Skip to main content
Erschienen in: Japanese Journal of Radiology 1/2019

29.11.2018 | Invited Review

Machine learning studies on major brain diseases: 5-year trends of 2014–2018

verfasst von: Koji Sakai, Kei Yamada

Erschienen in: Japanese Journal of Radiology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

In the recent 5 years (2014–2018), there has been growing interest in the use of machine learning (ML) techniques to explore image diagnosis and prognosis of therapeutic lesion changes within the area of neuroradiology. However, to date, the majority of research trend and current status have not been clearly illuminated in the neuroradiology field. More than 1000 papers have been published during the past 5 years on subject classification and prediction focused on multiple brain disorders. We provide a survey of 209 papers in this field with a focus on top ten active areas of research; i.e., Alzheimer’s disease/mild cognitive impairment, brain tumor; schizophrenia, depressive disorders, Parkinson’s disease, attention-deficit hyperactivity disorder, autism spectrum disease, epilepsy, multiple sclerosis, stroke, and traumatic brain injury. Detailed information of these studies, such as ML methods, sample size, type of inputted features and reported accuracy, are summarized. This paper reviews the evidences, current limitations and status of studies using ML to assess brain disorders in neuroimaging data. The main bottleneck of this research field is still the limited sample size, which could be potentially addressed by modern data sharing models, such as ADNI.
Literatur
2.
Zurück zum Zitat Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage. 2017;145:137–65.CrossRefPubMed Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage. 2017;145:137–65.CrossRefPubMed
4.
Zurück zum Zitat Moher D. Preferred reporting items for systematic reviews and meta-analyses. J Clin Epidemiol. 2009;62:1006–12.CrossRef Moher D. Preferred reporting items for systematic reviews and meta-analyses. J Clin Epidemiol. 2009;62:1006–12.CrossRef
5.
Zurück zum Zitat Jie B, Zhang D, Gao W, Wang Q, Wee CY, Shen D. Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans Biomed Eng. 2014;61(2):576–89.CrossRefPubMedPubMedCentral Jie B, Zhang D, Gao W, Wang Q, Wee CY, Shen D. Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans Biomed Eng. 2014;61(2):576–89.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Li M, Oishi K, He X, Qin Y, Gao F, Mori S, et al. An efficient approach for differentiating Alzheimer’s disease from normal elderly based on multicenter MRI using gray-level invariant features. PLoS One. 2014;9(8):e105563.CrossRefPubMedPubMedCentral Li M, Oishi K, He X, Qin Y, Gao F, Mori S, et al. An efficient approach for differentiating Alzheimer’s disease from normal elderly based on multicenter MRI using gray-level invariant features. PLoS One. 2014;9(8):e105563.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Li M, Qin Y, Gao F, Zhu W, He X. Discriminative analysis of multivariate features from structural MRI and diffusion tensor images. Magn Reson Imaging. 2014;32(8):1043–51.CrossRefPubMed Li M, Qin Y, Gao F, Zhu W, He X. Discriminative analysis of multivariate features from structural MRI and diffusion tensor images. Magn Reson Imaging. 2014;32(8):1043–51.CrossRefPubMed
8.
Zurück zum Zitat Li S, Yuan X, Pu F, Li D, Fan Y, Wu L, et al. Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients. J Neurosci. 2014;34(32):10541–53.CrossRefPubMedPubMedCentral Li S, Yuan X, Pu F, Li D, Fan Y, Wu L, et al. Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients. J Neurosci. 2014;34(32):10541–53.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Liu M, Zhang D, Shen D, Alzheimer’s Disease Neuroimaging I. Identifying informative imaging biomarkers via tree structured sparse learning for AD diagnosis. Neuroinformatics. 2014;12(3):381–94.CrossRefPubMedPubMedCentral Liu M, Zhang D, Shen D, Alzheimer’s Disease Neuroimaging I. Identifying informative imaging biomarkers via tree structured sparse learning for AD diagnosis. Neuroinformatics. 2014;12(3):381–94.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Segovia F, Bastin C, Salmon E, Gorriz JM, Ramirez J, Phillips C. Combining PET images and neuropsychological test data for automatic diagnosis of Alzheimer’s disease. PLoS One. 2014;9(2):e88687.CrossRefPubMedPubMedCentral Segovia F, Bastin C, Salmon E, Gorriz JM, Ramirez J, Phillips C. Combining PET images and neuropsychological test data for automatic diagnosis of Alzheimer’s disease. PLoS One. 2014;9(2):e88687.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Suk HI, Lee SW, Shen D, Alzheimer’s Disease Neuroimaging I. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage. 2014;101:569–82.CrossRefPubMedPubMedCentral Suk HI, Lee SW, Shen D, Alzheimer’s Disease Neuroimaging I. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage. 2014;101:569–82.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Cheng B, Liu M, Suk HI, Shen D, Zhang D, Alzheimer’s Disease Neuroimaging I. Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging Behav. 2015;9(4):913–26.CrossRefPubMedPubMedCentral Cheng B, Liu M, Suk HI, Shen D, Zhang D, Alzheimer’s Disease Neuroimaging I. Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging Behav. 2015;9(4):913–26.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Dyrba M, Grothe M, Kirste T, Teipel SJ. Multimodal analysis of functional and structural disconnection in Alzheimer’s disease using multiple kernel SVM. Hum Brain Mapp. 2015;36(6):2118–31.CrossRef Dyrba M, Grothe M, Kirste T, Teipel SJ. Multimodal analysis of functional and structural disconnection in Alzheimer’s disease using multiple kernel SVM. Hum Brain Mapp. 2015;36(6):2118–31.CrossRef
14.
Zurück zum Zitat Farzan A, Mashohor S, Ramli AR, Mahmud R. Boosting diagnosis accuracy of Alzheimer’s disease using high dimensional recognition of longitudinal brain atrophy patterns. Behav Brain Res. 2015;290:124–30.CrossRefPubMed Farzan A, Mashohor S, Ramli AR, Mahmud R. Boosting diagnosis accuracy of Alzheimer’s disease using high dimensional recognition of longitudinal brain atrophy patterns. Behav Brain Res. 2015;290:124–30.CrossRefPubMed
15.
Zurück zum Zitat Jie B, Zhang D, Cheng B, Shen D, Alzheimer’s Disease Neuroimaging I. Manifold regularized multitask feature learning for multimodality disease classification. Hum Brain Mapp. 2015;36(2):489–507.CrossRef Jie B, Zhang D, Cheng B, Shen D, Alzheimer’s Disease Neuroimaging I. Manifold regularized multitask feature learning for multimodality disease classification. Hum Brain Mapp. 2015;36(2):489–507.CrossRef
16.
Zurück zum Zitat Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clin Neurophysiol. 2015;126(11):2132–41.CrossRefPubMed Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clin Neurophysiol. 2015;126(11):2132–41.CrossRefPubMed
17.
Zurück zum Zitat Liu M, Zhang D, Shen D, Alzheimer’s Disease Neuroimaging I. View-centralized multi-atlas classification for Alzheimer’s disease diagnosis. Hum Brain Mapp. 2015;36(5):1847–65.CrossRefPubMed Liu M, Zhang D, Shen D, Alzheimer’s Disease Neuroimaging I. View-centralized multi-atlas classification for Alzheimer’s disease diagnosis. Hum Brain Mapp. 2015;36(5):1847–65.CrossRefPubMed
18.
Zurück zum Zitat Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng. 2015;62(4):1132–40.CrossRefPubMed Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng. 2015;62(4):1132–40.CrossRefPubMed
19.
Zurück zum Zitat Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J, Alzheimer’s Disease Neuroimaging I. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412.CrossRefPubMed Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J, Alzheimer’s Disease Neuroimaging I. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412.CrossRefPubMed
20.
Zurück zum Zitat Xu L, Wu X, Chen K, Yao L. Multi-modality sparse representation-based classification for Alzheimer’s disease and mild cognitive impairment. Comput Methods Progr Biomed. 2015;122(2):182–90.CrossRef Xu L, Wu X, Chen K, Yao L. Multi-modality sparse representation-based classification for Alzheimer’s disease and mild cognitive impairment. Comput Methods Progr Biomed. 2015;122(2):182–90.CrossRef
21.
Zurück zum Zitat Zhu X, Suk HI, Zhu Y, Thung KH, Wu G, Shen D. Multi-view classification for identification of Alzheimer’s disease. Mach Learn Med Imaging. 2015;9352:255–62.CrossRefPubMedPubMedCentral Zhu X, Suk HI, Zhu Y, Thung KH, Wu G, Shen D. Multi-view classification for identification of Alzheimer’s disease. Mach Learn Med Imaging. 2015;9352:255–62.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Cattell L, Platsch G, Pfeiffer R, Declerck J, Schnabel JA, Hutton C, et al. Classification of amyloid status using machine learning with histograms of oriented 3D gradients. Neuroimage Clin. 2016;12:990–1003.CrossRefPubMedPubMedCentral Cattell L, Platsch G, Pfeiffer R, Declerck J, Schnabel JA, Hutton C, et al. Classification of amyloid status using machine learning with histograms of oriented 3D gradients. Neuroimage Clin. 2016;12:990–1003.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Hu C, Sepulcre J, Johnson KA, Fakhri GE, Lu YM, Li Q. Matched signal detection on graphs: theory and application to brain imaging data classification. Neuroimage. 2016;125:587–600.CrossRefPubMed Hu C, Sepulcre J, Johnson KA, Fakhri GE, Lu YM, Li Q. Matched signal detection on graphs: theory and application to brain imaging data classification. Neuroimage. 2016;125:587–600.CrossRefPubMed
24.
Zurück zum Zitat Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 2016;10(3):799–817.CrossRefPubMed Khazaee A, Ebrahimzadeh A, Babajani-Feremi A. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 2016;10(3):799–817.CrossRefPubMed
25.
Zurück zum Zitat Liu M, Zhang D, Shen D. Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans Med Imaging. 2016;35(6):1463–74.CrossRefPubMedPubMedCentral Liu M, Zhang D, Shen D. Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans Med Imaging. 2016;35(6):1463–74.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Ni H, Zhou L, Ning X, Wang L, Alzheimer’s Disease Neuroimaging I. Exploring multifractal-based features for mild Alzheimer’s disease classification. Magn Reson Med. 2016;76(1):259–69.CrossRefPubMed Ni H, Zhou L, Ning X, Wang L, Alzheimer’s Disease Neuroimaging I. Exploring multifractal-based features for mild Alzheimer’s disease classification. Magn Reson Med. 2016;76(1):259–69.CrossRefPubMed
27.
Zurück zum Zitat Suk HI, Wee CY, Lee SW, Shen D. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage. 2016;129:292–307.CrossRefPubMedPubMedCentral Suk HI, Wee CY, Lee SW, Shen D. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage. 2016;129:292–307.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Yu G, Liu Y, Shen D. Graph-guided joint prediction of class label and clinical scores for the Alzheimer’s disease. Brain Struct Funct. 2016;221(7):3787–801.CrossRefPubMed Yu G, Liu Y, Shen D. Graph-guided joint prediction of class label and clinical scores for the Alzheimer’s disease. Brain Struct Funct. 2016;221(7):3787–801.CrossRefPubMed
29.
Zurück zum Zitat Zu C, Jie B, Liu M, Chen S, Shen D, Zhang D, et al. Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment. Brain Imaging Behav. 2016;10(4):1148–59.CrossRefPubMedPubMedCentral Zu C, Jie B, Liu M, Chen S, Shen D, Zhang D, et al. Label-aligned multi-task feature learning for multimodal classification of Alzheimer’s disease and mild cognitive impairment. Brain Imaging Behav. 2016;10(4):1148–59.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat An L, Adeli E, Liu M, Zhang J, Lee SW, Shen D. A hierarchical feature and sample selection framework and its application for Alzheimer’s disease diagnosis. Sci Rep. 2017;7:45269.CrossRefPubMedPubMedCentral An L, Adeli E, Liu M, Zhang J, Lee SW, Shen D. A hierarchical feature and sample selection framework and its application for Alzheimer’s disease diagnosis. Sci Rep. 2017;7:45269.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Beheshti I, Demirel H, Matsuda H, Alzheimer’s Disease Neuroimaging I. Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Comput Biol Med. 2017;83:109–19.CrossRefPubMed Beheshti I, Demirel H, Matsuda H, Alzheimer’s Disease Neuroimaging I. Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Comput Biol Med. 2017;83:109–19.CrossRefPubMed
32.
