Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 2/2019

Open Access 06.08.2018 | Original Article

Mechanical Unloading by Fulminant Myocarditis: LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA Concepts

verfasst von: Carsten Tschöpe, Sophie Van Linthout, Oliver Klein, Thomas Mairinger, Florian Krackhardt, Evgenij V. Potapov, Gunther Schmidt, Daniel Burkhoff, Burkert Pieske, Frank Spillmann

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 2/2019

Abstract

Mechanical circulatory support (MCS) is often required to stabilize patients with acute fulminant myocarditis with cardiogenic shock. This review gives an overview of the successful use of left-sided Impella in the setting of fulminant myocarditis and cardiogenic shock as the sole means of MCS as well as in combination with right ventricular (RV) support devices including extracorporeal life support (ECLS) (ECMELLA) or an Impella RP (BI-PELLA). It further provides evidence from endomyocardial biopsies that in addition to giving adequate support, LV unloading by Impella exhibits disease-modifying effects important for myocardial recovery (i.e., bridge-to-recovery) achieved by this newly termed “prolonged Impella” (PROPELLA) concept in which LV-IMPELLA 5.0, implanted via an axillary approach, provides support in awake, mobilized patients for several weeks. Finally, this review addresses the question of how to define the appropriate time point for weaning strategies and for changing or discontinuing unloading in fulminant myocarditis.
Begleitmaterial
Hinweise
Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s12265-018-9820-2) contains supplementary material, which is available to authorized users.
Clinical relevance:
This review is of clinical relevance since it:
• gives an overview of different mechanic support systems by fulminant myocarditis;
• provides evidence that LV unloading by Impella exhibits disease-modifying effects important for myocardial recovery;
• addresses the question of how to define the appropriate time point for weaning strategies and for changing or discontinuing unloading in fulminant myocarditis.
Abkürzungen
BI-PELLA
Combination of LV-Impella and RV-Impella RP
ECLS
Extracorporeal life support
ECMELLA
Combination of ECMO and LV-Impella
EMB
Endomyocardial biopsy
IABP
Intra-aortic balloon pump
LV
Left ventricle
LVAD
Left ventricular assist device
LVEDP
Left ventricular end-diastolic pressure
MCS
Mechanical circulatory support
PROPELLA
Prolonged LV-Impella
RV
Right ventricle
v.a.
Veno-arterial

Introduction

The diagnosis and treatment of myocarditis is still a clinical challenge due to the variability of its clinical presentation ranging from mild dyspnea or chest pain to cardiogenic shock and death [1]. In patients presenting with profound cardiogenic shock, immediate mechanical circulatory support (MCS) is often required to treat the hemodynamic compromise, allowing time for making the proper diagnosis and for initiating anti-inflammatory strategies [2]. Evidence from different registries illustrates that among the various short-term MCS options, fulminant myocarditis patients are most frequently treated with veno-arterial (v.a.) extracorporeal life support (ECLS) [36]. However, the use of ECLS increases the afterload of the left ventricle (LV), which, without employing an additional LV venting strategy, can also cause LV distention and exacerbate pulmonary edema. Less well appreciated is the fact that such increases in load with accompanying increases in myocardial wall stress lead to activation of cardiac mechano-transduction pathways, which, over time, induce inflammatory reactions. The combination of increased load and inflammation (which increases extracellular matrix turnover) promotes unfavorable cardiac remodeling. Particularly in an inflammatory disorder, such as myocarditis, a therapeutic strategy is required that, in addition to providing adequate circulatory support, “unloads” the LV, reduces wall stress, and subsequently reduces inflammatory responses [7]. All these goals can be achieved via transcutaneously deployed axial flow pumps like the Impella systems (2.5, CP, 5.0, and RP). The Impella 2.5, CP, and 5.0 devices are miniature axial flow pumps that directly pump blood from the LV to the ascending aorta just above the aortic valve. This approach directly unloads the LV throughout the cardiac cycle, reducing total mechanical work and myocardial oxygen demand, while lowering wall stress and improving subendocardial coronary blood flow. Similarly, the Impella RP pumps blood from the right atrium to the proximal pulmonary artery for right-sided support, providing similar hemodynamic and metabolic effects to the right ventricle (RV).
In this review, we provide an overview of the successful use of an Impella-based strategy for treatment of fulminant myocarditis and cardiogenic shock as a sole means of supporting the circulation, and in combination with ECLS (ECMO plus Impella: ECMELLA), or in combination with RV-Impella RP (BI-PELLA). Furthermore, we provide new evidence that this “unloading” strategy not only provides the required circulatory support but also provides additional disease-modifying effects important for myocardial recovery (bridge-to-recovery) in these patients. Specifically, we emphasize the importance of prolonged use of the LV-Impella for several weeks in this setting, a newly termed PROPELLA (prolonged Impella) concept. Finally, we also address the important questions of how to define the optimal time points and strategies for initiating weaning, escalating, or discontinuing support in fulminant myocarditis.

LV-Impella Approach in Acute Fulminant Myocarditis

Several case reports have demonstrated successful short-time use of LV-Impella in patients with fulminant myocarditis in which RV function was not significantly impaired and patients were not in need of biventricular support [810]. In these prior cases, LV-Impella was used as sole therapy without combined immunosuppressive therapy. In two cases, endomyocardial biopsies (EMB) were not performed [8, 9], while in another case, positive EMB did reveal immune cell infiltrates [10]. In these cases, Impella was used for 5–7 days until the hemodynamics were stabilized and patients could be weaned [6] or, in one case, were bridged to durable LV mechanical support [9].

