: schedule dependency. Oncol Res 6:19–24PubMed
43.
Zurück zum Zitat Mochan TA, Venere M, DiTullio RA Jr et al (2003) 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 63:8586–8591PubMed Mochan TA, Venere M, DiTullio RA Jr et al (2003) 53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage. Cancer Res 63:8586–8591PubMed
44.
Zurück zum Zitat Morrison AJ, Highland J, Krogan NJ et al (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767–775PubMedCrossRef Morrison AJ, Highland J, Krogan NJ et al (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119:767–775PubMedCrossRef
45.
Zurück zum Zitat Ito H, Daido S, Kanzawa T et al (2005) Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26:1401–1410PubMed Ito H, Daido S, Kanzawa T et al (2005) Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26:1401–1410PubMed
46.
Zurück zum Zitat Kanzawa T, Kondo Y, Ito H et al (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63:2103–2108PubMed Kanzawa T, Kondo Y, Ito H et al (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63:2103–2108PubMed
47.
Zurück zum Zitat Chi S, Kitanaka C, Noguchi K et al (1999) Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 18:2281–2290PubMedCrossRef Chi S, Kitanaka C, Noguchi K et al (1999) Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 18:2281–2290PubMedCrossRef
48.
Zurück zum Zitat Kanzawa T, Germano IM, Komata T et al (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457PubMedCrossRef Kanzawa T, Germano IM, Komata T et al (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457PubMedCrossRef
49.
Zurück zum Zitat Ito H, Aoki H, Kuhnel F et al (2006) Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 98:625–636PubMedCrossRef Ito H, Aoki H, Kuhnel F et al (2006) Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 98:625–636PubMedCrossRef
50.
Zurück zum Zitat Katayama M, Kawaguchi T, Berger MS et al (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558PubMedCrossRef Katayama M, Kawaguchi T, Berger MS et al (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558PubMedCrossRef
51.
Zurück zum Zitat Abedin MJ, Wang D, McDonnell MA et al (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14:500–510PubMedCrossRef Abedin MJ, Wang D, McDonnell MA et al (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14:500–510PubMedCrossRef
52.
Zurück zum Zitat Kreidberg JA, Sariola H, Loring JM et al (1993) WT-1 is required for early kidney development. Cell 74:679–691PubMedCrossRef Kreidberg JA, Sariola H, Loring JM et al (1993) WT-1 is required for early kidney development. Cell 74:679–691PubMedCrossRef
53.
Zurück zum Zitat Izumoto S, Tsuboi A, Oka Y et al (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108:963–971PubMedCrossRef Izumoto S, Tsuboi A, Oka Y et al (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108:963–971PubMedCrossRef
54.
Zurück zum Zitat Englert C, Hou X, Maheswaran S et al (1995) WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J 14:4662–4675PubMed Englert C, Hou X, Maheswaran S et al (1995) WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J 14:4662–4675PubMed
55.
Zurück zum Zitat Han Y, San Marina S, Liu J et al (2004) Transcriptional activation of c-myc proto-oncogene by WT1 protein. Oncogene 23:6933–6941PubMedCrossRef Han Y, San Marina S, Liu J et al (2004) Transcriptional activation of c-myc proto-oncogene by WT1 protein. Oncogene 23:6933–6941PubMedCrossRef
56.
Zurück zum Zitat Liu XW, Gong LJ, Guo LY et al (2001) The Wilms’ tumor gene product WT1 mediates the down-regulation of the rat epidermal growth factor receptor by nerve growth factor in PC12 cells. J Biol Chem 276:5068–5073PubMedCrossRef Liu XW, Gong LJ, Guo LY et al (2001) The Wilms’ tumor gene product WT1 mediates the down-regulation of the rat epidermal growth factor receptor by nerve growth factor in PC12 cells. J Biol Chem 276:5068–5073PubMedCrossRef
57.
Zurück zum Zitat Drummond IA, Madden SL, Rohwer-Nutter P et al (1992) Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257:674–678PubMedCrossRef Drummond IA, Madden SL, Rohwer-Nutter P et al (1992) Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257:674–678PubMedCrossRef
58.
Zurück zum Zitat Gashler AL, Bonthron DT, Madden SL et al (1992) Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms tumor suppressor WT1. Proc Natl Acad Sci USA 89:10984–10988PubMedCrossRef Gashler AL, Bonthron DT, Madden SL et al (1992) Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms tumor suppressor WT1. Proc Natl Acad Sci USA 89:10984–10988PubMedCrossRef
59.
