Skip to main content
Erschienen in: Molecular Imaging and Biology 3/2020

08.08.2019 | Research Article

Assessment of Chemotherapy-Induced Organ Damage with Ga-68 Labeled Duramycin

verfasst von: Anne Rix, Natascha Ingrid Drude, Anna Mrugalla, Ferhan Baskaya, Koon Yan Pak, Brian Gray, Hans-Jürgen Kaiser, René Hany Tolba, Eva Fiegle, Wiltrud Lederle, Felix Manuel Mottaghy, Fabian Kiessling

Erschienen in: Molecular Imaging and Biology | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Evaluation of [68Ga]NODAGA-duramycin as a positron emission tomography (PET) tracer of cell death for whole-body detection of chemotherapy-induced organ toxicity.

Procedures

Tracer specificity of Ga-68 labeled NODAGA-duramycin was determined in vitro using competitive binding experiments. Organ uptake was analyzed in untreated and doxorubicin, busulfan, and cisplatin-treated mice 2 h after intravenous injection of [68Ga]NODAGA-duramycin. In vivo data were validated by immunohistology and blood parameters.

Results

In vitro experiments confirmed specific binding of [68Ga]NODAGA-duramycin. Organ toxicities were detected successfully using [68Ga]NODAGA-duramycin PET/X-ray computed tomography (CT) and confirmed by immunohistochemistry and blood parameter analysis. Organ toxicities in livers and kidneys showed similar trends in PET/CT and immunohistology. Busulfan and cisplatin-related organ toxicities in heart, liver, and lungs were detected earlier by PET/CT than by blood parameters and immunohistology.