The ECMELLA and BI-PELLA Concepts in Acute Fulminant Myocarditis

In cases of fulminant myocarditis with additional severe impairment of the RV, ECLS is the most frequently used form of MCS [36]. Nevertheless, mortality of cardiogenic shock despite ECLS is still high in this setting [11]. In fact, such application of ECLS is limited due to the increase of afterload with associated increases in LV filling and pulmonary capillary pressures (Fig. 1, left panel); this increases wall stress and can reduce subendocardial myocardial coronary flow. The increased afterload and filling pressures can be offset by combining ECLS with an LV-Impella device (Fig. 1, right panel), which typically allows the reducing ECLS flow rates. Therefore, it is increasingly recognized that an additional LV unloading strategy can be important for many patients treated with ECLS (movies 3 and 4).
LV venting via cannulation of the left atrium, via transvenous balloon atrial septostomy [12, 13], via atrial stenting [14], or via cannulation of the LV via percutaneous pigtail [15] or larger bore surgically placed cannula via thoracotomy have been successfully performed during ECLS treatment. Other strategies for off-loading the LV during ECLS include intra-aortic balloon pumping (IABP) and the use of inotropes and vasodilators (adequate blood pressure permitting).
A study comprising 135 patients who underwent ECLS and concomitant IABP implantation has shown that ECLS combined with IABP can be an effective therapy in some cases. In that study, prior IABP use was an independent predictor of reduced in-hospital mortality, stroke, or vascular injury [16]. Unfortunately, this study did not include ECLS patients without IABP. Therefore, this study only provides indirect evidence supporting the potential benefit of IABP in addition to ECLS.
Comparing Impella with the abovementioned methods of LV unloading, LV-Impella 2.5 or CP has the advantage to be inserted percutaneously avoiding the need of surgical interventions and provides a higher degree of hemodynamic support compared to IABP. Besides being less invasive than classical decompressive techniques, Impella is associated with lower requirements for blood products with fewer thromboembolic complications [17, 18]. The benefit of this ECMELLA approach to unloading was recently demonstrated in a multi-center retrospective cohort of 157 patients with profound refractory cardiogenic shock compared with patients treated with ECLS alone [19]. Comparison of 42 patients undergoing ECLS alone (control group) with 21 patients treated with the ECMELLA concept revealed that the ECMELLA patients had a significantly lower hospital mortality (47% vs. 80%, P < 0.001) and a higher rate of successful bridging to either recovery or further therapy (68% vs. 28%, P < 0.001) compared to ECLS patients. This study comprised ischemic as well as non-ischemic-induced cardiogenic shock patients, including myocarditis patients. These promising results need further validation, ideally in randomized studies, in patients with refractory cardiogenic shock. Besides this trial, only a few case reports are available reporting the short-time use of the ECMELLA concept as bridge-to-recovery in fulminant myocarditis [18, 20, 21], indicating the need for further studies in this population.
As an alternative to the ECMELLA concept to achieve biventricular support, Pappalardo et al. [22] recently reported the first case of a biventricular support with two Impella pumps combining a LV-Impella CP with a RV-Impella RP system for acute biventricular failure due to suspected acute myocarditis. This so-called BI-PELLA concept mitigates the shortcomings of an ECLS increased afterload, while providing percutaneous biventricular unloading and hemodynamic support. This approach fulfills the requirements of the acute MCS concept, which includes (1) ease of access; (2) non-surgical percutaneous insertion [23]; (3) rapid deployment; (4) potent biventricular support; and (5) stepwise weaning of uni- or biventricular support [22], and can be used as a bridge to a durable left ventricular assist device (LVAD) if needed [24]. This concept extends the possibilities of different unloading strategies for patients with biventricular failure in which oxygenation is not a major issue (Fig. 2).

The Prolonged LV-IMPELLA Concept in the Subacute Phase of Fulminant Myocarditis

As discussed, a strategy that simultaneously provides both sufficient circulatory support and LV unloading can be particularly effective in patients with fulminant myocarditis and cardiogenic shock. However, hemodynamic stabilization alone does not guarantee recovery of myocardial function. Myocarditis is usually characterized by a systemic inflammatory immune system [2527] which results in a host of myocardial abnormalities including immune cell infiltration [28, 29], cardiac fibrosis [30], dysregulation of titin function [30, 31], and impaired energy metabolism [32].
The impact of prolonged unloading on these myocardial processes and, ultimately, on myocardial recovery in fulminant myocarditis is so far unknown. In the context of chronic heart failure, it is well established that prolonged LV unloading achieved with durable LVADs can lead to reverse remodeling based on anti-fibrotic and anti-inflammatory mechanisms [33, 34], can improve myofilament and titin architecture [35], can reverse deleterious metabolic adaptations of the failing heart, and can even activate cellular pathways of cardio-protection and cardiac repair [36, 37]. These well-established effects of prolonged LV unloading via durable LVAD were the rationale for investigating the impact of prolonged support with an LV-Impella to provide unloading in fulminant myocarditis (the PROPELLA concept).
We report here, for the first time to our knowledge, the impact of a LV-Impella 5.0 implanted through an axillary approach for 39 days combined with standard heart failure therapy (metoprolol, torasemide, valsartan/sacubitril, spironolactone, and ivabradine starting 48 h after Impella implantation; and carvedilol, ivabradine, valsartan/sacubitril, and eplerenone after Impella explantation), which does not represent a causal therapy, and immunosuppressive therapy consisting of prednisolone (starting at 1 mg/kg/day for 4 weeks (at T1: 100 mg; at T3: 90 mg) followed by 10 mg/day weaning all 2 weeks until reaching 10 mg/day maintenance dose), and azathioprine (100 mg/day) in a patient presenting with fulminant myocarditis and cardiogenic shock. With this approach, the patient did not require sedation and was able to be mobilized daily. No catecholamine treatment was needed despite an initial LV ejection fraction of < 10%. Anticoagulation was maintained with intravenous heparin (partial thromboplastin time between 60 and 80 s). Improvements of cardiac function were observed within 5 days of MCS and inotropic support was not needed. Following temporary reduction of pump flow on day 21, LV performance was improved, indicating the ability of the native heart to provide circulatory support (movie 1: full LV-Impella 5.0 support at level P8 and movie 2: LV-Impella 5.0 at level P1). This patient was supported for a total of 39 days and was able to be weaned with a final LV-EF of 62%. Impella weaning was performed without invasive hemodynamic measurement via pulmonary arterial catheter or a PICCO system, but under invasive RR measurement with permanent ECG and peripheral pulse oximetry monitoring, since the patient was already daily mobilized.
In order to gain insights into the impact of MCS and immunotherapy, EMBs [38] were obtained prior to (T0), at two time points during the course of MCS and immunosuppressive therapy (T1 at 17/18 days; T2 at 31/32 days post Impella implantation/immunosuppressive therapy (PROPELLA concept)) and at one time point following withdrawal of support (T3, 3 days following explant). Histological evaluation via hematoxylin and eosin staining revealed that combined MCS and immunosuppressive therapy (T1 and T2) reduced the infiltration of immune cells as observed at T0 (Fig. 3). However, this effect was abrogated after removal of the LV-Impella 5.0 support (T3) despite continuation of immunotherapy, suggesting a primary “unloading”-dependent mechanism. Hypothesis-free analysis via matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry [39] further revealed that the LV expression of malate dehydrogenase enzyme (which is a key enzyme involved in the reduction of NAD+ to NADH cycle in the tricarboxylic acid cycle and key step in generation of ATP) was only increased during unloading and immunosuppression and dropped after LV-Impella 5.0 explantation (Fig. 4). Knowing that LV pressure and volume overload alters metabolic substrate utilization, decreases mitochondrial function, and reduces energy production in the failing heart [40] and that the expression of malate dehydrogenase enzyme is reduced in heart failure [41, 42], these observations support the notion that unloading restores the downregulated expression of malate dehydrogenase enzyme in the LV. However, this beneficial effect was abolished after explantation of the LV-Impella 5.0 support. Whether this normalization in malate dehydrogenase enzyme expression represents an improved glucose oxidation or rather an increased anaplerosis flux due to regression of hypertrophy after mechanical unloading, as seen by Diakos et al. [43] in chronic heart failure patients following LVAD, requires further investigation.