Zurück zum Zitat Chen X, Zhang H, Zhang L, Shen C, Lee SW, Shen D. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum Brain Mapp. 2017;38(10):5019–34.CrossRefPubMedPubMedCentral Chen X, Zhang H, Zhang L, Shen C, Lee SW, Shen D. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification. Hum Brain Mapp. 2017;38(10):5019–34.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Doan NT, Engvig A, Zaske K, Persson K, Lund MJ, Kaufmann T, et al. Distinguishing early and late brain aging from the Alzheimer’s disease spectrum: consistent morphological patterns across independent samples. Neuroimage. 2017;158:282–95.CrossRefPubMed Doan NT, Engvig A, Zaske K, Persson K, Lund MJ, Kaufmann T, et al. Distinguishing early and late brain aging from the Alzheimer’s disease spectrum: consistent morphological patterns across independent samples. Neuroimage. 2017;158:282–95.CrossRefPubMed
34.
Zurück zum Zitat Glozman T, Solomon J, Pestilli F, Guibas L, Alzheimer’s Disease Neuroimaging I. Shape-attributes of brain structures as biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2017;56(1):287–95.CrossRefPubMedPubMedCentral Glozman T, Solomon J, Pestilli F, Guibas L, Alzheimer’s Disease Neuroimaging I. Shape-attributes of brain structures as biomarkers for Alzheimer’s disease. J Alzheimers Dis. 2017;56(1):287–95.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Guan H, Liu T, Jiang J, Tao D, Zhang J, Niu H, et al. Classifying MCI subtypes in community-dwelling elderly using cross-sectional and longitudinal MRI-Based biomarkers. Front Aging Neurosci. 2017;9:309.CrossRefPubMedPubMedCentral Guan H, Liu T, Jiang J, Tao D, Zhang J, Niu H, et al. Classifying MCI subtypes in community-dwelling elderly using cross-sectional and longitudinal MRI-Based biomarkers. Front Aging Neurosci. 2017;9:309.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Guo H, Zhang F, Chen J, Xu Y, Xiang J. Machine learning classification combining multiple features of a hyper-network of fMRI data in Alzheimer’s disease. Front Neurosci. 2017;11:615.CrossRefPubMedPubMedCentral Guo H, Zhang F, Chen J, Xu Y, Xiang J. Machine learning classification combining multiple features of a hyper-network of fMRI data in Alzheimer’s disease. Front Neurosci. 2017;11:615.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Hojjati SH, Ebrahimzadeh A, Khazaee A, Babajani-Feremi A, Alzheimer’s Disease Neuroimaging I. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods. 2017;282:69–80.CrossRefPubMed Hojjati SH, Ebrahimzadeh A, Khazaee A, Babajani-Feremi A, Alzheimer’s Disease Neuroimaging I. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM. J Neurosci Methods. 2017;282:69–80.CrossRefPubMed
38.
Zurück zum Zitat Kawaguchi A, Yamashita F, Alzheimer’s Disease Neuroimaging I. Supervised multiblock sparse multivariable analysis with application to multimodal brain imaging genetics. Biostatistics. 2017;18(4):651–65.CrossRefPubMed Kawaguchi A, Yamashita F, Alzheimer’s Disease Neuroimaging I. Supervised multiblock sparse multivariable analysis with application to multimodal brain imaging genetics. Biostatistics. 2017;18(4):651–65.CrossRefPubMed
39.
Zurück zum Zitat Khazaee A, Ebrahimzadeh A, Babajani-Feremi A, Alzheimer’s Disease Neuroimaging I. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Behav Brain Res. 2017;322(Pt B):339–50.CrossRefPubMed Khazaee A, Ebrahimzadeh A, Babajani-Feremi A, Alzheimer’s Disease Neuroimaging I. Classification of patients with MCI and AD from healthy controls using directed graph measures of resting-state fMRI. Behav Brain Res. 2017;322(Pt B):339–50.CrossRefPubMed
40.
Zurück zum Zitat Lama RK, Gwak J, Park JS, Lee SW. Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine and PCA features. J Healthc Eng. 2017;2017:5485080.CrossRefPubMedPubMedCentral Lama RK, Gwak J, Park JS, Lee SW. Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine and PCA features. J Healthc Eng. 2017;2017:5485080.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Li Q, Wu X, Xu L, Chen K, Yao L, Li R. Multi-modal discriminative dictionary learning for Alzheimer’s disease and mild cognitive impairment. Comput Methods Progr Biomed. 2017;150:1–8.CrossRef Li Q, Wu X, Xu L, Chen K, Yao L, Li R. Multi-modal discriminative dictionary learning for Alzheimer’s disease and mild cognitive impairment. Comput Methods Progr Biomed. 2017;150:1–8.CrossRef
42.
Zurück zum Zitat Long X, Chen L, Jiang C, Zhang L, Alzheimer’s Disease Neuroimaging I. Prediction and classification of Alzheimer disease based on quantification of MRI deformation. PLoS One. 2017;12(3):e0173372.CrossRefPubMedPubMedCentral Long X, Chen L, Jiang C, Zhang L, Alzheimer’s Disease Neuroimaging I. Prediction and classification of Alzheimer disease based on quantification of MRI deformation. PLoS One. 2017;12(3):e0173372.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Min J, Moon WJ, Jeon JY, Choi JW, Moon YS, Han SH. Diagnostic efficacy of structural MRI in patients with mild-to-moderate Alzheimer disease: automated volumetric assessment versus visual assessment. AJR Am J Roentgenol. 2017;208(3):617–23.CrossRefPubMed Min J, Moon WJ, Jeon JY, Choi JW, Moon YS, Han SH. Diagnostic efficacy of structural MRI in patients with mild-to-moderate Alzheimer disease: automated volumetric assessment versus visual assessment. AJR Am J Roentgenol. 2017;208(3):617–23.CrossRefPubMed
44.
Zurück zum Zitat Proitsi P, Kim M, Whiley L, Simmons A, Sattlecker M, Velayudhan L, et al. Association of blood lipids with Alzheimer’s disease: a comprehensive lipidomics analysis. Alzheimers Dement. 2017;13(2):140–51.CrossRefPubMed Proitsi P, Kim M, Whiley L, Simmons A, Sattlecker M, Velayudhan L, et al. Association of blood lipids with Alzheimer’s disease: a comprehensive lipidomics analysis. Alzheimers Dement. 2017;13(2):140–51.CrossRefPubMed
45.
Zurück zum Zitat Sorensen L, Igel C, Pai A, Balas I, Anker C, Lillholm M, et al. Differential diagnosis of mild cognitive impairment and Alzheimer’s disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. Neuroimage Clin. 2017;13:470–82.CrossRefPubMed Sorensen L, Igel C, Pai A, Balas I, Anker C, Lillholm M, et al. Differential diagnosis of mild cognitive impairment and Alzheimer’s disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. Neuroimage Clin. 2017;13:470–82.CrossRefPubMed
46.
Zurück zum Zitat Suk HI, Lee SW, Shen D, Alzheimer’s Disease Neuroimaging I. Deep ensemble learning of sparse regression models for brain disease diagnosis. Med Image Anal. 2017;37:101–13.CrossRefPubMedPubMedCentral Suk HI, Lee SW, Shen D, Alzheimer’s Disease Neuroimaging I. Deep ensemble learning of sparse regression models for brain disease diagnosis. Med Image Anal. 2017;37:101–13.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Youssofzadeh V, McGuinness B, Maguire LP, Wong-Lin K. Multi-Kernel learning with Dartel improves combined MRI-PET classification of Alzheimer’s disease in AIBL data: group and individual analyses. Front Hum Neurosci. 2017;11:380.CrossRefPubMedPubMedCentral Youssofzadeh V, McGuinness B, Maguire LP, Wong-Lin K. Multi-Kernel learning with Dartel improves combined MRI-PET classification of Alzheimer’s disease in AIBL data: group and individual analyses. Front Hum Neurosci. 2017;11:380.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Zhu X, Suk HI, Wang L, Lee SW, Shen D, Alzheimer’s Disease Neuroimaging I. A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med Image Anal. 2017;38:205–14.CrossRefPubMed Zhu X, Suk HI, Wang L, Lee SW, Shen D, Alzheimer’s Disease Neuroimaging I. A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med Image Anal. 2017;38:205–14.CrossRefPubMed
50.
Zurück zum Zitat Amoroso N, Rocca M, Bellotti R, Fanizzi A, Monaco A, Tangaro S, et al. Alzheimer’s disease diagnosis based on the hippocampal unified multi-atlas network (HUMAN) algorithm. Biomed Eng Online. 2018;17(1):6.CrossRefPubMedPubMedCentral Amoroso N, Rocca M, Bellotti R, Fanizzi A, Monaco A, Tangaro S, et al. Alzheimer’s disease diagnosis based on the hippocampal unified multi-atlas network (HUMAN) algorithm. Biomed Eng Online. 2018;17(1):6.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Choi H, Jin KH, Alzheimer’s Disease Neuroimaging I. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.CrossRefPubMed Choi H, Jin KH, Alzheimer’s Disease Neuroimaging I. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.CrossRefPubMed
52.
Zurück zum Zitat Garali I, Adel M, Bourennane S, Guedj E. Histogram-Based features selection and volume of interest ranking for brain PET image classification. IEEE J Transl Eng Health Med. 2018;6:2100212.CrossRefPubMed Garali I, Adel M, Bourennane S, Guedj E. Histogram-Based features selection and volume of interest ranking for brain PET image classification. IEEE J Transl Eng Health Med. 2018;6:2100212.CrossRefPubMed
54.
Zurück zum Zitat Liu M, Cheng D, Wang K, Wang Y, Alzheimer’s Disease Neuroimaging I. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics. 2018;16(3–4):295–308.CrossRefPubMed Liu M, Cheng D, Wang K, Wang Y, Alzheimer’s Disease Neuroimaging I. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics. 2018;16(3–4):295–308.CrossRefPubMed
55.
Zurück zum Zitat Rondina JM, Ferreira LK, de Souza Duran FL, Kubo R, Ono CR, Leite CC, et al. Selecting the most relevant brain regions to discriminate Alzheimer’s disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases. Neuroimage Clin. 2018;17:628–41.CrossRefPubMed Rondina JM, Ferreira LK, de Souza Duran FL, Kubo R, Ono CR, Leite CC, et al. Selecting the most relevant brain regions to discriminate Alzheimer’s disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases. Neuroimage Clin. 2018;17:628–41.CrossRefPubMed
56.
Zurück zum Zitat Salvatore C, Castiglioni I. A wrapped multi-label classifier for the automatic diagnosis and prognosis of Alzheimer’s disease. J Neurosci Methods. 2018;302:58–65.CrossRefPubMed Salvatore C, Castiglioni I. A wrapped multi-label classifier for the automatic diagnosis and prognosis of Alzheimer’s disease. J Neurosci Methods. 2018;302:58–65.CrossRefPubMed
57.
Zurück zum Zitat Sun Z, Qiao Y, Lelieveldt BPF, Staring M, Alzheimer’s Disease NeuroImaging I. Integrating spatial-anatomical regularization and structure sparsity into SVM: improving interpretation of Alzheimer’s disease classification. Neuroimage. 2018;178:445–60.CrossRefPubMed Sun Z, Qiao Y, Lelieveldt BPF, Staring M, Alzheimer’s Disease NeuroImaging I. Integrating spatial-anatomical regularization and structure sparsity into SVM: improving interpretation of Alzheimer’s disease classification. Neuroimage. 2018;178:445–60.CrossRefPubMed
58.
Zurück zum Zitat Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H. Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst. 2018;42(5):85.CrossRefPubMed Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H. Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst. 2018;42(5):85.CrossRefPubMed
59.