Conclusion

[68Ga]NODAGA-duramycin PET/CT was successfully applied to non-invasively detect chemotherapy-induced organ toxicity with high sensitivity in mice. It, therefore, represents a promising alternative to standard toxicological analyses with a high translational potential.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Marrer E, Dieterle F (2010) Impact of biomarker development on drug safety assessment. Toxicol Appl Pharmacol 243:167–179CrossRef Marrer E, Dieterle F (2010) Impact of biomarker development on drug safety assessment. Toxicol Appl Pharmacol 243:167–179CrossRef
2.
Zurück zum Zitat Russell WMS, Burch RL, Hume CW (1959) The principles of humane experimental technique. Methuen, London Russell WMS, Burch RL, Hume CW (1959) The principles of humane experimental technique. Methuen, London
3.
Zurück zum Zitat Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19CrossRef Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19CrossRef
4.
Zurück zum Zitat Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, de Laurenzi V, de Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, di Daniele N, di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, el-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541CrossRef Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, de Laurenzi V, de Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, di Daniele N, di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, el-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541CrossRef
5.
Zurück zum Zitat Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 5:559–582CrossRef Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 5:559–582CrossRef
6.
Zurück zum Zitat Lederle W, Arns S, Rix A, Gremse F, Doleschel D, Schmaljohann J, Mottaghy FM, Kiessling F, Palmowski M (2011) Failure of annexin-based apoptosis imaging in the assessment of antiangiogenic therapy effects. EJNMMI Res 1:26CrossRef Lederle W, Arns S, Rix A, Gremse F, Doleschel D, Schmaljohann J, Mottaghy FM, Kiessling F, Palmowski M (2011) Failure of annexin-based apoptosis imaging in the assessment of antiangiogenic therapy effects. EJNMMI Res 1:26CrossRef
7.
Zurück zum Zitat Ogawa K, Aoki M (2014) Radiolabeled apoptosis imaging agents for early detection of response to therapy. ScientificWorldJournal 2014:732603CrossRef Ogawa K, Aoki M (2014) Radiolabeled apoptosis imaging agents for early detection of response to therapy. ScientificWorldJournal 2014:732603CrossRef
8.
Zurück zum Zitat Elvas F, Stroobants S, Wyffels L (2017) Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis. Apoptosis 22:971–987CrossRef Elvas F, Stroobants S, Wyffels L (2017) Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis. Apoptosis 22:971–987CrossRef
9.
Zurück zum Zitat Johnson SE, Ugolkov A, Haney CR, Bondarenko G, Li L, Waters EA, Bergan R, Tran A, O'Halloran TV, Mazar A, Zhao M (2019) Whole-body imaging of cell death provides a systemic, minimally invasive, dynamic, and near-real time indicator for chemotherapeutic drug toxicity. Clin Cancer Res 25:1331–1342CrossRef Johnson SE, Ugolkov A, Haney CR, Bondarenko G, Li L, Waters EA, Bergan R, Tran A, O'Halloran TV, Mazar A, Zhao M (2019) Whole-body imaging of cell death provides a systemic, minimally invasive, dynamic, and near-real time indicator for chemotherapeutic drug toxicity. Clin Cancer Res 25:1331–1342CrossRef
10.
Zurück zum Zitat Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21:440–446CrossRef Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21:440–446CrossRef
11.
Zurück zum Zitat Jadapalli JK, Wright GW, Kain V, Sherwani MA, Sonkar R, Yusuf N, Halade GV (2018) Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters the inflammation-resolution program in the myocardium. Am J Physiol Heart Circ Physiol 315:H1091–H1100CrossRef Jadapalli JK, Wright GW, Kain V, Sherwani MA, Sonkar R, Yusuf N, Halade GV (2018) Doxorubicin triggers splenic contraction and irreversible dysregulation of COX and LOX that alters the inflammation-resolution program in the myocardium. Am J Physiol Heart Circ Physiol 315:H1091–H1100CrossRef
12.
Zurück zum Zitat Pai VB, Nahata MC (2000) Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf 22:263–302CrossRef Pai VB, Nahata MC (2000) Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf 22:263–302CrossRef
13.