Weaning Under Temporary Mechanical Circulatory Support with Impella

Most cardiac arrest centers perform weaning from ECLS and Impella support without clear guidelines or algorithms [44]. According to our experience, we found dynamic echocardiography-based investigations very helpful to define a suitable time point for weaning and for changing or discontinuing unloading strategies in fulminant myocarditis. In patients with fulminant myocarditis, we found a very unique behavior during unloading support: as shown in movie 1 (PROPELLA concept) and movie 3 (ECMELLA concept), we found a continually reduced LV ejection fraction during full unloading support. But temporally reducing unloading support led to an immediate increase of ejection fraction (movie 2; PROPELLA concept; movie 4; ECMELLA concept) indicating that full unloading induced a form of resting of the LV, which maybe an important component of the mechanisms leading to recovery. This is in contrast to patients with severe myocardial infarction, where temporary pump flow reductions under echocardiographic evaluation could not show any further improvement of LV function (movies 58). Thus, temporary pump flow reductions under echocardiographic evaluation are useful in clinical practice for assessing suitability for weaning.
In principle, investigation of the LV and the RV function before PROPELLA or ECMELLA weaning is fundamental to anticipate univentricular or biventricular recovery and the need for possible subsequent LVAD placement. Before weaning, patients under Impella support must meet the criteria of being afebrile and euvolemic and compensated with resolution of pulmonary edema and adequate arterial PaO2. Patients must be free of the need for inotropic or pressure support, should have normal physiological parameters (arterial blood pressure, central venous pressure, heart rate, and rhythm), and all other parameters of end organ dysfunction should be recovered to baseline.
In our department, we established a weaning protocol consisting of four stages:
  • Stage 1: baseline RV and LV function of the heart are measured by echocardiography on full LV-Impella support.
  • Stage 2: after evaluation of baseline data, Impella RPMs (and therefore flow) is decreased in single steps (e.g., P8 to P7, and so on) with the goal of achieving half of the original RPMs with maintenance of adequate hemodynamics. At every flow level, RV and LV function and hemodynamic responses (blood pressure and heart rate) are monitored over 5–10 min to allow estimation of ventricular function and volume status. If, at any period in the weaning protocol, RV or LV distension occurred or significant hypotension or increase in heart rate is observed, the weaning protocol is stopped and Impella support is returned to full flow.
  • Stage 3: If stage 2 was successful, Impella support will continue to be reduced by one step for 24 h and then reevaluated like described under stage 2.
  • Stage 4: If stable RV and LV function, hemodynamics and volume status are maintained for 48 h on P2 Impella support, inotrope stress test with dobutamine will be performed in which RV and LV functions and hemodynamics are observed for responses over 30 min. If both, RV and LV function are recovered, the patient will be considered for Impella removal. This procedure is not performed in patients who spontaneously increase their LV function during pump reduction flow, as is often detectable in myocarditis patients with recovery. Here, we decide to support unloading as long as possible to be able to invoke the proposed disease-modifying mechanism for complete recovery (PROPELLA concept). In our experience, a time frame of about 4 weeks is appropriate for this purpose, since the weaning stress test was positively completed. We also wanted to reduce potential side effects like embolism and infections under immunosuppression. Therefore, we found the explantation time point after 4 weeks in this case appropriate. However, the explantation time point can differ depending on the individual clinical scenario.