Zurück zum Zitat Chen Y, Sha M, Zhao X, Ma J, Ni H, Gao W, et al. Automated detection of pathologic white matter alterations in Alzheimer’s disease using combined diffusivity and kurtosis method. Psychiatry Res Neuroimaging. 2017;264:35–45.CrossRefPubMed Chen Y, Sha M, Zhao X, Ma J, Ni H, Gao W, et al. Automated detection of pathologic white matter alterations in Alzheimer’s disease using combined diffusivity and kurtosis method. Psychiatry Res Neuroimaging. 2017;264:35–45.CrossRefPubMed
60.
Zurück zum Zitat Schouten TM, Koini M, Vos F, Seiler S, Rooij M, Lechner A, et al. Individual classification of Alzheimer’s disease with diffusion magnetic resonance imaging. Neuroimage. 2017;152:476–81.CrossRefPubMed Schouten TM, Koini M, Vos F, Seiler S, Rooij M, Lechner A, et al. Individual classification of Alzheimer’s disease with diffusion magnetic resonance imaging. Neuroimage. 2017;152:476–81.CrossRefPubMed
61.
Zurück zum Zitat Sorensen L, Igel C, Liv Hansen N, Osler M, Lauritzen M, Rostrup E, et al. Early detection of Alzheimer’s disease using MRI hippocampal texture. Hum Brain Mapp. 2016;37(3):1148–61.CrossRefPubMed Sorensen L, Igel C, Liv Hansen N, Osler M, Lauritzen M, Rostrup E, et al. Early detection of Alzheimer’s disease using MRI hippocampal texture. Hum Brain Mapp. 2016;37(3):1148–61.CrossRefPubMed
62.
Zurück zum Zitat Varol E, Sotiras A, Davatzikos C, Alzheimer’s Disease Neuroimaging I. HYDRA: revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework. Neuroimage. 2017;145(Pt B):346–64.CrossRefPubMed Varol E, Sotiras A, Davatzikos C, Alzheimer’s Disease Neuroimaging I. HYDRA: revealing heterogeneity of imaging and genetic patterns through a multiple max-margin discriminative analysis framework. Neuroimage. 2017;145(Pt B):346–64.CrossRefPubMed
63.
Zurück zum Zitat Cai K, Xu H, Guan H, Zhu W, Jiang J, Cui Y, et al. Identification of early-stage Alzheimer’s disease using sulcal morphology and other common neuroimaging indices. PLoS One. 2017;12(1):e0170875.CrossRefPubMedPubMedCentral Cai K, Xu H, Guan H, Zhu W, Jiang J, Cui Y, et al. Identification of early-stage Alzheimer’s disease using sulcal morphology and other common neuroimaging indices. PLoS One. 2017;12(1):e0170875.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Jie B, Liu M, Liu J, Zhang D, Shen D. Temporally constrained group sparse learning for longitudinal data analysis in Alzheimer’s disease. IEEE Trans Biomed Eng. 2017;64(1):238–49.CrossRefPubMed Jie B, Liu M, Liu J, Zhang D, Shen D. Temporally constrained group sparse learning for longitudinal data analysis in Alzheimer’s disease. IEEE Trans Biomed Eng. 2017;64(1):238–49.CrossRefPubMed
65.
Zurück zum Zitat Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom KW, Iv M, Ou Y, Kalpathy-Cramer J, Napel S, Gillies R, Gevaert O, Gatenby R. Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol. 2018;39:208–16.CrossRefPubMed Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom KW, Iv M, Ou Y, Kalpathy-Cramer J, Napel S, Gillies R, Gevaert O, Gatenby R. Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am J Neuroradiol. 2018;39:208–16.CrossRefPubMed
66.
Zurück zum Zitat Imani F, Boada FE, Lieberman FS, Davis DK, Mountz JM. Molecular and metabolic pattern classification for detection of brain glioma progression. Eur J Radiol. 2014;83(2):e100–5.CrossRefPubMed Imani F, Boada FE, Lieberman FS, Davis DK, Mountz JM. Molecular and metabolic pattern classification for detection of brain glioma progression. Eur J Radiol. 2014;83(2):e100–5.CrossRefPubMed
67.
Zurück zum Zitat Nachimuthu DS, Baladhandapani A. Multidimensional texture characterization: on analysis for brain tumor tissues using MRS and MRI. J Digit Imaging. 2014;27(4):496–506.CrossRefPubMedPubMedCentral Nachimuthu DS, Baladhandapani A. Multidimensional texture characterization: on analysis for brain tumor tissues using MRS and MRI. J Digit Imaging. 2014;27(4):496–506.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Sunwoo L, Kim YJ, Choi SH, Kim KG, Kang JH, Kang Y, et al. Computer-aided detection of brain metastasis on 3D MR imaging: observer performance study. PLoS One. 2017;12(6):e0178265.CrossRefPubMedPubMedCentral Sunwoo L, Kim YJ, Choi SH, Kim KG, Kang JH, Kang Y, et al. Computer-aided detection of brain metastasis on 3D MR imaging: observer performance study. PLoS One. 2017;12(6):e0178265.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Wu W, Chen AY, Zhao L, Corso JJ. Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int J Comput Assist Radiol Surg. 2014;9(2):241–53.CrossRefPubMed Wu W, Chen AY, Zhao L, Corso JJ. Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int J Comput Assist Radiol Surg. 2014;9(2):241–53.CrossRefPubMed
70.
Zurück zum Zitat Fathi Kazerooni A, Mohseni M, Rezaei S, Bakhshandehpour G, Saligheh Rad H. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA. 2015;28(1):13–22.CrossRefPubMed Fathi Kazerooni A, Mohseni M, Rezaei S, Bakhshandehpour G, Saligheh Rad H. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA. 2015;28(1):13–22.CrossRefPubMed
71.
Zurück zum Zitat Szwarc P, Kawa J, Rudzki M, Pietka E. Automatic brain tumour detection and neovasculature assessment with multiseries MRI analysis. Comput Med Imaging Graph. 2015;46(Pt 2):178–90.CrossRefPubMed Szwarc P, Kawa J, Rudzki M, Pietka E. Automatic brain tumour detection and neovasculature assessment with multiseries MRI analysis. Comput Med Imaging Graph. 2015;46(Pt 2):178–90.CrossRefPubMed
72.
Zurück zum Zitat Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRefPubMed Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.CrossRefPubMed
73.
Zurück zum Zitat Li Y, Liu X, Wei F, Sima DM, Van Cauter S, Himmelreich U, et al. An advanced MRI and MRSI data fusion scheme for enhancing unsupervised brain tumor differentiation. Comput Biol Med. 2017;81:121–9.CrossRefPubMed Li Y, Liu X, Wei F, Sima DM, Van Cauter S, Himmelreich U, et al. An advanced MRI and MRSI data fusion scheme for enhancing unsupervised brain tumor differentiation. Comput Biol Med. 2017;81:121–9.CrossRefPubMed
74.
Zurück zum Zitat Sauwen N, Acou M, Sima DM, Veraart J, Maes F, Himmelreich U, et al. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization. BMC Med Imaging. 2017;17(1):29.CrossRefPubMedPubMedCentral Sauwen N, Acou M, Sima DM, Veraart J, Maes F, Himmelreich U, et al. Semi-automated brain tumor segmentation on multi-parametric MRI using regularized non-negative matrix factorization. BMC Med Imaging. 2017;17(1):29.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat AlBadawy EA, Saha A, Mazurowski MA. Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing. Med Phys. 2018;45(3):1150–8.CrossRefPubMed AlBadawy EA, Saha A, Mazurowski MA. Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing. Med Phys. 2018;45(3):1150–8.CrossRefPubMed
76.
Zurück zum Zitat Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net convolutional neural network study. PLoS One. 2018;13(4):e0195798.CrossRefPubMedPubMedCentral Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net convolutional neural network study. PLoS One. 2018;13(4):e0195798.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, et al. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Comput Methods Progr Biomed. 2018;157:69–84.CrossRef Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, et al. Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Comput Methods Progr Biomed. 2018;157:69–84.CrossRef
78.
79.
Zurück zum Zitat Inano R, Oishi N, Kunieda T, Arakawa Y, Yamao Y, Shibata S, et al. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading. Neuroimage Clin. 2014;5:396–407.CrossRefPubMedPubMedCentral Inano R, Oishi N, Kunieda T, Arakawa Y, Yamao Y, Shibata S, et al. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading. Neuroimage Clin. 2014;5:396–407.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Fetit AE, Novak J, Peet AC, Arvanitits TN. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed. 2015;28(9):1174–84.CrossRefPubMed Fetit AE, Novak J, Peet AC, Arvanitits TN. Three-dimensional textural features of conventional MRI improve diagnostic classification of childhood brain tumours. NMR Biomed. 2015;28(9):1174–84.CrossRefPubMed
81.
Zurück zum Zitat Hu LS, Ning S, Eschbacher JM, Gaw N, Dueck AC, Smith KA, et al. Multi-Parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS One. 2015;10(11):e0141506.CrossRefPubMedPubMedCentral Hu LS, Ning S, Eschbacher JM, Gaw N, Dueck AC, Smith KA, et al. Multi-Parametric MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma. PLoS One. 2015;10(11):e0141506.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Tsolaki E, Svolos P, Kousi E, Kapsalaki E, Fezoulidis I, Fountas K, et al. Fast spectroscopic multiple analysis (FASMA) for brain tumor classification: a clinical decision support system utilizing multi-parametric 3T MR data. Int J Comput Assist Radiol Surg. 2015;10(7):1149–66.CrossRefPubMed Tsolaki E, Svolos P, Kousi E, Kapsalaki E, Fezoulidis I, Fountas K, et al. Fast spectroscopic multiple analysis (FASMA) for brain tumor classification: a clinical decision support system utilizing multi-parametric 3T MR data. Int J Comput Assist Radiol Surg. 2015;10(7):1149–66.CrossRefPubMed
83.
Zurück zum Zitat Li-Chun Hsieh K, Chen CY, Lo CM. Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Comput Biol Med. 2017;83:102–8.CrossRefPubMed Li-Chun Hsieh K, Chen CY, Lo CM. Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Comput Biol Med. 2017;83:102–8.CrossRefPubMed
84.
Zurück zum Zitat Zhang X, Yan LF, Hu YC, Li G, Yang Y, Han Y, et al. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Oncotarget. 2017;8(29):47816–30.PubMedPubMedCentral Zhang X, Yan LF, Hu YC, Li G, Yang Y, Han Y, et al. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Oncotarget. 2017;8(29):47816–30.PubMedPubMedCentral
85.
Zurück zum Zitat De Looze C, Beausang A, Cryan J, Loftus T, Buckley PG, Farrell M, et al. Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status. J Neurooncol. 2018;139(2):491–9.CrossRefPubMed De Looze C, Beausang A, Cryan J, Loftus T, Buckley PG, Farrell M, et al. Machine learning: a useful radiological adjunct in determination of a newly diagnosed glioma’s grade and IDH status. J Neurooncol. 2018;139(2):491–9.CrossRefPubMed
87.
Zurück zum Zitat Shofty B, Artzi M, Ben Bashat D, Liberman G, Haim O, Kashanian A, et al. MRI radiomics analysis of molecular alterations in low-grade gliomas. Int J Comput Assist Radiol Surg. 2018;13(4):563–71.CrossRefPubMed Shofty B, Artzi M, Ben Bashat D, Liberman G, Haim O, Kashanian A, et al. MRI radiomics analysis of molecular alterations in low-grade gliomas. Int J Comput Assist Radiol Surg. 2018;13(4):563–71.CrossRefPubMed
88.
Zurück zum Zitat Zarinabad N, Abernethy LJ, Avula S, Davies NP, Rodriguez Gutierrez D, Jaspan T, et al. Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T (1) H-MR spectroscopy-A multi-center study. Magn Reson Med. 2018;79(4):2359–66.CrossRefPubMed Zarinabad N, Abernethy LJ, Avula S, Davies NP, Rodriguez Gutierrez D, Jaspan T, et al. Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo 3T (1) H-MR spectroscopy-A multi-center study. Magn Reson Med. 2018;79(4):2359–66.CrossRefPubMed
89.