Zurück zum Zitat Buggia I, Locatelli F, Regazzi MB, Zecca M (1994) Busulfan. Ann Pharmacother 28:1055–1062CrossRef Buggia I, Locatelli F, Regazzi MB, Zecca M (1994) Busulfan. Ann Pharmacother 28:1055–1062CrossRef
14.
Zurück zum Zitat Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378CrossRef Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378CrossRef
15.
Zurück zum Zitat Banerjee S, Sinha K, Chowdhury S, Sil PC (2018) Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine. Chem Biol Interact 279:159–170CrossRef Banerjee S, Sinha K, Chowdhury S, Sil PC (2018) Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine. Chem Biol Interact 279:159–170CrossRef
16.
Zurück zum Zitat Adwas AA, Elkhoely AA, Kabel AM, Abdel-Rahman MN, Eissa AA (2016) Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J Infect Chemother 22:36–43CrossRef Adwas AA, Elkhoely AA, Kabel AM, Abdel-Rahman MN, Eissa AA (2016) Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J Infect Chemother 22:36–43CrossRef
17.
Zurück zum Zitat Molyneux G, Andrews M, Sones W, York M, Barnett A, Quirk E, Yeung W, Turton J (2011) Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration. Cell Biol Toxicol 27:13–40CrossRef Molyneux G, Andrews M, Sones W, York M, Barnett A, Quirk E, Yeung W, Turton J (2011) Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration. Cell Biol Toxicol 27:13–40CrossRef
18.
Zurück zum Zitat Kang KP, Kim DH, Jung YJ, Lee AS, Lee S, Lee SY, Jang KY, Sung MJ, Park SK, Kim W (2009) Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol Dial Transplant 24:3012–3020CrossRef Kang KP, Kim DH, Jung YJ, Lee AS, Lee S, Lee SY, Jang KY, Sung MJ, Park SK, Kim W (2009) Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol Dial Transplant 24:3012–3020CrossRef
19.
Zurück zum Zitat Gremse F, Stark M, Ehling J et al (2016) Imalytics preclinical: interactive analysis of biomedical volume data. Theranostics 6:328–341CrossRef Gremse F, Stark M, Ehling J et al (2016) Imalytics preclinical: interactive analysis of biomedical volume data. Theranostics 6:328–341CrossRef
20.
Zurück zum Zitat Duan WR, Garner DS, Williams SD, Funckes-Shippy CL, Spath IS, Blomme EAG (2003) Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol 199:221–228CrossRef Duan WR, Garner DS, Williams SD, Funckes-Shippy CL, Spath IS, Blomme EAG (2003) Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J Pathol 199:221–228CrossRef
21.
Zurück zum Zitat Lederle W, Linde N, Heusel J, Bzyl J, Woenne EC, Zwick S, Skobe M, Kiessling F, Fusenig NE, Mueller MM (2010) Platelet-derived growth factor-B normalizes micromorphology and vessel function in vascular endothelial growth factor-A-induced squamous cell carcinomas. Am J Pathol 176:981–994CrossRef Lederle W, Linde N, Heusel J, Bzyl J, Woenne EC, Zwick S, Skobe M, Kiessling F, Fusenig NE, Mueller MM (2010) Platelet-derived growth factor-B normalizes micromorphology and vessel function in vascular endothelial growth factor-A-induced squamous cell carcinomas. Am J Pathol 176:981–994CrossRef
22.
Zurück zum Zitat Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRef
23.
Zurück zum Zitat Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207CrossRef Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207CrossRef
24.
Zurück zum Zitat Yao S, Hu K, Tang G, Liang X, du K, Nie D, Jiang S, Zang L (2014) Positron emission tomography imaging of cell death with [18F]FPDuramycin. Apoptosis 19:841–850CrossRef Yao S, Hu K, Tang G, Liang X, du K, Nie D, Jiang S, Zang L (2014) Positron emission tomography imaging of cell death with [18F]FPDuramycin. Apoptosis 19:841–850CrossRef
25.
Zurück zum Zitat Huang B, Fang W, Tian W et al (2012) Experimental study of labeling and biodistribution of 68Ga-NOTA-duramycin. Chin J Nucl Med Mol Imaging 32:286–290 Huang B, Fang W, Tian W et al (2012) Experimental study of labeling and biodistribution of 68Ga-NOTA-duramycin. Chin J Nucl Med Mol Imaging 32:286–290
26.
Zurück zum Zitat Banerjee SR, Pomper MG (2013) Clinical applications of Gallium-68. Appl Radiat Isot 76:2–13CrossRef Banerjee SR, Pomper MG (2013) Clinical applications of Gallium-68. Appl Radiat Isot 76:2–13CrossRef
27.
Zurück zum Zitat Sanchez-Crespo A (2013) Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot 76:55–62CrossRef Sanchez-Crespo A (2013) Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot 76:55–62CrossRef
28.