Conclusion

There is accumulating evidence showing that LV unloading via a transcutaneously placed axial flow pump is a viable treatment option for patients with fulminant myocarditis and cardiogenic shock. Such therapy is feasible as sole LV MCS when RV function is sufficient, but can be used in combination with ECLS (the ECMELLA concept) or in combination with a right-sided Impella RP (the Bi-PELLA concept). One of the advantages of the ECMELLA approach is the possibility to deescalate the ECLS flow rates and reduce loading effects on the LV. Improvement of RV function can permit removal of the more invasive ECLS approach, enabling the conversion of the ECMELLA to the PROPELLA concept, if longer LV hemodynamic support is still necessary.
Besides circulatory support and LV decompression, of which the latter is required to reduce myocardial wall stress, decrease myocardial oxygen requirements, and enhance the chances of recovery, we report for the first time that prolonged unloading (the PROPELLA concept) leads to additional disease-modifying effects over time that can be important for enhancing myocardial recovery in patients with chronic fulminant myocarditis. These disease-altering effects include unloading-induced reductions of myocardial inflammation, modulation of cardiac remodeling, and restoration of more normal metabolic machinery. Such effects may be critical to the restoration of cardiac structure and function, suggesting that the therapeutic effects of Impella support go beyond its primary use as mechanic support for normalizing hemodynamics. Evidence illustrating the impact of LV unloading on cellular and molecular mechanisms influencing cardiac remodeling, fibrosis, inflammation, and calcium metabolism is so far mainly derived from studies of durable LVADs [45, 46]. Mechanistic data demonstrating the effect of LV unloading on fulminant myocarditis are lacking. Particularly, in an inflammatory disorder, such as myocarditis, additional research is needed into how LV unloading and decreased wall stress might affect inflammatory responses [7], and consequently may contribute to mitigating its long-term consequences. The heterogeneity of the presentation and clinical course of fulminant myocarditis makes it difficult to determine the appropriate time for discontinuing Impella support or converting to a ventricular assist device. EMB analysis providing information about the status of inflammation, molecular abnormalities, and changes in metabolic processes [47] may therefore provide markers helpful in determining when myocardial recovery is sufficient to warrant weaning. Larger scale clinical trials—if possible including EMB analysis—will help validate these promising concepts, which will bring new light on the use and duration of unloading as a treatment option for chronic fulminant myocarditis.

Acknowledgments

We thank Annika Koschel and Kerstin Puhl (in alphabetical order) for excellent technical support. Moreover, we thank the total clinical station team (doctors and nursing) of the cardiology intensive care unit W47i, CVK, Charité.

Compliance with Ethical Standards

Conflict of interest

CT receives lecturing fees from Abiomed and DB an unrestricted institutional educational grant from Abiomed.

Human subjects/informed consent statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from the patient for being included in the study.

Animal Studies

No animal studies were carried out by the authors for this article.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Anhänge