Zurück zum Zitat Qian X, Tan H, Zhang J, Zhao W, Chan MD, Zhou X. Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation. Med Phys. 2016;43(11):5889.CrossRefPubMedPubMedCentral Qian X, Tan H, Zhang J, Zhao W, Chan MD, Zhou X. Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation. Med Phys. 2016;43(11):5889.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Zhang J, Yu H, Qian X, Liu K, Tan H, Yang T, et al. Pseudo progression identification of glioblastoma with dictionary learning. Comput Biol Med. 2016;73:94–101.CrossRefPubMedPubMedCentral Zhang J, Yu H, Qian X, Liu K, Tan H, Yang T, et al. Pseudo progression identification of glioblastoma with dictionary learning. Comput Biol Med. 2016;73:94–101.CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A, Pinho MC, Scheie D, et al. Machine learning in preoperative glioma MRI: survival associations by perfusion-based support vector machine outperforms traditional MRI. J Magn Reson Imaging. 2014;40(1):47–54.CrossRefPubMed Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A, Pinho MC, Scheie D, et al. Machine learning in preoperative glioma MRI: survival associations by perfusion-based support vector machine outperforms traditional MRI. J Magn Reson Imaging. 2014;40(1):47–54.CrossRefPubMed
92.
Zurück zum Zitat Emblem KE, Pinho MC, Zollner FG, Due-Tonnessen P, Hald JK, Schad LR, et al. A generic support vector machine model for preoperative glioma survival associations. Radiology. 2015;275(1):228–34.CrossRefPubMed Emblem KE, Pinho MC, Zollner FG, Due-Tonnessen P, Hald JK, Schad LR, et al. A generic support vector machine model for preoperative glioma survival associations. Radiology. 2015;275(1):228–34.CrossRefPubMed
93.
Zurück zum Zitat Akbari H, Macyszyn L, Da X, Bilello M, Wolf RL, Martinez-Lage M, et al. Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery. 2016;78(4):572–80.CrossRefPubMedPubMedCentral Akbari H, Macyszyn L, Da X, Bilello M, Wolf RL, Martinez-Lage M, et al. Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery. 2016;78(4):572–80.CrossRefPubMedPubMedCentral
94.
Zurück zum Zitat Chang K, Zhang B, Guo X, Zong M, Rahman R, Sanchez D, et al. Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Neuro Oncol. 2016;18(12):1680–7.CrossRefPubMedPubMedCentral Chang K, Zhang B, Guo X, Zong M, Rahman R, Sanchez D, et al. Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab. Neuro Oncol. 2016;18(12):1680–7.CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE, et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys. 2016;43(6):2835–44.CrossRefPubMedPubMedCentral Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE, et al. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys. 2016;43(6):2835–44.CrossRefPubMedPubMedCentral
96.
Zurück zum Zitat Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 2016;18(3):417–25.CrossRefPubMed Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol. 2016;18(3):417–25.CrossRefPubMed
97.
Zurück zum Zitat Akkus Z, Ali I, Sedlar J, Agrawal JP, Parney IF, Giannini C, et al. Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging. 2017;30(4):469–76.CrossRefPubMedPubMedCentral Akkus Z, Ali I, Sedlar J, Agrawal JP, Parney IF, Giannini C, et al. Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging. 2017;30(4):469–76.CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Chen L, Zhang H, Thung KH, Liu L, Lu J, Wu J, et al. Multi-label inductive matrix completion for joint MGMT and IDH1 status prediction for glioma patients. Med Image Comput Comput Assist Interv. 2017;10434:450–8.PubMedPubMedCentral Chen L, Zhang H, Thung KH, Liu L, Lu J, Wu J, et al. Multi-label inductive matrix completion for joint MGMT and IDH1 status prediction for glioma patients. Med Image Comput Comput Assist Interv. 2017;10434:450–8.PubMedPubMedCentral
99.
Zurück zum Zitat Zhang B, Chang K, Ramkissoon S, Tanguturi S, Bi WL, Reardon DA, et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol. 2017;19(1):109–17.CrossRefPubMed Zhang B, Chang K, Ramkissoon S, Tanguturi S, Bi WL, Reardon DA, et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol. 2017;19(1):109–17.CrossRefPubMed
100.
Zurück zum Zitat Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J Magn Reson Imaging. 2017;46(1):115–23.CrossRefPubMed Zhou M, Chaudhury B, Hall LO, Goldgof DB, Gillies RJ, Gatenby RA. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. J Magn Reson Imaging. 2017;46(1):115–23.CrossRefPubMed
101.
Zurück zum Zitat Li Y, Qian Z, Xu K, Wang K, Fan X, Li S, et al. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Neuroimage Clin. 2018;17:306–11.CrossRefPubMed Li Y, Qian Z, Xu K, Wang K, Fan X, Li S, et al. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Neuroimage Clin. 2018;17:306–11.CrossRefPubMed
102.
Zurück zum Zitat Papp L, Potsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, et al. Glioma survival prediction with combined analysis of in vivo (11)C-MET PET features, ex vivo features, and patient features by supervised machine learning. J Nucl Med. 2018;59(6):892–9.CrossRefPubMed Papp L, Potsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, et al. Glioma survival prediction with combined analysis of in vivo (11)C-MET PET features, ex vivo features, and patient features by supervised machine learning. J Nucl Med. 2018;59(6):892–9.CrossRefPubMed
103.
Zurück zum Zitat Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, et al. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24(12):3116–30.CrossRefPubMed Anticevic A, Cole MW, Repovs G, Murray JD, Brumbaugh MS, Winkler AM, et al. Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb Cortex. 2014;24(12):3116–30.CrossRefPubMed
104.
Zurück zum Zitat Bleich-Cohen M, Jamshy S, Sharon H, Weizman R, Intrator N, Poyurovsky M, et al. Machine learning fMRI classifier delineates subgroups of schizophrenia patients. Schizophr Res. 2014;160(1–3):196–200.CrossRefPubMed Bleich-Cohen M, Jamshy S, Sharon H, Weizman R, Intrator N, Poyurovsky M, et al. Machine learning fMRI classifier delineates subgroups of schizophrenia patients. Schizophr Res. 2014;160(1–3):196–200.CrossRefPubMed
105.
Zurück zum Zitat Castro E, Gupta CN, Martinez-Ramon M, Calhoun VD, Arbabshirani MR, Turner J. Identification of patterns of gray matter abnormalities in schizophrenia using source-based morphometry and bagging. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:1513–6.PubMedPubMedCentral Castro E, Gupta CN, Martinez-Ramon M, Calhoun VD, Arbabshirani MR, Turner J. Identification of patterns of gray matter abnormalities in schizophrenia using source-based morphometry and bagging. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:1513–6.PubMedPubMedCentral
106.
Zurück zum Zitat Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM, et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage. 2014;84:299–306.CrossRefPubMed Schnack HG, Nieuwenhuis M, van Haren NE, Abramovic L, Scheewe TW, Brouwer RM, et al. Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. Neuroimage. 2014;84:299–306.CrossRefPubMed
107.
Zurück zum Zitat Cheng H, Newman S, Goni J, Kent JS, Howell J, Bolbecker A, et al. Nodal centrality of functional network in the differentiation of schizophrenia. Schizophr Res. 2015;168(1–2):345–52.CrossRefPubMedPubMedCentral Cheng H, Newman S, Goni J, Kent JS, Howell J, Bolbecker A, et al. Nodal centrality of functional network in the differentiation of schizophrenia. Schizophr Res. 2015;168(1–2):345–52.CrossRefPubMedPubMedCentral
108.
Zurück zum Zitat Chyzhyk D, Grana M, Ongur D, Shinn AK. Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional MRI. Int J Neural Syst. 2015;25(3):1550007.CrossRefPubMedPubMedCentral Chyzhyk D, Grana M, Ongur D, Shinn AK. Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional MRI. Int J Neural Syst. 2015;25(3):1550007.CrossRefPubMedPubMedCentral
109.
Zurück zum Zitat Chyzhyk D, Savio A, Grana M. Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Netw. 2015;68:23–33.CrossRefPubMed Chyzhyk D, Savio A, Grana M. Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Netw. 2015;68:23–33.CrossRefPubMed
110.
Zurück zum Zitat Koch SP, Hagele C, Haynes JD, Heinz A, Schlagenhauf F, Sterzer P. Diagnostic classification of schizophrenia patients on the basis of regional reward-related FMRI signal patterns. PLoS One. 2015;10(3):e0119089.CrossRefPubMedPubMedCentral Koch SP, Hagele C, Haynes JD, Heinz A, Schlagenhauf F, Sterzer P. Diagnostic classification of schizophrenia patients on the basis of regional reward-related FMRI signal patterns. PLoS One. 2015;10(3):e0119089.CrossRefPubMedPubMedCentral
111.
Zurück zum Zitat Chu WL, Huang MW, Jian BL, Hsu CY, Cheng KS. A correlative classification study of schizophrenic patients with results of clinical evaluation and structural magnetic resonance images. Behav Neurol. 2016;2016:7849526.CrossRefPubMedPubMedCentral Chu WL, Huang MW, Jian BL, Hsu CY, Cheng KS. A correlative classification study of schizophrenic patients with results of clinical evaluation and structural magnetic resonance images. Behav Neurol. 2016;2016:7849526.CrossRefPubMedPubMedCentral
112.
Zurück zum Zitat Kim J, Calhoun VD, Shim E, Lee JH. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage. 2016;124(Pt A):127–46.CrossRefPubMed Kim J, Calhoun VD, Shim E, Lee JH. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. Neuroimage. 2016;124(Pt A):127–46.CrossRefPubMed
113.
Zurück zum Zitat Lu X, Yang Y, Wu F, Gao M, Xu Y, Zhang Y, et al. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore). 2016;95(30):e3973.CrossRefPubMedPubMedCentral Lu X, Yang Y, Wu F, Gao M, Xu Y, Zhang Y, et al. Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images. Medicine (Baltimore). 2016;95(30):e3973.CrossRefPubMedPubMedCentral
114.
Zurück zum Zitat Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, et al. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep. 2016;6:38897.CrossRefPubMedPubMedCentral Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, et al. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep. 2016;6:38897.CrossRefPubMedPubMedCentral
115.
Zurück zum Zitat Pergola G, Trizio S, Di Carlo P, Taurisano P, Mancini M, Amoroso N, et al. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophr Res. 2017;180:13–20.CrossRefPubMed Pergola G, Trizio S, Di Carlo P, Taurisano P, Mancini M, Amoroso N, et al. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia. Schizophr Res. 2017;180:13–20.CrossRefPubMed
116.
Zurück zum Zitat Plaschke RN, Cieslik EC, Muller VI, Hoffstaedter F, Plachti A, Varikuti DP, et al. On the integrity of functional brain networks in schizophrenia, Parkinson’s disease, and advanced age: evidence from connectivity-based single-subject classification. Hum Brain Mapp. 2017;38(12):5845–58.CrossRefPubMedPubMedCentral Plaschke RN, Cieslik EC, Muller VI, Hoffstaedter F, Plachti A, Varikuti DP, et al. On the integrity of functional brain networks in schizophrenia, Parkinson’s disease, and advanced age: evidence from connectivity-based single-subject classification. Hum Brain Mapp. 2017;38(12):5845–58.CrossRefPubMedPubMedCentral
117.
Zurück zum Zitat Qureshi MNI, Oh J, Cho D, Jo HJ, Lee B. Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine. Front Neuroinform. 2017;11:59.CrossRefPubMedPubMedCentral Qureshi MNI, Oh J, Cho D, Jo HJ, Lee B. Multimodal discrimination of schizophrenia using hybrid weighted feature concatenation of brain functional connectivity and anatomical features with an extreme learning machine. Front Neuroinform. 2017;11:59.CrossRefPubMedPubMedCentral
118.
Zurück zum Zitat Skatun KC, Kaufmann T, Doan NT, Alnaes D, Cordova-Palomera A, Jonsson EG, et al. Consistent functional connectivity alterations in schizophrenia spectrum disorder: a multisite study. Schizophr Bull. 2017;43(4):914–24.CrossRefPubMed Skatun KC, Kaufmann T, Doan NT, Alnaes D, Cordova-Palomera A, Jonsson EG, et al. Consistent functional connectivity alterations in schizophrenia spectrum disorder: a multisite study. Schizophr Bull. 2017;43(4):914–24.CrossRefPubMed
119.