Zurück zum Zitat Poschenrieder A, Schottelius M, Schwaiger M, Wester HJ (2016) Preclinical evaluation of [68Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo - a comparison to [68Ga]pentixafor. EJNMMI Res 6:70CrossRef Poschenrieder A, Schottelius M, Schwaiger M, Wester HJ (2016) Preclinical evaluation of [68Ga]NOTA-pentixafor for PET imaging of CXCR4 expression in vivo - a comparison to [68Ga]pentixafor. EJNMMI Res 6:70CrossRef
29.
Zurück zum Zitat Perse M, Veceric-Haler Z (2018) Cisplatin-induced rodent model of kidney injury: characteristics and challenges. Biomed Res Int 2018:1462802CrossRef Perse M, Veceric-Haler Z (2018) Cisplatin-induced rodent model of kidney injury: characteristics and challenges. Biomed Res Int 2018:1462802CrossRef
30.
Zurück zum Zitat Qian Q, Nath KA, Wu Y, Daoud TM, Sethi S (2010) Hemolysis and acute kidney failure. Am J Kidney Dis 56:780–784CrossRef Qian Q, Nath KA, Wu Y, Daoud TM, Sethi S (2010) Hemolysis and acute kidney failure. Am J Kidney Dis 56:780–784CrossRef
31.
Zurück zum Zitat Behr TM, Goldenberg DM, Becker W (1998) Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 25:201–212CrossRef Behr TM, Goldenberg DM, Becker W (1998) Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 25:201–212CrossRef
32.
Zurück zum Zitat Muller PY, Dieterle F (2009) Tissue-specific, non-invasive toxicity biomarkers: translation from preclinical safety assessment to clinical safety monitoring. Expert Opin Drug Metab Toxicol 5:1023–1038CrossRef Muller PY, Dieterle F (2009) Tissue-specific, non-invasive toxicity biomarkers: translation from preclinical safety assessment to clinical safety monitoring. Expert Opin Drug Metab Toxicol 5:1023–1038CrossRef
33.
Zurück zum Zitat Altai M, Perols A, Karlstrom AE et al (2012) Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with 111In using a maleimido derivative of NODAGA. Nucl Med Biol 39:518–529CrossRef Altai M, Perols A, Karlstrom AE et al (2012) Preclinical evaluation of anti-HER2 Affibody molecules site-specifically labeled with 111In using a maleimido derivative of NODAGA. Nucl Med Biol 39:518–529CrossRef
34.
Zurück zum Zitat Malmberg J, Perols A, Varasteh Z, Altai M, Braun A, Sandström M, Garske U, Tolmachev V, Orlova A, Eriksson Karlström A (2012) Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts. Eur J Nucl Med Mol Imaging 39:481–492CrossRef Malmberg J, Perols A, Varasteh Z, Altai M, Braun A, Sandström M, Garske U, Tolmachev V, Orlova A, Eriksson Karlström A (2012) Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts. Eur J Nucl Med Mol Imaging 39:481–492CrossRef
35.
Zurück zum Zitat Strand J, Honarvar H, Perols A, Orlova A, Selvaraju RK, Karlström AE, Tolmachev V (2013) Influence of macrocyclic chelators on the targeting properties of 68Ga-labeled synthetic affibody molecules: comparison with 111In-labeled counterparts. PLoS One 8:e70028CrossRef Strand J, Honarvar H, Perols A, Orlova A, Selvaraju RK, Karlström AE, Tolmachev V (2013) Influence of macrocyclic chelators on the targeting properties of 68Ga-labeled synthetic affibody molecules: comparison with 111In-labeled counterparts. PLoS One 8:e70028CrossRef
36.
Zurück zum Zitat Grozovsky R, Hoffmeister KM, Falet H (2010) Novel clearance mechanisms of platelets. Curr Opin Hematol 17:585–589CrossRef Grozovsky R, Hoffmeister KM, Falet H (2010) Novel clearance mechanisms of platelets. Curr Opin Hematol 17:585–589CrossRef
Metadaten
Titel
Assessment of Chemotherapy-Induced Organ Damage with Ga-68 Labeled Duramycin
verfasst von
Anne Rix
Natascha Ingrid Drude
Anna Mrugalla
Ferhan Baskaya
Koon Yan Pak
Brian Gray
Hans-Jürgen Kaiser
René Hany Tolba
Eva Fiegle
Wiltrud Lederle
Felix Manuel Mottaghy
Fabian Kiessling
Publikationsdatum
08.08.2019
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 3/2020
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-019-01417-3

Weitere Artikel der Ausgabe 3/2020

Molecular Imaging and Biology 3/2020 Zur Ausgabe

PET kann infarktgefährdete Koronararterien entdecken

04.06.2024 Koronare Herzerkrankung Nachrichten

Der Nachweis aktiver Plaques mittels 18F-Natriumfluorid-PET hilft nicht nur, infarktgefährdete Patienten, sondern auch infarktgefährdete Koronararterien zu erkennen. Von einer gezielten Behandlung vulnerabler Plaques ist man trotzdem weit entfernt.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.