Electronic supplementary material

Literatur
1.
Zurück zum Zitat Caforio, A. L., Pankuweit, S., Arbustini, E., Basso, C., Gimeno-Blanes, J., Felix, S. B., Fu, M., Helio, T., Heymans, S., Jahns, R., Klingel, K., Linhart, A., Maisch, B., McKenna, W., Mogensen, J., Pinto, Y. M., Ristic, A., Schultheiss, H. P., Seggewiss, H., Tavazzi, L., Thiene, G., Yilmaz, A., Charron, P., Elliott, P. M., & European Society of Cardiology Working Group on M and Pericardial D. (2013). Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 34, 2636–2648 2648a-2648d.CrossRefPubMed Caforio, A. L., Pankuweit, S., Arbustini, E., Basso, C., Gimeno-Blanes, J., Felix, S. B., Fu, M., Helio, T., Heymans, S., Jahns, R., Klingel, K., Linhart, A., Maisch, B., McKenna, W., Mogensen, J., Pinto, Y. M., Ristic, A., Schultheiss, H. P., Seggewiss, H., Tavazzi, L., Thiene, G., Yilmaz, A., Charron, P., Elliott, P. M., & European Society of Cardiology Working Group on M and Pericardial D. (2013). Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 34, 2636–2648 2648a-2648d.CrossRefPubMed
2.
Zurück zum Zitat Rihal, C. S., Naidu, S. S., Givertz, M. M., Szeto, W. Y., Burke, J. A., Kapur, N. K., Kern, M., Garratt, K. N., Goldstein, J. A., Dimas, V., Tu, T., & Society for Cardiovascular A, Interventions, Heart Failure Society of A, Society of Thoracic S, American Heart A and American College of C. (2015). 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care: endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; affirmation of value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d'intervention. Journal of the American College of Cardiology, 65, e7–e26.CrossRefPubMed Rihal, C. S., Naidu, S. S., Givertz, M. M., Szeto, W. Y., Burke, J. A., Kapur, N. K., Kern, M., Garratt, K. N., Goldstein, J. A., Dimas, V., Tu, T., & Society for Cardiovascular A, Interventions, Heart Failure Society of A, Society of Thoracic S, American Heart A and American College of C. (2015). 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care: endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; affirmation of value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d'intervention. Journal of the American College of Cardiology, 65, e7–e26.CrossRefPubMed
3.
Zurück zum Zitat Hsu, K. H., Chi, N. H., Yu, H. Y., Wang, C. H., Huang, S. C., Wang, S. S., Ko, W. J., & Chen, Y. S. (2011). Extracorporeal membranous oxygenation support for acute fulminant myocarditis: analysis of a single center’s experience. European Journal of Cardio-Thoracic Surgery, 40, 682–688.PubMed Hsu, K. H., Chi, N. H., Yu, H. Y., Wang, C. H., Huang, S. C., Wang, S. S., Ko, W. J., & Chen, Y. S. (2011). Extracorporeal membranous oxygenation support for acute fulminant myocarditis: analysis of a single center’s experience. European Journal of Cardio-Thoracic Surgery, 40, 682–688.PubMed
4.
Zurück zum Zitat Diddle, J. W., Almodovar, M. C., Rajagopal, S. K., Rycus, P. T., & Thiagarajan, R. R. (2015). Extracorporeal membrane oxygenation for the support of adults with acute myocarditis. Critical Care Medicine, 43, 1016–1025.CrossRefPubMed Diddle, J. W., Almodovar, M. C., Rajagopal, S. K., Rycus, P. T., & Thiagarajan, R. R. (2015). Extracorporeal membrane oxygenation for the support of adults with acute myocarditis. Critical Care Medicine, 43, 1016–1025.CrossRefPubMed
5.
Zurück zum Zitat Lorusso, R., Centofanti, P., Gelsomino, S., Barili, F., Di Mauro, M., Orlando, P., Botta, L., Milazzo, F., Actis Dato, G., Casabona, R., Casali, G., Musumeci, F., De Bonis, M., Zangrillo, A., Alfieri, O., Pellegrini, C., Mazzola, S., Coletti, G., Vizzardi, E., Bianco, R., Gerosa, G., Massetti, M., Caldaroni, F., Pilato, E., Pacini, D., Di Bartolomeo, R., Marinelli, G., Sponga, S., Livi, U., Mauro, R., Mariscalco, G., Beghi, C., Miceli, A., Glauber, M., Pappalardo, F., Russo, C. F., & Investigators, G. (2016). Venoarterial extracorporeal membrane oxygenation for acute fulminant myocarditis in adult patients: a 5-year multi-institutional experience. Annals of Thoracic Surgery, 101, 919–926.CrossRefPubMed Lorusso, R., Centofanti, P., Gelsomino, S., Barili, F., Di Mauro, M., Orlando, P., Botta, L., Milazzo, F., Actis Dato, G., Casabona, R., Casali, G., Musumeci, F., De Bonis, M., Zangrillo, A., Alfieri, O., Pellegrini, C., Mazzola, S., Coletti, G., Vizzardi, E., Bianco, R., Gerosa, G., Massetti, M., Caldaroni, F., Pilato, E., Pacini, D., Di Bartolomeo, R., Marinelli, G., Sponga, S., Livi, U., Mauro, R., Mariscalco, G., Beghi, C., Miceli, A., Glauber, M., Pappalardo, F., Russo, C. F., & Investigators, G. (2016). Venoarterial extracorporeal membrane oxygenation for acute fulminant myocarditis in adult patients: a 5-year multi-institutional experience. Annals of Thoracic Surgery, 101, 919–926.CrossRefPubMed
6.
Zurück zum Zitat den Uil, C. A., Akin, S., Jewbali, L. S., Dos Reis, M. D., Brugts, J. J., Constantinescu, A. A., Kappetein, A. P., & Caliskan, K. (2017). Short-term mechanical circulatory support as a bridge to durable left ventricular assist device implantation in refractory cardiogenic shock: a systematic review and meta-analysis. European Journal of Cardio-Thoracic Surgery, 52, 14–25.CrossRef den Uil, C. A., Akin, S., Jewbali, L. S., Dos Reis, M. D., Brugts, J. J., Constantinescu, A. A., Kappetein, A. P., & Caliskan, K. (2017). Short-term mechanical circulatory support as a bridge to durable left ventricular assist device implantation in refractory cardiogenic shock: a systematic review and meta-analysis. European Journal of Cardio-Thoracic Surgery, 52, 14–25.CrossRef
7.