Zurück zum Zitat Nichols KE, Re GG, Yan YX et al (1995) WT1 induces expression of insulin-like growth factor 2 in Wilms’ tumor cells. Cancer Res 55:4540–4543PubMed Nichols KE, Re GG, Yan YX et al (1995) WT1 induces expression of insulin-like growth factor 2 in Wilms’ tumor cells. Cancer Res 55:4540–4543PubMed
60.
Zurück zum Zitat Broaddus WC, Liu Y, Steele LL et al (1999) Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. J Neurosurg 91:997–1004PubMedCrossRef Broaddus WC, Liu Y, Steele LL et al (1999) Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction. J Neurosurg 91:997–1004PubMedCrossRef
61.
Zurück zum Zitat Ishii N, Maier D, Merlo A et al (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479PubMedCrossRef Ishii N, Maier D, Merlo A et al (1999) Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 9:469–479PubMedCrossRef
62.
Zurück zum Zitat Shahrabani-Gargir L, Pandita TK, Werner H (2004) Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology 145:5679–5687PubMedCrossRef Shahrabani-Gargir L, Pandita TK, Werner H (2004) Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology 145:5679–5687PubMedCrossRef
63.
Zurück zum Zitat Morrison DJ, English MA, Licht JD (2005) WT1 induces apoptosis through transcriptional regulation of the proapoptotic Bcl-2 family member Bak. Cancer Res 65:8174–8182PubMedCrossRef Morrison DJ, English MA, Licht JD (2005) WT1 induces apoptosis through transcriptional regulation of the proapoptotic Bcl-2 family member Bak. Cancer Res 65:8174–8182PubMedCrossRef
64.
Zurück zum Zitat Rodeck U, Bossler A, Kari C et al (1994) Expression of the wt1 Wilms’ tumor gene by normal and malignant human melanocytes. Int J Cancer 59:78–82PubMedCrossRef Rodeck U, Bossler A, Kari C et al (1994) Expression of the wt1 Wilms’ tumor gene by normal and malignant human melanocytes. Int J Cancer 59:78–82PubMedCrossRef
65.
Zurück zum Zitat Wang W, Lee SB, Palmer R et al (2001) A functional interaction with CBP contributes to transcriptional activation by the Wilms tumor suppressor WT1. J Biol Chem 276:16810–16816PubMedCrossRef Wang W, Lee SB, Palmer R et al (2001) A functional interaction with CBP contributes to transcriptional activation by the Wilms tumor suppressor WT1. J Biol Chem 276:16810–16816PubMedCrossRef
66.
Zurück zum Zitat Simpson LA, Burwell EA, Thompson KA et al (2006) The antiapoptotic gene A1/BFL1 is a WT1 target gene that mediates granulocytic differentiation and resistance to chemotherapy. Blood 107:4695–4702PubMedCrossRef Simpson LA, Burwell EA, Thompson KA et al (2006) The antiapoptotic gene A1/BFL1 is a WT1 target gene that mediates granulocytic differentiation and resistance to chemotherapy. Blood 107:4695–4702PubMedCrossRef
67.
Zurück zum Zitat Ito K, Oji Y, Tatsumi N et al (2006) Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 25:4217–4229PubMedCrossRef Ito K, Oji Y, Tatsumi N et al (2006) Antiapoptotic function of 17AA(+)WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 25:4217–4229PubMedCrossRef
68.
Zurück zum Zitat Daido S, Kanzawa T, Yamamoto A et al (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64:4286–4293PubMedCrossRef Daido S, Kanzawa T, Yamamoto A et al (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64:4286–4293PubMedCrossRef
69.
Zurück zum Zitat Takeuchi H, Kondo Y, Fujiwara K et al (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346PubMed Takeuchi H, Kondo Y, Fujiwara K et al (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346PubMed
70.
Zurück zum Zitat Loeb DM, Korz D, Katsnelson M et al (2002) Cyclin E is a target of WT1 transcriptional repression. J Biol Chem 277:19627–19632PubMedCrossRef Loeb DM, Korz D, Katsnelson M et al (2002) Cyclin E is a target of WT1 transcriptional repression. J Biol Chem 277:19627–19632PubMedCrossRef
71.
Zurück zum Zitat Englert C, Maheswaran S, Garvin AJ et al (1997) Induction of p21 by the Wilms’ tumor suppressor gene WT1. Cancer Res 57:1429–1434PubMed Englert C, Maheswaran S, Garvin AJ et al (1997) Induction of p21 by the Wilms’ tumor suppressor gene WT1. Cancer Res 57:1429–1434PubMed
72.