Zurück zum Zitat Zarogianni E, Storkey AJ, Johnstone EC, Owens DG, Lawrie SM. Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophr Res. 2017;181:6–12.CrossRefPubMed Zarogianni E, Storkey AJ, Johnstone EC, Owens DG, Lawrie SM. Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features. Schizophr Res. 2017;181:6–12.CrossRefPubMed
120.
Zurück zum Zitat Juneja A, Rana B, Agrawal RK. A novel fuzzy rough selection of non-linearly extracted features for schizophrenia diagnosis using fMRI. Comput Methods Progr Biomed. 2018;155:139–52.CrossRef Juneja A, Rana B, Agrawal RK. A novel fuzzy rough selection of non-linearly extracted features for schizophrenia diagnosis using fMRI. Comput Methods Progr Biomed. 2018;155:139–52.CrossRef
121.
Zurück zum Zitat Mikolas P, Hlinka J, Skoch A, Pitra Z, Frodl T, Spaniel F, et al. Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy. BMC Psychiatry. 2018;18(1):97.CrossRefPubMedPubMedCentral Mikolas P, Hlinka J, Skoch A, Pitra Z, Frodl T, Spaniel F, et al. Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy. BMC Psychiatry. 2018;18(1):97.CrossRefPubMedPubMedCentral
122.
Zurück zum Zitat Orban P, Dansereau C, Desbois L, Mongeau-Perusse V, Giguere CE, Nguyen H, et al. Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity. Schizophr Res. 2018;192:167–71.CrossRefPubMed Orban P, Dansereau C, Desbois L, Mongeau-Perusse V, Giguere CE, Nguyen H, et al. Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity. Schizophr Res. 2018;192:167–71.CrossRefPubMed
123.
Zurück zum Zitat Zeng LL, Wang H, Hu P, Yang B, Pu W, Shen H, et al. Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine. 2018;30:74–85.CrossRefPubMedPubMedCentral Zeng LL, Wang H, Hu P, Yang B, Pu W, Shen H, et al. Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine. 2018;30:74–85.CrossRefPubMedPubMedCentral
124.
Zurück zum Zitat Papakostas GI. Managing partial response or nonresponse: switching, augmentation, and combination strategies for major depressive disorder. J Clin Psychol. 2009;70(Suppl. 6):16–25. Papakostas GI. Managing partial response or nonresponse: switching, augmentation, and combination strategies for major depressive disorder. J Clin Psychol. 2009;70(Suppl. 6):16–25.
125.
Zurück zum Zitat Cao L, Guo S, Xue Z, Hu Y, Liu H, Mwansisya TE, et al. Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis. Psychiatry Clin Neurosci. 2014;68(2):110–9.CrossRefPubMed Cao L, Guo S, Xue Z, Hu Y, Liu H, Mwansisya TE, et al. Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis. Psychiatry Clin Neurosci. 2014;68(2):110–9.CrossRefPubMed
126.
Zurück zum Zitat Qin J, Wei M, Liu H, Chen J, Yan R, Hua L, et al. Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification. Magn Reson Imaging. 2014;32(10):1314–20.CrossRefPubMed Qin J, Wei M, Liu H, Chen J, Yan R, Hua L, et al. Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification. Magn Reson Imaging. 2014;32(10):1314–20.CrossRefPubMed
127.
Zurück zum Zitat Zeng LL, Shen H, Liu L, Hu D. Unsupervised classification of major depression using functional connectivity MRI. Hum Brain Mapp. 2014;35(4):1630–41.CrossRefPubMed Zeng LL, Shen H, Liu L, Hu D. Unsupervised classification of major depression using functional connectivity MRI. Hum Brain Mapp. 2014;35(4):1630–41.CrossRefPubMed
128.
Zurück zum Zitat Lueken U, Straube B, Yang Y, Hahn T, Beesdo-Baum K, Wittchen HU, et al. Separating depressive comorbidity from panic disorder: a combined functional magnetic resonance imaging and machine learning approach. J Affect Disord. 2015;184:182–92.CrossRefPubMed Lueken U, Straube B, Yang Y, Hahn T, Beesdo-Baum K, Wittchen HU, et al. Separating depressive comorbidity from panic disorder: a combined functional magnetic resonance imaging and machine learning approach. J Affect Disord. 2015;184:182–92.CrossRefPubMed
129.
Zurück zum Zitat Qin J, Wei M, Liu H, Chen J, Yan R, Yao Z, et al. Altered anatomical patterns of depression in relation to antidepressant treatment: evidence from a pattern recognition analysis on the topological organization of brain networks. J Affect Disord. 2015;180:129–37.CrossRefPubMed Qin J, Wei M, Liu H, Chen J, Yan R, Yao Z, et al. Altered anatomical patterns of depression in relation to antidepressant treatment: evidence from a pattern recognition analysis on the topological organization of brain networks. J Affect Disord. 2015;180:129–37.CrossRefPubMed
130.
Zurück zum Zitat Sato JR, Moll J, Green S, Deakin JF, Thomaz CE, Zahn R. Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression. Psychiatry Res. 2015;233(2):289–91.CrossRefPubMedPubMedCentral Sato JR, Moll J, Green S, Deakin JF, Thomaz CE, Zahn R. Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression. Psychiatry Res. 2015;233(2):289–91.CrossRefPubMedPubMedCentral
131.
Zurück zum Zitat Shimizu Y, Yoshimoto J, Toki S, Takamura M, Yoshimura S, Okamoto Y, et al. Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with logistic group LASSO. PLoS One. 2015;10(5):e0123524.CrossRefPubMedPubMedCentral Shimizu Y, Yoshimoto J, Toki S, Takamura M, Yoshimura S, Okamoto Y, et al. Toward probabilistic diagnosis and understanding of depression based on functional MRI data analysis with logistic group LASSO. PLoS One. 2015;10(5):e0123524.CrossRefPubMedPubMedCentral
132.
Zurück zum Zitat Wu MJ, Wu HE, Mwangi B, Sanches M, Selvaraj S, Zunta-Soares GB, et al. Prediction of pediatric unipolar depression using multiple neuromorphometric measurements: a pattern classification approach. J Psychiatr Res. 2015;62:84–91.CrossRefPubMedPubMedCentral Wu MJ, Wu HE, Mwangi B, Sanches M, Selvaraj S, Zunta-Soares GB, et al. Prediction of pediatric unipolar depression using multiple neuromorphometric measurements: a pattern classification approach. J Psychiatr Res. 2015;62:84–91.CrossRefPubMedPubMedCentral
133.
Zurück zum Zitat Ramasubbu R, Brown MR, Cortese F, Gaxiola I, Goodyear B, Greenshaw AJ, et al. Accuracy of automated classification of major depressive disorder as a function of symptom severity. Neuroimage Clin. 2016;12:320–31.CrossRefPubMedPubMedCentral Ramasubbu R, Brown MR, Cortese F, Gaxiola I, Goodyear B, Greenshaw AJ, et al. Accuracy of automated classification of major depressive disorder as a function of symptom severity. Neuroimage Clin. 2016;12:320–31.CrossRefPubMedPubMedCentral
134.
Zurück zum Zitat Bhaumik R, Jenkins LM, Gowins JR, Jacobs RH, Barba A, Bhaumik DK, et al. Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity. Neuroimage Clin. 2017;16:390–8.CrossRefPubMed Bhaumik R, Jenkins LM, Gowins JR, Jacobs RH, Barba A, Bhaumik DK, et al. Multivariate pattern analysis strategies in detection of remitted major depressive disorder using resting state functional connectivity. Neuroimage Clin. 2017;16:390–8.CrossRefPubMed
135.
Zurück zum Zitat Kautzky A, James GM, Philippe C, Baldinger-Melich P, Kraus C, Kranz GS, et al. The influence of the rs6295 gene polymorphism on serotonin-1A receptor distribution investigated with PET in patients with major depression applying machine learning. Transl Psychiatry. 2017;7(6):e1150.CrossRefPubMedPubMedCentral Kautzky A, James GM, Philippe C, Baldinger-Melich P, Kraus C, Kranz GS, et al. The influence of the rs6295 gene polymorphism on serotonin-1A receptor distribution investigated with PET in patients with major depression applying machine learning. Transl Psychiatry. 2017;7(6):e1150.CrossRefPubMedPubMedCentral
136.
Zurück zum Zitat Schnyer DM, Clasen PC, Gonzalez C, Beevers CG. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Res Neuroimaging. 2017;264:1–9.CrossRefPubMed Schnyer DM, Clasen PC, Gonzalez C, Beevers CG. Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Res Neuroimaging. 2017;264:1–9.CrossRefPubMed
137.
Zurück zum Zitat Wang J, Wei Q, Bai T, Zhou X, Sun H, Becker B, et al. Electroconvulsive therapy selectively enhanced feedforward connectivity from fusiform face area to amygdala in major depressive disorder. Soc Cogn Affect Neurosci. 2017;12(12):1983–92.CrossRefPubMedPubMedCentral Wang J, Wei Q, Bai T, Zhou X, Sun H, Becker B, et al. Electroconvulsive therapy selectively enhanced feedforward connectivity from fusiform face area to amygdala in major depressive disorder. Soc Cogn Affect Neurosci. 2017;12(12):1983–92.CrossRefPubMedPubMedCentral
138.
Zurück zum Zitat Deng F, Wang Y, Huang H, Niu M, Zhong S, Zhao L, et al. Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:340–9.CrossRefPubMed Deng F, Wang Y, Huang H, Niu M, Zhong S, Zhao L, et al. Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:340–9.CrossRefPubMed
139.
Zurück zum Zitat Milak MS, Pantazatos S, Rashid R, Zanderigo F, DeLorenzo C, Hesselgrave N, et al. Higher 5-HT1A autoreceptor binding as an endophenotype for major depressive disorder identified in high risk offspring—a pilot study. Psychiatry Res Neuroimaging. 2018;276:15–23.CrossRefPubMedPubMedCentral Milak MS, Pantazatos S, Rashid R, Zanderigo F, DeLorenzo C, Hesselgrave N, et al. Higher 5-HT1A autoreceptor binding as an endophenotype for major depressive disorder identified in high risk offspring—a pilot study. Psychiatry Res Neuroimaging. 2018;276:15–23.CrossRefPubMedPubMedCentral
140.
Zurück zum Zitat Foland-Ross LC, Sacchet MD, Prasad G, Gilbert B, Thompson PM, Gotlib IH. Cortical thickness predicts the first onset of major depression in adolescence. Int J Dev Neurosci. 2015;46:125–31.CrossRefPubMedPubMedCentral Foland-Ross LC, Sacchet MD, Prasad G, Gilbert B, Thompson PM, Gotlib IH. Cortical thickness predicts the first onset of major depression in adolescence. Int J Dev Neurosci. 2015;46:125–31.CrossRefPubMedPubMedCentral
141.
Zurück zum Zitat Johnston BA, Steele JD, Tolomeo S, Christmas D, Matthews K. Structural MRI-based predictions in patients with treatment-refractory depression (TRD). PLoS One. 2015;10(7):e0132958.CrossRefPubMedPubMedCentral Johnston BA, Steele JD, Tolomeo S, Christmas D, Matthews K. Structural MRI-based predictions in patients with treatment-refractory depression (TRD). PLoS One. 2015;10(7):e0132958.CrossRefPubMedPubMedCentral
142.
Zurück zum Zitat Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF 3rd, Aizenstein HJ. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int J Geriatr Psychiatry. 2015;30(10):1056–67.CrossRefPubMedPubMedCentral Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF 3rd, Aizenstein HJ. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int J Geriatr Psychiatry. 2015;30(10):1056–67.CrossRefPubMedPubMedCentral
143.
Zurück zum Zitat Redlich R, Opel N, Grotegerd D, Dohm K, Zaremba D, Burger C, et al. Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry. 2016;73(6):557–64.CrossRefPubMed Redlich R, Opel N, Grotegerd D, Dohm K, Zaremba D, Burger C, et al. Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry. 2016;73(6):557–64.CrossRefPubMed
144.