Zurück zum Zitat Van Linthout, S., & Tschope, C. (2017). Inflammation - cause or consequence of heart failure or both? Current Heart Failure Reports, 14, 251–265.CrossRefPubMedPubMedCentral Van Linthout, S., & Tschope, C. (2017). Inflammation - cause or consequence of heart failure or both? Current Heart Failure Reports, 14, 251–265.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Andrade, J. G., Al-Saloos, H., Jeewa, A., Sandor, G. G., & Cheung, A. (2010). Facilitated cardiac recovery in fulminant myocarditis: pediatric use of the Impella LP 5.0 pump. The Journal of Heart and Lung Transplantation, 29, 96–97.CrossRefPubMed Andrade, J. G., Al-Saloos, H., Jeewa, A., Sandor, G. G., & Cheung, A. (2010). Facilitated cardiac recovery in fulminant myocarditis: pediatric use of the Impella LP 5.0 pump. The Journal of Heart and Lung Transplantation, 29, 96–97.CrossRefPubMed
9.
Zurück zum Zitat Suradi, H., & Breall, J. A. (2011). Successful use of the Impella device in giant cell myocarditis as a bridge to permanent left ventricular mechanical support. Texas Heart Institute Journal, 38, 437–440.PubMedPubMedCentral Suradi, H., & Breall, J. A. (2011). Successful use of the Impella device in giant cell myocarditis as a bridge to permanent left ventricular mechanical support. Texas Heart Institute Journal, 38, 437–440.PubMedPubMedCentral
10.
Zurück zum Zitat Fox, H., Farr, M., Horstkotte, D., & Flottmann, C. (2017). Fulminant myocarditis managed by extracorporeal life support (Impella(R) CP): a rare case. Case Reports in Cardiology, 2017, 9231959.CrossRefPubMedPubMedCentral Fox, H., Farr, M., Horstkotte, D., & Flottmann, C. (2017). Fulminant myocarditis managed by extracorporeal life support (Impella(R) CP): a rare case. Case Reports in Cardiology, 2017, 9231959.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Paden, M. L., Conrad, S. A., Rycus, P. T., Thiagarajan, R. R., & Registry, E. (2013). Extracorporeal life support organization registry report 2012. ASAIO Journal, 59, 202–210.CrossRefPubMed Paden, M. L., Conrad, S. A., Rycus, P. T., Thiagarajan, R. R., & Registry, E. (2013). Extracorporeal life support organization registry report 2012. ASAIO Journal, 59, 202–210.CrossRefPubMed
12.
Zurück zum Zitat Koenig, P. R., Ralston, M. A., Kimball, T. R., Meyer, R. A., Daniels, S. R., & Schwartz, D. C. (1993). Balloon atrial septostomy for left ventricular decompression in patients receiving extracorporeal membrane oxygenation for myocardial failure. The Journal of Pediatrics, 122, S95–S99.CrossRefPubMed Koenig, P. R., Ralston, M. A., Kimball, T. R., Meyer, R. A., Daniels, S. R., & Schwartz, D. C. (1993). Balloon atrial septostomy for left ventricular decompression in patients receiving extracorporeal membrane oxygenation for myocardial failure. The Journal of Pediatrics, 122, S95–S99.CrossRefPubMed
13.
Zurück zum Zitat Seib, P. M., Faulkner, S. C., Erickson, C. C., Van Devanter, S. H., Harrell, J. E., Fasules, J. W., Frazier, E. A., & Morrow, W. R. (1999). Blade and balloon atrial septostomy for left heart decompression in patients with severe ventricular dysfunction on extracorporeal membrane oxygenation. Catheterization and Cardiovascular Interventions, 46, 179–186.CrossRefPubMed Seib, P. M., Faulkner, S. C., Erickson, C. C., Van Devanter, S. H., Harrell, J. E., Fasules, J. W., Frazier, E. A., & Morrow, W. R. (1999). Blade and balloon atrial septostomy for left heart decompression in patients with severe ventricular dysfunction on extracorporeal membrane oxygenation. Catheterization and Cardiovascular Interventions, 46, 179–186.CrossRefPubMed
14.
Zurück zum Zitat Haynes, S., Kerber, R. E., Johnson, F. L., Lynch, W. R., & Divekar, A. (2009). Left heart decompression by atrial stenting during extracorporeal membrane oxygenation. The International Journal of Artificial Organs, 32, 240–242.CrossRefPubMed Haynes, S., Kerber, R. E., Johnson, F. L., Lynch, W. R., & Divekar, A. (2009). Left heart decompression by atrial stenting during extracorporeal membrane oxygenation. The International Journal of Artificial Organs, 32, 240–242.CrossRefPubMed
15.
Zurück zum Zitat Barbone, A., Malvindi, P. G., Ferrara, P., & Tarelli, G. (2011). Left ventricle unloading by percutaneous pigtail during extracorporeal membrane oxygenation. Interactive Cardiovascular and Thoracic Surgery, 13, 293–295.CrossRefPubMed Barbone, A., Malvindi, P. G., Ferrara, P., & Tarelli, G. (2011). Left ventricle unloading by percutaneous pigtail during extracorporeal membrane oxygenation. Interactive Cardiovascular and Thoracic Surgery, 13, 293–295.CrossRefPubMed
16.
Zurück zum Zitat Gass, A., Palaniswamy, C., Aronow, W. S., Kolte, D., Khera, S., Ahmad, H., Cuomo, L. J., Timmermans, R., Cohen, M., Tang, G. H., Kai, M., Lansman, S. L., Lanier, G. M., Malekan, R., Panza, J. A., & Spielvogel, D. (2014). Peripheral venoarterial extracorporeal membrane oxygenation in combination with intra-aortic balloon counterpulsation in patients with cardiovascular compromise. Cardiology, 129, 137–143.CrossRefPubMed Gass, A., Palaniswamy, C., Aronow, W. S., Kolte, D., Khera, S., Ahmad, H., Cuomo, L. J., Timmermans, R., Cohen, M., Tang, G. H., Kai, M., Lansman, S. L., Lanier, G. M., Malekan, R., Panza, J. A., & Spielvogel, D. (2014). Peripheral venoarterial extracorporeal membrane oxygenation in combination with intra-aortic balloon counterpulsation in patients with cardiovascular compromise. Cardiology, 129, 137–143.CrossRefPubMed
17.
Zurück zum Zitat Lamarche, Y., Cheung, A., Ignaszewski, A., Higgins, J., Kaan, A., Griesdale, D. E., & Moss, R. (2011). Comparative outcomes in cardiogenic shock patients managed with Impella microaxial pump or extracorporeal life support. The Journal of Thoracic and Cardiovascular Surgery, 142, 60–65.CrossRefPubMed Lamarche, Y., Cheung, A., Ignaszewski, A., Higgins, J., Kaan, A., Griesdale, D. E., & Moss, R. (2011). Comparative outcomes in cardiogenic shock patients managed with Impella microaxial pump or extracorporeal life support. The Journal of Thoracic and Cardiovascular Surgery, 142, 60–65.CrossRefPubMed
18.
Zurück zum Zitat Narain, S., Paparcuri, G., Fuhrman, T. M., Silverman, R. B., & Peruzzi, W. T. (2012). Novel combination of impella and extra corporeal membrane oxygenation as a bridge to full recovery in fulminant myocarditis. Case Rep Crit Care, 2012, 459296.PubMedPubMedCentral Narain, S., Paparcuri, G., Fuhrman, T. M., Silverman, R. B., & Peruzzi, W. T. (2012). Novel combination of impella and extra corporeal membrane oxygenation as a bridge to full recovery in fulminant myocarditis. Case Rep Crit Care, 2012, 459296.PubMedPubMedCentral