Zurück zum Zitat Werner H, Roberts CT Jr, Rauscher FJ III et al (1996) Regulation of insulin-like growth factor I receptor gene expression by the Wilms’ tumor suppressor WT1. J Mol Neurosci 7:111–123PubMedCrossRef Werner H, Roberts CT Jr, Rauscher FJ III et al (1996) Regulation of insulin-like growth factor I receptor gene expression by the Wilms’ tumor suppressor WT1. J Mol Neurosci 7:111–123PubMedCrossRef
73.
Zurück zum Zitat Hongo A, Yumet G, Resnicoff M et al (1998) Inhibition of tumorigenesis and induction of apoptosis in human tumor cells by the stable expression of a myristylated COOH terminus of the insulin-like growth factor I receptor. Cancer Res 58:2477–2484PubMed Hongo A, Yumet G, Resnicoff M et al (1998) Inhibition of tumorigenesis and induction of apoptosis in human tumor cells by the stable expression of a myristylated COOH terminus of the insulin-like growth factor I receptor. Cancer Res 58:2477–2484PubMed
74.
Zurück zum Zitat Plymate SR, Bae VL, Maddison L et al (1997) Reexpression of the type 1 insulin-like growth factor receptor inhibits the malignant phenotype of simian virus 40 T antigen immortalized human prostate epithelial cells. Endocrinology 138:1728–1735PubMedCrossRef Plymate SR, Bae VL, Maddison L et al (1997) Reexpression of the type 1 insulin-like growth factor receptor inhibits the malignant phenotype of simian virus 40 T antigen immortalized human prostate epithelial cells. Endocrinology 138:1728–1735PubMedCrossRef
75.
Zurück zum Zitat Plymate SS, Bae VL, Maddison L et al (1997) Type-1 insulin-like growth factor receptor reexpression in the malignant phenotype of SV40-T-immortalized human prostate epithelial cells enhances apoptosis. Endocrine. 7:119–124PubMedCrossRef Plymate SS, Bae VL, Maddison L et al (1997) Type-1 insulin-like growth factor receptor reexpression in the malignant phenotype of SV40-T-immortalized human prostate epithelial cells enhances apoptosis. Endocrine. 7:119–124PubMedCrossRef
76.
Zurück zum Zitat Van Meter et al (2004) AKT inhibition enhances BCNU-mediated death in astrocytoma cells independent of PTEN functional status. Poster presentation. Congress of neurological surgeons, Annual meeting and 6th biennial AANS/CNS joint tumor satellite symposium, San Francisco CA, 21/10/2004 Van Meter et al (2004) AKT inhibition enhances BCNU-mediated death in astrocytoma cells independent of PTEN functional status. Poster presentation. Congress of neurological surgeons, Annual meeting and 6th biennial AANS/CNS joint tumor satellite symposium, San Francisco CA, 21/10/2004
77.
Zurück zum Zitat Simpson JR, Horton J, Scott C et al (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 26:239–244PubMedCrossRef Simpson JR, Horton J, Scott C et al (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 26:239–244PubMedCrossRef
78.
Zurück zum Zitat Walker MD, Alexander E Jr, Hunt WE et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49:333–343PubMedCrossRef Walker MD, Alexander E Jr, Hunt WE et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49:333–343PubMedCrossRef
79.
Zurück zum Zitat Mains RE, May V (1988) The role of a low pH intracellular compartment in the processing, storage, and secretion of ACTH and endorphin. J Biol Chem 263:7887–7894PubMed Mains RE, May V (1988) The role of a low pH intracellular compartment in the processing, storage, and secretion of ACTH and endorphin. J Biol Chem 263:7887–7894PubMed
80.
Zurück zum Zitat Paglin S, Hollister T, Delohery T et al (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444PubMed Paglin S, Hollister T, Delohery T et al (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444PubMed
Metadaten
Titel
Wilms’ tumor 1 silencing decreases the viability and chemoresistance of glioblastoma cells in vitro: a potential role for IGF-1R de-repression
verfasst von
Mike Y. Chen
Aaron J. Clark
Dana C. Chan
Joy L. Ware
Shawn E. Holt
Archana Chidambaram
Helen L. Fillmore
William C. Broaddus
Publikationsdatum
01.05.2011
Verlag
Springer US
Erschienen in
Journal of Neuro-Oncology / Ausgabe 1/2011
Print ISSN: 0167-594X
Elektronische ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-010-0374-7

Weitere Artikel der Ausgabe 1/2011

Journal of Neuro-Oncology 1/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.