Zurück zum Zitat Yoshida K, Shimizu Y, Yoshimoto J, Takamura M, Okada G, Okamoto Y, et al. Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression. PLoS One. 2017;12(7):e0179638.CrossRefPubMedPubMedCentral Yoshida K, Shimizu Y, Yoshimoto J, Takamura M, Okada G, Okamoto Y, et al. Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression. PLoS One. 2017;12(7):e0179638.CrossRefPubMedPubMedCentral
145.
Zurück zum Zitat Adeli E, Shi F, An L, Wee CY, Wu G, Wang T, et al. Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. Neuroimage. 2016;141:206–19.CrossRefPubMedPubMedCentral Adeli E, Shi F, An L, Wee CY, Wu G, Wang T, et al. Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. Neuroimage. 2016;141:206–19.CrossRefPubMedPubMedCentral
146.
Zurück zum Zitat Choi H, Ha S, Im HJ, Paek SH, Lee DS. Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. Neuroimage Clin. 2017;16:586–94.CrossRefPubMedPubMedCentral Choi H, Ha S, Im HJ, Paek SH, Lee DS. Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. Neuroimage Clin. 2017;16:586–94.CrossRefPubMedPubMedCentral
147.
Zurück zum Zitat Peng B, Wang S, Zhou Z, Liu Y, Tong B, Zhang T, et al. A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease. Neurosci Lett. 2017;651:88–94.CrossRefPubMed Peng B, Wang S, Zhou Z, Liu Y, Tong B, Zhang T, et al. A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease. Neurosci Lett. 2017;651:88–94.CrossRefPubMed
148.
Zurück zum Zitat Amoroso N, La Rocca M, Monaco A, Bellotti R, Tangaro S. Complex networks reveal early MRI markers of Parkinson’s disease. Med Image Anal. 2018;48:12–24.CrossRefPubMed Amoroso N, La Rocca M, Monaco A, Bellotti R, Tangaro S. Complex networks reveal early MRI markers of Parkinson’s disease. Med Image Anal. 2018;48:12–24.CrossRefPubMed
149.
Zurück zum Zitat Castillo-Barnes D, Ramirez J, Segovia F, Martinez-Murcia FJ, Salas-Gonzalez D, Gorriz JM. Robust ensemble classification methodology for I123-ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis of Parkinson’s disease. Front Neuroinform. 2018;12:53.CrossRefPubMedPubMedCentral Castillo-Barnes D, Ramirez J, Segovia F, Martinez-Murcia FJ, Salas-Gonzalez D, Gorriz JM. Robust ensemble classification methodology for I123-ioflupane SPECT images and multiple heterogeneous biomarkers in the diagnosis of Parkinson’s disease. Front Neuroinform. 2018;12:53.CrossRefPubMedPubMedCentral
150.
Zurück zum Zitat Oliveira FPM, Faria DB, Costa DC, Castelo-Branco M, Tavares J. Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson’s disease based on [(123)I]FP-CIT SPECT images. Eur J Nucl Med Mol Imaging. 2018;45(6):1052–62.CrossRefPubMed Oliveira FPM, Faria DB, Costa DC, Castelo-Branco M, Tavares J. Extraction, selection and comparison of features for an effective automated computer-aided diagnosis of Parkinson’s disease based on [(123)I]FP-CIT SPECT images. Eur J Nucl Med Mol Imaging. 2018;45(6):1052–62.CrossRefPubMed
151.
Zurück zum Zitat Salvatore C, Cerasa A, Castiglioni I, Gallivanone F, Augimeri A, Lopez M, et al. Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. J Neurosci Methods. 2014;222:230–7.CrossRefPubMed Salvatore C, Cerasa A, Castiglioni I, Gallivanone F, Augimeri A, Lopez M, et al. Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. J Neurosci Methods. 2014;222:230–7.CrossRefPubMed
152.
Zurück zum Zitat Hirschauer TJ, Adeli H, Buford JA. Computer-Aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J Med Syst. 2015;39(11):179.CrossRefPubMed Hirschauer TJ, Adeli H, Buford JA. Computer-Aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J Med Syst. 2015;39(11):179.CrossRefPubMed
153.
Zurück zum Zitat Huertas-Fernandez I, Garcia-Gomez FJ, Garcia-Solis D, Benitez-Rivero S, Marin-Oyaga VA, Jesus S, et al. Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson’s disease using [(123)I]FP-CIT SPECT. Eur J Nucl Med Mol Imaging. 2015;42(1):112–9.CrossRefPubMed Huertas-Fernandez I, Garcia-Gomez FJ, Garcia-Solis D, Benitez-Rivero S, Marin-Oyaga VA, Jesus S, et al. Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson’s disease using [(123)I]FP-CIT SPECT. Eur J Nucl Med Mol Imaging. 2015;42(1):112–9.CrossRefPubMed
154.
Zurück zum Zitat Singh G, Samavedham L. Unsupervised learning based feature extraction for differential diagnosis of neurodegenerative diseases: a case study on early-stage diagnosis of Parkinson disease. J Neurosci Methods. 2015;256:30–40.CrossRefPubMed Singh G, Samavedham L. Unsupervised learning based feature extraction for differential diagnosis of neurodegenerative diseases: a case study on early-stage diagnosis of Parkinson disease. J Neurosci Methods. 2015;256:30–40.CrossRefPubMed
155.
Zurück zum Zitat Liu L, Wang Q, Adeli E, Zhang L, Zhang H, Shen D. Feature selection based on iterative canonical correlation analysis for automatic diagnosis of Parkinson’s disease. Med Image Comput Comput Assist Interv. 2016;9901:1–8.PubMedPubMedCentral Liu L, Wang Q, Adeli E, Zhang L, Zhang H, Shen D. Feature selection based on iterative canonical correlation analysis for automatic diagnosis of Parkinson’s disease. Med Image Comput Comput Assist Interv. 2016;9901:1–8.PubMedPubMedCentral
156.
Zurück zum Zitat Du G, Lewis MM, Kanekar S, Sterling NW, He L, Kong L, et al. Combined diffusion tensor imaging and apparent transverse relaxation rate differentiate Parkinson disease and atypical parkinsonism. AJNR Am J Neuroradiol. 2017;38(5):966–72.CrossRefPubMedPubMedCentral Du G, Lewis MM, Kanekar S, Sterling NW, He L, Kong L, et al. Combined diffusion tensor imaging and apparent transverse relaxation rate differentiate Parkinson disease and atypical parkinsonism. AJNR Am J Neuroradiol. 2017;38(5):966–72.CrossRefPubMedPubMedCentral
157.
Zurück zum Zitat Ye Z, Rae CL, Nombela C, Ham T, Rittman T, Jones PS, et al. Predicting beneficial effects of atomoxetine and citalopram on response inhibition in Parkinson’s disease with clinical and neuroimaging measures. Hum Brain Mapp. 2016;37(3):1026–37.CrossRefPubMedPubMedCentral Ye Z, Rae CL, Nombela C, Ham T, Rittman T, Jones PS, et al. Predicting beneficial effects of atomoxetine and citalopram on response inhibition in Parkinson’s disease with clinical and neuroimaging measures. Hum Brain Mapp. 2016;37(3):1026–37.CrossRefPubMedPubMedCentral
158.
Zurück zum Zitat ADHD200 - international neuroimaging data-sharing initiative - NITRC. http://.fcon_1000.projects.nitrc.org/indi/adhd200. Accessed Oct 2018. ADHD200 - international neuroimaging data-sharing initiative - NITRC. http://​.​fcon_​1000.​projects.​nitrc.​org/​indi/​adhd200.​ Accessed Oct 2018.
159.
Zurück zum Zitat Qureshi MN, Min B, Jo HJ, Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS One. 2016;11(8):e0160697.CrossRefPubMedPubMedCentral Qureshi MN, Min B, Jo HJ, Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS One. 2016;11(8):e0160697.CrossRefPubMedPubMedCentral
160.
Zurück zum Zitat Qureshi MNI, Oh J, Min B, Jo HJ, Lee B. Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI. Front Hum Neurosci. 2017;11:157.PubMedPubMedCentral Qureshi MNI, Oh J, Min B, Jo HJ, Lee B. Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI. Front Hum Neurosci. 2017;11:157.PubMedPubMedCentral
161.
Zurück zum Zitat Tan L, Guo X, Ren S, Epstein JN, Lu LJ. A computational model for the automatic diagnosis of attention deficit hyperactivity disorder based on functional brain volume. Front Comput Neurosci. 2017;11:75.CrossRefPubMedPubMedCentral Tan L, Guo X, Ren S, Epstein JN, Lu LJ. A computational model for the automatic diagnosis of attention deficit hyperactivity disorder based on functional brain volume. Front Comput Neurosci. 2017;11:75.CrossRefPubMedPubMedCentral
162.
Zurück zum Zitat Hart H, Chantiluke K, Cubillo AI, Smith AB, Simmons A, Brammer MJ, et al. Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD. Hum Brain Mapp. 2014;35(7):3083–94.CrossRefPubMed Hart H, Chantiluke K, Cubillo AI, Smith AB, Simmons A, Brammer MJ, et al. Pattern classification of response inhibition in ADHD: toward the development of neurobiological markers for ADHD. Hum Brain Mapp. 2014;35(7):3083–94.CrossRefPubMed
163.
Zurück zum Zitat Johnston BA, Mwangi B, Matthews K, Coghill D, Konrad K, Steele JD. Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Hum Brain Mapp. 2014;35(10):5179–89.CrossRefPubMed Johnston BA, Mwangi B, Matthews K, Coghill D, Konrad K, Steele JD. Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Hum Brain Mapp. 2014;35(10):5179–89.CrossRefPubMed
164.
Zurück zum Zitat Ghiassian S, Greiner R, Jin P, Brown MR. Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism. PLoS One. 2016;11(12):e0166934.CrossRefPubMedPubMedCentral Ghiassian S, Greiner R, Jin P, Brown MR. Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism. PLoS One. 2016;11(12):e0166934.CrossRefPubMedPubMedCentral
165.
Zurück zum Zitat Xiao C, Bledsoe J, Wang S, Chaovalitwongse WA, Mehta S, Semrud-Clikeman M, et al. An integrated feature ranking and selection framework for ADHD characterization. Brain Inform. 2016;3(3):145–55.CrossRefPubMedPubMedCentral Xiao C, Bledsoe J, Wang S, Chaovalitwongse WA, Mehta S, Semrud-Clikeman M, et al. An integrated feature ranking and selection framework for ADHD characterization. Brain Inform. 2016;3(3):145–55.CrossRefPubMedPubMedCentral
166.
Zurück zum Zitat Chaim-Avancini TM, Doshi J, Zanetti MV, Erus G, Silva MA, Duran FLS, et al. Neurobiological support to the diagnosis of ADHD in stimulant-naive adults: pattern recognition analyses of MRI data. Acta Psychiatr Scand. 2017;136(6):623–36.CrossRefPubMed Chaim-Avancini TM, Doshi J, Zanetti MV, Erus G, Silva MA, Duran FLS, et al. Neurobiological support to the diagnosis of ADHD in stimulant-naive adults: pattern recognition analyses of MRI data. Acta Psychiatr Scand. 2017;136(6):623–36.CrossRefPubMed
167.
Zurück zum Zitat Riaz A, Asad M, Alonso E, Slabaugh G. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imaging Graph. 2018;65:115–28.CrossRefPubMed Riaz A, Asad M, Alonso E, Slabaugh G. Fusion of fMRI and non-imaging data for ADHD classification. Comput Med Imaging Graph. 2018;65:115–28.CrossRefPubMed
168.
Zurück zum Zitat Sen B, Borle NC, Greiner R, Brown MRG. A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PLoS One. 2018;13(4):e0194856.CrossRefPubMedPubMedCentral Sen B, Borle NC, Greiner R, Brown MRG. A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PLoS One. 2018;13(4):e0194856.CrossRefPubMedPubMedCentral
169.