19.
Zurück zum Zitat Pappalardo, F., Schulte, C., Pieri, M., Schrage, B., Contri, R., Soeffker, G., Greco, T., Lembo, R., Mullerleile, K., Colombo, A., Sydow, K., De Bonis, M., Wagner, F., Reichenspurner, H., Blankenberg, S., Zangrillo, A., & Westermann, D. (2017). Concomitant implantation of Impella((R)) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. European Journal of Heart Failure, 19, 404–412.CrossRefPubMed Pappalardo, F., Schulte, C., Pieri, M., Schrage, B., Contri, R., Soeffker, G., Greco, T., Lembo, R., Mullerleile, K., Colombo, A., Sydow, K., De Bonis, M., Wagner, F., Reichenspurner, H., Blankenberg, S., Zangrillo, A., & Westermann, D. (2017). Concomitant implantation of Impella((R)) on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. European Journal of Heart Failure, 19, 404–412.CrossRefPubMed
20.
Zurück zum Zitat Chaparro, S. V., Badheka, A., Marzouka, G. R., Tanawuttiwat, T., Ahmed, F., Sacher, V., & Pham, S. M. (2012). Combined use of Impella left ventricular assist device and extracorporeal membrane oxygenation as a bridge to recovery in fulminant myocarditis. ASAIO Journal, 58, 285–287.CrossRefPubMed Chaparro, S. V., Badheka, A., Marzouka, G. R., Tanawuttiwat, T., Ahmed, F., Sacher, V., & Pham, S. M. (2012). Combined use of Impella left ventricular assist device and extracorporeal membrane oxygenation as a bridge to recovery in fulminant myocarditis. ASAIO Journal, 58, 285–287.CrossRefPubMed
21.
Zurück zum Zitat Beurtheret, S., Mordant, P., Pavie, A., & Leprince, P. (2012). Impella and extracorporeal membrane oxygenation: a demanding combination. ASAIO Journal, 58, 291–293.CrossRefPubMed Beurtheret, S., Mordant, P., Pavie, A., & Leprince, P. (2012). Impella and extracorporeal membrane oxygenation: a demanding combination. ASAIO Journal, 58, 291–293.CrossRefPubMed
22.
Zurück zum Zitat Pappalardo, F., Scandroglio, A. M., Latib, A. (2018). Full percutaneous biventricular support with two Impella pumps: the Bi-Pella approach. ESC Heart Failure Pappalardo, F., Scandroglio, A. M., Latib, A. (2018). Full percutaneous biventricular support with two Impella pumps: the Bi-Pella approach. ESC Heart Failure
23.
Zurück zum Zitat Aghili, N., Bader, Y., Vest, A. R., Kiernan, M. S., Kimmelstiel, C., DeNofrio, D., Kapur, N. K. (2016). Biventricular circulatory support using 2 axial flow catheters for cardiogenic shock without the need for surgical vascular access. Circulation. Cardiovascular Interventions, 9. Aghili, N., Bader, Y., Vest, A. R., Kiernan, M. S., Kimmelstiel, C., DeNofrio, D., Kapur, N. K. (2016). Biventricular circulatory support using 2 axial flow catheters for cardiogenic shock without the need for surgical vascular access. Circulation. Cardiovascular Interventions, 9.
24.
Zurück zum Zitat Kapur, N. K., Jumean, M., Ghuloom, A., Aghili, N., Vassallo, C., Kiernan, M. S., DeNofrio, D., & Pham, D. T. (2015). First successful use of 2 axial flow catheters for percutaneous biventricular circulatory support as a bridge to a durable left ventricular assist device. Circulation. Heart Failure, 8, 1006–1008.CrossRefPubMed Kapur, N. K., Jumean, M., Ghuloom, A., Aghili, N., Vassallo, C., Kiernan, M. S., DeNofrio, D., & Pham, D. T. (2015). First successful use of 2 axial flow catheters for percutaneous biventricular circulatory support as a bridge to a durable left ventricular assist device. Circulation. Heart Failure, 8, 1006–1008.CrossRefPubMed
25.
Zurück zum Zitat Tschope, C., Muller, I., Xia, Y., Savvatis, K., Pappritz, K., Pinkert, S., Lassner, D., Heimesaat, M. M., Spillmann, F., Miteva, K., Bereswill, S., Schultheiss, H. P., Fechner, H., Pieske, B., Kuhl, U., Van Linthout, S. (2017). NOD2 (nucleotide-binding oligomerization domain 2) is a major pathogenic mediator of Coxsackievirus B3-induced myocarditis. Circulation. Heart Failure, 10. Tschope, C., Muller, I., Xia, Y., Savvatis, K., Pappritz, K., Pinkert, S., Lassner, D., Heimesaat, M. M., Spillmann, F., Miteva, K., Bereswill, S., Schultheiss, H. P., Fechner, H., Pieske, B., Kuhl, U., Van Linthout, S. (2017). NOD2 (nucleotide-binding oligomerization domain 2) is a major pathogenic mediator of Coxsackievirus B3-induced myocarditis. Circulation. Heart Failure, 10.
26.
Zurück zum Zitat Müller, I., Vogl, T., Pappritz, K., Miteva, K., Savvatis, K., Rohde, D., Most, P., Lassner, D., Pieske, B., Kühl, U., Van Linthout, S., Tschöpe, C. (2017). Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in Coxsackievirus B3-induced myocarditis. Circulation. Heart Failure. Müller, I., Vogl, T., Pappritz, K., Miteva, K., Savvatis, K., Rohde, D., Most, P., Lassner, D., Pieske, B., Kühl, U., Van Linthout, S., Tschöpe, C. (2017). Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in Coxsackievirus B3-induced myocarditis. Circulation. Heart Failure.
27.
Zurück zum Zitat Miteva, K., Pappritz, K., Sosnowski, M., El-Shafeey, M., Muller, I., Dong, F., Savvatis, K., Ringe, J., Tschope, C., & Van Linthout, S. (2018). Mesenchymal stromal cells inhibit NLRP3 inflammasome activation in a model of Coxsackievirus B3-induced inflammatory cardiomyopathy. Scientific Reports, 8, 2820.CrossRefPubMedPubMedCentral Miteva, K., Pappritz, K., Sosnowski, M., El-Shafeey, M., Muller, I., Dong, F., Savvatis, K., Ringe, J., Tschope, C., & Van Linthout, S. (2018). Mesenchymal stromal cells inhibit NLRP3 inflammasome activation in a model of Coxsackievirus B3-induced inflammatory cardiomyopathy. Scientific Reports, 8, 2820.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Schmidt-Lucke, C., Spillmann, F., Bock, T., Kuhl, U., Van Linthout, S., Schultheiss, H. P., & Tschope, C. (2010). Interferon beta modulates endothelial damage in patients with cardiac persistence of human parvovirus b19 infection. The Journal of Infectious Diseases, 201, 936–945.CrossRefPubMed Schmidt-Lucke, C., Spillmann, F., Bock, T., Kuhl, U., Van Linthout, S., Schultheiss, H. P., & Tschope, C. (2010). Interferon beta modulates endothelial damage in patients with cardiac persistence of human parvovirus b19 infection. The Journal of Infectious Diseases, 201, 936–945.CrossRefPubMed