Zurück zum Zitat Kim JW, Sharma V, Ryan ND. Predicting methylphenidate response in ADHD using machine learning approaches. Int J Neuropsychopharmacol. 2015;18(11):pyv052.CrossRefPubMedPubMedCentral Kim JW, Sharma V, Ryan ND. Predicting methylphenidate response in ADHD using machine learning approaches. Int J Neuropsychopharmacol. 2015;18(11):pyv052.CrossRefPubMedPubMedCentral
170.
Zurück zum Zitat Matson JL, Rieske RD, Williams LW. The relationship between autism spectrum disorders and attention-deficit/hyperactivity disorder: an overview. Res Dev Disabil. 2013;34:2475–84.CrossRefPubMed Matson JL, Rieske RD, Williams LW. The relationship between autism spectrum disorders and attention-deficit/hyperactivity disorder: an overview. Res Dev Disabil. 2013;34:2475–84.CrossRefPubMed
171.
Zurück zum Zitat Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.CrossRefPubMed Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30:205–23.CrossRefPubMed
172.
Zurück zum Zitat Uddin LQ, Dajani DR, Voorhies W, Bednarz H, Kana RK. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Transl Psychiatry. 2017;7:e1218.CrossRefPubMedPubMedCentral Uddin LQ, Dajani DR, Voorhies W, Bednarz H, Kana RK. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Transl Psychiatry. 2017;7:e1218.CrossRefPubMedPubMedCentral
173.
Zurück zum Zitat Just MA, Cherkassky VL, Buchweitz A, Keller TA, Mitchell TM. Identifying autism from neural representations of social interactions: neurocognitive markers of autism. PLoS One. 2014;9(12):e113879.CrossRefPubMedPubMedCentral Just MA, Cherkassky VL, Buchweitz A, Keller TA, Mitchell TM. Identifying autism from neural representations of social interactions: neurocognitive markers of autism. PLoS One. 2014;9(12):e113879.CrossRefPubMedPubMedCentral
174.
Zurück zum Zitat Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA, et al. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. Neuroimage Clin. 2015;8:238–45.CrossRefPubMedPubMedCentral Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA, et al. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. Neuroimage Clin. 2015;8:238–45.CrossRefPubMedPubMedCentral
175.
Zurück zum Zitat Gori I, Giuliano A, Muratori F, Saviozzi I, Oliva P, Tancredi R, et al. Gray matter alterations in young children with autism spectrum disorders: comparing morphometry at the voxel and regional level. J Neuroimaging. 2015;25(6):866–74.CrossRefPubMed Gori I, Giuliano A, Muratori F, Saviozzi I, Oliva P, Tancredi R, et al. Gray matter alterations in young children with autism spectrum disorders: comparing morphometry at the voxel and regional level. J Neuroimaging. 2015;25(6):866–74.CrossRefPubMed
176.
Zurück zum Zitat Iidaka T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex. 2015;63:55–67.CrossRefPubMed Iidaka T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex. 2015;63:55–67.CrossRefPubMed
177.
Zurück zum Zitat Plitt M, Barnes KA, Martin A. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. Neuroimage Clin. 2015;7:359–66.CrossRefPubMed Plitt M, Barnes KA, Martin A. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. Neuroimage Clin. 2015;7:359–66.CrossRefPubMed
178.
Zurück zum Zitat Jahedi A, Nasamran CA, Faires B, Fan J, Muller RA. Distributed intrinsic functional connectivity patterns predict diagnostic status in large autism cohort. Brain Connect. 2017;7(8):515–25.CrossRefPubMedPubMedCentral Jahedi A, Nasamran CA, Faires B, Fan J, Muller RA. Distributed intrinsic functional connectivity patterns predict diagnostic status in large autism cohort. Brain Connect. 2017;7(8):515–25.CrossRefPubMedPubMedCentral
179.
Zurück zum Zitat Kam TE, Suk HI, Lee SW. Multiple functional networks modeling for autism spectrum disorder diagnosis. Hum Brain Mapp. 2017;38(11):5804–21.CrossRefPubMed Kam TE, Suk HI, Lee SW. Multiple functional networks modeling for autism spectrum disorder diagnosis. Hum Brain Mapp. 2017;38(11):5804–21.CrossRefPubMed
180.
Zurück zum Zitat Akhavan Aghdam M, Sharifi A, Pedram MM. Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging. 2018;31(6):895–903.CrossRefPubMed Akhavan Aghdam M, Sharifi A, Pedram MM. Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging. 2018;31(6):895–903.CrossRefPubMed
181.
Zurück zum Zitat Bi XA, Wang Y, Shu Q, Sun Q, Xu Q. Classification of autism spectrum disorder using random support vector machine cluster. Front Genet. 2018;9:18.CrossRefPubMedPubMedCentral Bi XA, Wang Y, Shu Q, Sun Q, Xu Q. Classification of autism spectrum disorder using random support vector machine cluster. Front Genet. 2018;9:18.CrossRefPubMedPubMedCentral
182.
Zurück zum Zitat Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin. 2018;17:16–23.CrossRefPubMed Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. Neuroimage Clin. 2018;17:16–23.CrossRefPubMed
183.
Zurück zum Zitat Li H, Parikh NA, He L. A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci. 2018;12:491.CrossRefPubMedPubMedCentral Li H, Parikh NA, He L. A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci. 2018;12:491.CrossRefPubMedPubMedCentral
184.
Zurück zum Zitat Moradi E, Khundrakpam B, Lewis JD, Evans AC, Tohka J. Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data. Neuroimage. 2017;144(Pt A):128–41.CrossRefPubMed Moradi E, Khundrakpam B, Lewis JD, Evans AC, Tohka J. Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data. Neuroimage. 2017;144(Pt A):128–41.CrossRefPubMed
185.
Zurück zum Zitat Rudie JD, Colby JB, Salamon N. Machine learning classification of mesial temporal sclerosis in epilepsy patients. Epilepsy Res. 2015;117:63–9.CrossRefPubMed Rudie JD, Colby JB, Salamon N. Machine learning classification of mesial temporal sclerosis in epilepsy patients. Epilepsy Res. 2015;117:63–9.CrossRefPubMed
186.
Zurück zum Zitat Hong SJ, Kim H, Schrader D, Bernasconi N, Bernhardt BC, Bernasconi A. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology. 2014;83(1):48–55.CrossRefPubMedPubMedCentral Hong SJ, Kim H, Schrader D, Bernasconi N, Bernhardt BC, Bernasconi A. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology. 2014;83(1):48–55.CrossRefPubMedPubMedCentral
187.
Zurück zum Zitat Kamiya K, Amemiya S, Suzuki Y, Kunii N, Kawai K, Mori H, et al. Machine learning of DTI structural brain connectomes for lateralization of temporal lobe epilepsy. Magn Reson Med Sci. 2016;15(1):121–9.CrossRefPubMed Kamiya K, Amemiya S, Suzuki Y, Kunii N, Kawai K, Mori H, et al. Machine learning of DTI structural brain connectomes for lateralization of temporal lobe epilepsy. Magn Reson Med Sci. 2016;15(1):121–9.CrossRefPubMed
188.
Zurück zum Zitat Del Gaizo J, Mofrad N, Jensen JH, Clark D, Glenn R, Helpern J, et al. Using machine learning to classify temporal lobe epilepsy based on diffusion MRI. Brain Behav. 2017;7(10):e00801.CrossRefPubMedPubMedCentral Del Gaizo J, Mofrad N, Jensen JH, Clark D, Glenn R, Helpern J, et al. Using machine learning to classify temporal lobe epilepsy based on diffusion MRI. Brain Behav. 2017;7(10):e00801.CrossRefPubMedPubMedCentral
189.
Zurück zum Zitat Hong SJ, Bernhardt BC, Schrader DS, Bernasconi N, Bernasconi A. Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy. Neurology. 2016;86(7):643–50.CrossRefPubMedPubMedCentral Hong SJ, Bernhardt BC, Schrader DS, Bernasconi N, Bernasconi A. Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy. Neurology. 2016;86(7):643–50.CrossRefPubMedPubMedCentral
190.
Zurück zum Zitat El Azami M, Hammers A, Jung J, Costes N, Bouet R, Lartizien C. Detection of lesions underlying intractable epilepsy on T1-weighted MRI as an outlier detection problem. PLoS One. 2016;11(9):e0161498.CrossRefPubMedPubMedCentral El Azami M, Hammers A, Jung J, Costes N, Bouet R, Lartizien C. Detection of lesions underlying intractable epilepsy on T1-weighted MRI as an outlier detection problem. PLoS One. 2016;11(9):e0161498.CrossRefPubMedPubMedCentral
191.
Zurück zum Zitat Adler S, Wagstyl K, Gunny R, Ronan L, Carmichael D, Cross JH, et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. Neuroimage Clin. 2017;14:18–27.CrossRefPubMed Adler S, Wagstyl K, Gunny R, Ronan L, Carmichael D, Cross JH, et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. Neuroimage Clin. 2017;14:18–27.CrossRefPubMed
192.
Zurück zum Zitat Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N. Magnetic resonance imaging pattern learning in temporal lobe epilepsy: classification and prognostics. Ann Neurol. 2015;77(3):436–46.CrossRefPubMed Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N. Magnetic resonance imaging pattern learning in temporal lobe epilepsy: classification and prognostics. Ann Neurol. 2015;77(3):436–46.CrossRefPubMed
193.
Zurück zum Zitat Munsell BC, Wee CY, Keller SS, Weber B, Elger C, da Silva LA, et al. Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. Neuroimage. 2015;118:219–30.CrossRefPubMedPubMedCentral Munsell BC, Wee CY, Keller SS, Weber B, Elger C, da Silva LA, et al. Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. Neuroimage. 2015;118:219–30.CrossRefPubMedPubMedCentral
194.
Zurück zum Zitat Pustina D, Avants B, Sperling M, Gorniak R, He X, Doucet G, et al. Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study. Neuroimage Clin. 2015;9:20–31.CrossRefPubMedPubMedCentral Pustina D, Avants B, Sperling M, Gorniak R, He X, Doucet G, et al. Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study. Neuroimage Clin. 2015;9:20–31.CrossRefPubMedPubMedCentral
195.
Zurück zum Zitat Zhong J, Chen DQ, Nantes JC, Holmes SA, Hodaie M, Koski L. Combined structural and functional patterns discriminating upper limb motor disability in multiple sclerosis using multivariate approaches. Brain Imaging Behav. 2017;11(3):754–68.CrossRefPubMed Zhong J, Chen DQ, Nantes JC, Holmes SA, Hodaie M, Koski L. Combined structural and functional patterns discriminating upper limb motor disability in multiple sclerosis using multivariate approaches. Brain Imaging Behav. 2017;11(3):754–68.CrossRefPubMed
196.
Zurück zum Zitat Yoo Y, Tang LYW, Brosch T, Li DKB, Kolind S, Vavasour I, et al. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. Neuroimage Clin. 2018;17:169–78.CrossRefPubMed Yoo Y, Tang LYW, Brosch T, Li DKB, Kolind S, Vavasour I, et al. Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. Neuroimage Clin. 2018;17:169–78.CrossRefPubMed
197.
Zurück zum Zitat Zurita M, Montalba C, Labbe T, Cruz JP, Dalboni da Rocha J, Tejos C, et al. Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data. Neuroimage Clin. 2018;20:724–30.CrossRefPubMedPubMedCentral Zurita M, Montalba C, Labbe T, Cruz JP, Dalboni da Rocha J, Tejos C, et al. Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data. Neuroimage Clin. 2018;20:724–30.CrossRefPubMedPubMedCentral
198.
199.
Zurück zum Zitat Salem M, Cabezas M, Valverde S, Pareto D, Oliver A, Salvi J, et al. A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis. Neuroimage Clin. 2018;17:607–15.CrossRefPubMed Salem M, Cabezas M, Valverde S, Pareto D, Oliver A, Salvi J, et al. A supervised framework with intensity subtraction and deformation field features for the detection of new T2-w lesions in multiple sclerosis. Neuroimage Clin. 2018;17:607–15.CrossRefPubMed
200.
Zurück zum Zitat Zhao Y, Healy BC, Rotstein D, Guttmann CR, Bakshi R, Weiner HL, et al. Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS One. 2017;12(4):e0174866.CrossRefPubMedPubMedCentral Zhao Y, Healy BC, Rotstein D, Guttmann CR, Bakshi R, Weiner HL, et al. Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS One. 2017;12(4):e0174866.CrossRefPubMedPubMedCentral
201.
Zurück zum Zitat Deshpande H, Maurel P, Barillot C. Classification of multiple sclerosis lesions using adaptive dictionary learning. Comput Med Imaging Graph. 2015;46(Pt 1):2–10.CrossRefPubMed Deshpande H, Maurel P, Barillot C. Classification of multiple sclerosis lesions using adaptive dictionary learning. Comput Med Imaging Graph. 2015;46(Pt 1):2–10.CrossRefPubMed
202.
Zurück zum Zitat Fartaria MJ, Bonnier G, Roche A, Kober T, Meuli R, Rotzinger D, et al. Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J Magn Reson Imaging. 2016;43(6):1445–54.CrossRefPubMed Fartaria MJ, Bonnier G, Roche A, Kober T, Meuli R, Rotzinger D, et al. Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J Magn Reson Imaging. 2016;43(6):1445–54.CrossRefPubMed
203.
Zurück zum Zitat Lee Eun-Jae, Kim Yong-Hwan, Kim Namkug, Kanga Dong-Wha. Deep into the brain: artificial intelligence in stroke imaging. J Stroke. 2017;19(3):277–85.CrossRefPubMedPubMedCentral Lee Eun-Jae, Kim Yong-Hwan, Kim Namkug, Kanga Dong-Wha. Deep into the brain: artificial intelligence in stroke imaging. J Stroke. 2017;19(3):277–85.CrossRefPubMedPubMedCentral
204.
Zurück zum Zitat Ashton EA, Takahashi C, Berg MJ, Goodman A, Totterman S, Ekholm S. Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI. J Magn Reson Imaging. 2003;17:300–8.CrossRefPubMed Ashton EA, Takahashi C, Berg MJ, Goodman A, Totterman S, Ekholm S. Accuracy and reproducibility of manual and semiautomated quantification of MS lesions by MRI. J Magn Reson Imaging. 2003;17:300–8.CrossRefPubMed
205.
Zurück zum Zitat Bentley P, Ganesalingam J, Carlton Jones AL, Mahady K, Epton S, Rinne P, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin. 2014;4:635640.CrossRef Bentley P, Ganesalingam J, Carlton Jones AL, Mahady K, Epton S, Rinne P, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin. 2014;4:635640.CrossRef
206.
Zurück zum Zitat Kim BJ, Kim YH, Kim N, Kwon SU, Kim SJ, Kim JS, et al. Lesion location-based prediction of visual field improvement after cerebral infarction. PLoS One. 2015;10:e0143882.CrossRefPubMedPubMedCentral Kim BJ, Kim YH, Kim N, Kwon SU, Kim SJ, Kim JS, et al. Lesion location-based prediction of visual field improvement after cerebral infarction. PLoS One. 2015;10:e0143882.CrossRefPubMedPubMedCentral
207.
Zurück zum Zitat Guberina N, Dietrich U, Radbruch A, Goebel J, Deuschl C, Ringelstein A, et al. Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology. 2018;60(9):889–901.CrossRefPubMed Guberina N, Dietrich U, Radbruch A, Goebel J, Deuschl C, Ringelstein A, et al. Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology. 2018;60(9):889–901.CrossRefPubMed
208.
Zurück zum Zitat Rehme AK, Volz LJ, Feis DL, Bomilcar-Focke I, Liebig T, Eickhoff SB, et al. Identifying neuroimaging markers of motor disability in acute stroke by machine learning techniques. Cereb Cortex. 2015;25(9):3046–56.CrossRefPubMed Rehme AK, Volz LJ, Feis DL, Bomilcar-Focke I, Liebig T, Eickhoff SB, et al. Identifying neuroimaging markers of motor disability in acute stroke by machine learning techniques. Cereb Cortex. 2015;25(9):3046–56.CrossRefPubMed
209.
Zurück zum Zitat Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS One. 2014;9(2):e88225.CrossRefPubMedPubMedCentral Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS One. 2014;9(2):e88225.CrossRefPubMedPubMedCentral
210.
Zurück zum Zitat Bentley P, Ganesalingam J, Carlton Jones AL, Mahady K, Epton S, Rinne P, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin. 2014;4:635–40.CrossRefPubMedPubMedCentral Bentley P, Ganesalingam J, Carlton Jones AL, Mahady K, Epton S, Rinne P, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin. 2014;4:635–40.CrossRefPubMedPubMedCentral
211.
Zurück zum Zitat Maier O, Schroder C, Forkert ND, Martinetz T, Handels H. Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS One. 2015;10(12):e0145118.CrossRefPubMedPubMedCentral Maier O, Schroder C, Forkert ND, Martinetz T, Handels H. Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS One. 2015;10(12):e0145118.CrossRefPubMedPubMedCentral
212.
Zurück zum Zitat Griffis JC, Allendorfer JB, Szaflarski JP. Voxel-based Gaussian naive Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. J Neurosci Methods. 2016;257:97–108.CrossRefPubMed Griffis JC, Allendorfer JB, Szaflarski JP. Voxel-based Gaussian naive Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. J Neurosci Methods. 2016;257:97–108.CrossRefPubMed
213.
Zurück zum Zitat Pustina D, Coslett HB, Turkeltaub PE, Tustison N, Schwartz MF, Avants B. Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis. Hum Brain Mapp. 2016;37(4):1405–21.CrossRefPubMedPubMedCentral Pustina D, Coslett HB, Turkeltaub PE, Tustison N, Schwartz MF, Avants B. Automated segmentation of chronic stroke lesions using LINDA: Lesion identification with neighborhood data analysis. Hum Brain Mapp. 2016;37(4):1405–21.CrossRefPubMedPubMedCentral
214.
Zurück zum Zitat Douglas David B, Iv Michael, Douglas Pamela K, Ariana Anderson, Vos Sjoerd B, Bammer Roland, Zeineh Michael, Wintermark Max. Diffusion tensor imaging of TBI: potentials and challenges. Top Magn Reson Imaging. 2015;24(5):241–51.CrossRefPubMedPubMedCentral Douglas David B, Iv Michael, Douglas Pamela K, Ariana Anderson, Vos Sjoerd B, Bammer Roland, Zeineh Michael, Wintermark Max. Diffusion tensor imaging of TBI: potentials and challenges. Top Magn Reson Imaging. 2015;24(5):241–51.CrossRefPubMedPubMedCentral
215.
Zurück zum Zitat Johansen-Berg H. Behavioural relevance of variation in white matter microstructure. Curr Opin Neurol. 2010;23(351–358):20581685. Johansen-Berg H. Behavioural relevance of variation in white matter microstructure. Curr Opin Neurol. 2010;23(351–358):20581685.
216.
Zurück zum Zitat Mitra J, Shen KK, Ghose S, Bourgeat P, Fripp J, Salvado O, et al. Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks. Neuroimage. 2016;129:247–59.CrossRefPubMed Mitra J, Shen KK, Ghose S, Bourgeat P, Fripp J, Salvado O, et al. Statistical machine learning to identify traumatic brain injury (TBI) from structural disconnections of white matter networks. Neuroimage. 2016;129:247–59.CrossRefPubMed
217.
Zurück zum Zitat Peacock WFT, Van Meter TE, Mirshahi N, Ferber K, Gerwien R, Rao V, et al. Derivation of a three biomarker panel to improve diagnosis in patients with mild traumatic brain injury. Front Neurol. 2017;8:641.CrossRefPubMedPubMedCentral Peacock WFT, Van Meter TE, Mirshahi N, Ferber K, Gerwien R, Rao V, et al. Derivation of a three biomarker panel to improve diagnosis in patients with mild traumatic brain injury. Front Neurol. 2017;8:641.CrossRefPubMedPubMedCentral
218.
Zurück zum Zitat Rangaprakash D, Deshpande G, Daniel TA, Goodman AM, Robinson JL, Salibi N, et al. Compromised hippocampus-striatum pathway as a potential imaging biomarker of mild-traumatic brain injury and posttraumatic stress disorder. Hum Brain Mapp. 2017;38(6):2843–64.CrossRefPubMed Rangaprakash D, Deshpande G, Daniel TA, Goodman AM, Robinson JL, Salibi N, et al. Compromised hippocampus-striatum pathway as a potential imaging biomarker of mild-traumatic brain injury and posttraumatic stress disorder. Hum Brain Mapp. 2017;38(6):2843–64.CrossRefPubMed
219.
Zurück zum Zitat Vergara VM, Mayer AR, Damaraju E, Kiehl KA, Calhoun V. Detection of mild traumatic brain injury by machine learning classification using resting state functional network connectivity and fractional anisotropy. J Neurotrauma. 2017;34(5):1045–53.CrossRefPubMedPubMedCentral Vergara VM, Mayer AR, Damaraju E, Kiehl KA, Calhoun V. Detection of mild traumatic brain injury by machine learning classification using resting state functional network connectivity and fractional anisotropy. J Neurotrauma. 2017;34(5):1045–53.CrossRefPubMedPubMedCentral
220.
Zurück zum Zitat Rangaprakash D, Dretsch MN, Venkataraman A, Katz JS, Denney TS Jr, Deshpande G. Identifying disease foci from static and dynamic effective connectivity networks: illustration in soldiers with trauma. Hum Brain Mapp. 2018;39(1):264–87.CrossRefPubMed Rangaprakash D, Dretsch MN, Venkataraman A, Katz JS, Denney TS Jr, Deshpande G. Identifying disease foci from static and dynamic effective connectivity networks: illustration in soldiers with trauma. Hum Brain Mapp. 2018;39(1):264–87.CrossRefPubMed
221.
Zurück zum Zitat Fagerholm ED, Hellyer PJ, Scott G, Leech R, Sharp DJ. Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain. 2015;138(Pt 6):1696–709.CrossRefPubMedPubMedCentral Fagerholm ED, Hellyer PJ, Scott G, Leech R, Sharp DJ. Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain. 2015;138(Pt 6):1696–709.CrossRefPubMedPubMedCentral
222.
Zurück zum Zitat Chong SL, Liu N, Barbier S, Ong ME. Predictive modeling in pediatric traumatic brain injury using machine learning. BMC Med Res Methodol. 2015;15:22.CrossRefPubMedPubMedCentral Chong SL, Liu N, Barbier S, Ong ME. Predictive modeling in pediatric traumatic brain injury using machine learning. BMC Med Res Methodol. 2015;15:22.CrossRefPubMedPubMedCentral
225.
Zurück zum Zitat Seiler S, Schmidt H, Lechner A, Benke T. Driving cessation and dementia: results of the prospective registry on dementia in Austria PRODEM. PLoS One. 2012;7(12):1–6.CrossRef Seiler S, Schmidt H, Lechner A, Benke T. Driving cessation and dementia: results of the prospective registry on dementia in Austria PRODEM. PLoS One. 2012;7(12):1–6.CrossRef
226.
Zurück zum Zitat Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int Psychogeriatr. 2009;21:672–87.CrossRefPubMed Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int Psychogeriatr. 2009;21:672–87.CrossRefPubMed
228.
Zurück zum Zitat Shen Dinggang, Guorong Wu, Suk Heung-Il. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;21(19):221–48.CrossRef Shen Dinggang, Guorong Wu, Suk Heung-Il. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;21(19):221–48.CrossRef
229.
Zurück zum Zitat Vieira S, Pinaya WHL, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci Biobehav Rev. 2017;74:58–75.CrossRefPubMed Vieira S, Pinaya WHL, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci Biobehav Rev. 2017;74:58–75.CrossRefPubMed
Metadaten
Titel
Machine learning studies on major brain diseases: 5-year trends of 2014–2018
verfasst von
Koji Sakai
Kei Yamada
Publikationsdatum
29.11.2018
Verlag
Springer Japan
Erschienen in
Japanese Journal of Radiology / Ausgabe 1/2019
Print ISSN: 1867-1071
Elektronische ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-018-0794-4

Weitere Artikel der Ausgabe 1/2019

Japanese Journal of Radiology 1/2019 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.