29.
Zurück zum Zitat Miteva, K., Pappritz, K., El-Shafeey, M., Dong, F., Ringe, J., Tschope, C., & Van Linthout, S. (2017). Mesenchymal stromal cells modulate monocytes trafficking in Coxsackievirus B3-induced myocarditis. Stem Cells Translational Medicine, 6, 1249–1261.CrossRefPubMedPubMedCentral Miteva, K., Pappritz, K., El-Shafeey, M., Dong, F., Ringe, J., Tschope, C., & Van Linthout, S. (2017). Mesenchymal stromal cells modulate monocytes trafficking in Coxsackievirus B3-induced myocarditis. Stem Cells Translational Medicine, 6, 1249–1261.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Muller, I., Pappritz, K., Savvatis, K., Puhl, K., Dong, F., El-Shafeey, M., Hamdani, N., Hamann, I., Noutsias, M., Infante-Duarte, C., Linke, W. A., Van Linthout, S., & Tschope, C. (2017). CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS One, 12, e0182643.CrossRefPubMedPubMedCentral Muller, I., Pappritz, K., Savvatis, K., Puhl, K., Dong, F., El-Shafeey, M., Hamdani, N., Hamann, I., Noutsias, M., Infante-Duarte, C., Linke, W. A., Van Linthout, S., & Tschope, C. (2017). CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS One, 12, e0182643.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Savvatis, K., Muller, I., Frohlich, M., Pappritz, K., Zietsch, C., Hamdani, N., Grote, K., Schieffer, B., Klingel, K., Van Linthout, S., Linke, W. A., Schultheiss, H. P., & Tschope, C. (2014). Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis. Basic Research in Cardiology, 109, 449.CrossRefPubMed Savvatis, K., Muller, I., Frohlich, M., Pappritz, K., Zietsch, C., Hamdani, N., Grote, K., Schieffer, B., Klingel, K., Van Linthout, S., Linke, W. A., Schultheiss, H. P., & Tschope, C. (2014). Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis. Basic Research in Cardiology, 109, 449.CrossRefPubMed
32.
Zurück zum Zitat Xu, J., Nie, H. G., Zhang, X. D., Tian, Y., & Yu, B. (2011). Down-regulated energy metabolism genes associated with mitochondria oxidative phosphorylation and fatty acid metabolism in viral cardiomyopathy mouse heart. Molecular Biology Reports, 38, 4007–4013.CrossRefPubMed Xu, J., Nie, H. G., Zhang, X. D., Tian, Y., & Yu, B. (2011). Down-regulated energy metabolism genes associated with mitochondria oxidative phosphorylation and fatty acid metabolism in viral cardiomyopathy mouse heart. Molecular Biology Reports, 38, 4007–4013.CrossRefPubMed
33.
Zurück zum Zitat Levin, H. R., Oz, M. C., Chen, J. M., Packer, M., Rose, E. A., & Burkhoff, D. (1995). Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation, 91, 2717–2720.CrossRefPubMed Levin, H. R., Oz, M. C., Chen, J. M., Packer, M., Rose, E. A., & Burkhoff, D. (1995). Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation, 91, 2717–2720.CrossRefPubMed
34.
Zurück zum Zitat Tseng, C. C. S., Huibers, M. M. H., Gaykema, L. H., Siera-de Koning, E., Ramjankhan, F. Z., Maisel, A. S., & de Jonge, N. (2018). Soluble ST2 in end-stage heart failure, before and after support with a left ventricular assist device. European Journal of Clinical Investigation. https://doi.org/10.1111/eci.12886. Tseng, C. C. S., Huibers, M. M. H., Gaykema, L. H., Siera-de Koning, E., Ramjankhan, F. Z., Maisel, A. S., & de Jonge, N. (2018). Soluble ST2 in end-stage heart failure, before and after support with a left ventricular assist device. European Journal of Clinical Investigation. https://​doi.​org/​10.​1111/​eci.​12886.
35.
Zurück zum Zitat de Jonge, N., van Wichen, D. F., Schipper, M. E., Lahpor, J. R., Gmelig-Meyling, F. H., Robles de Medina, E. O., & de Weger, R. A. (2002). Left ventricular assist device in end-stage heart failure: persistence of structural myocyte damage after unloading. An immunohistochemical analysis of the contractile myofilaments. Journal of the American College of Cardiology, 39, 963–969.CrossRefPubMed de Jonge, N., van Wichen, D. F., Schipper, M. E., Lahpor, J. R., Gmelig-Meyling, F. H., Robles de Medina, E. O., & de Weger, R. A. (2002). Left ventricular assist device in end-stage heart failure: persistence of structural myocyte damage after unloading. An immunohistochemical analysis of the contractile myofilaments. Journal of the American College of Cardiology, 39, 963–969.CrossRefPubMed
36.
Zurück zum Zitat Chokshi, A., Drosatos, K., Cheema, F. H., Ji, R., Khawaja, T., Yu, S., Kato, T., Khan, R., Takayama, H., Knoll, R., Milting, H., Chung, C. S., Jorde, U., Naka, Y., Mancini, D. M., Goldberg, I. J., & Schulze, P. C. (2012). Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation, 125, 2844–2853.CrossRefPubMedPubMedCentral Chokshi, A., Drosatos, K., Cheema, F. H., Ji, R., Khawaja, T., Yu, S., Kato, T., Khan, R., Takayama, H., Knoll, R., Milting, H., Chung, C. S., Jorde, U., Naka, Y., Mancini, D. M., Goldberg, I. J., & Schulze, P. C. (2012). Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation, 125, 2844–2853.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Gupte, A. A., Hamilton, D. J., Cordero-Reyes, A. M., Youker, K. A., Yin, Z., Estep, J. D., Stevens, R. D., Wenner, B., Ilkayeva, O., Loebe, M., Peterson, L. E., Lyon, C. J., Wong, S. T., Newgard, C. B., Torre-Amione, G., Taegtmeyer, H., & Hsueh, W. A. (2014). Mechanical unloading promotes myocardial energy recovery in human heart failure. Circulation. Cardiovascular Genetics, 7, 266–276.CrossRefPubMedPubMedCentral Gupte, A. A., Hamilton, D. J., Cordero-Reyes, A. M., Youker, K. A., Yin, Z., Estep, J. D., Stevens, R. D., Wenner, B., Ilkayeva, O., Loebe, M., Peterson, L. E., Lyon, C. J., Wong, S. T., Newgard, C. B., Torre-Amione, G., Taegtmeyer, H., & Hsueh, W. A. (2014). Mechanical unloading promotes myocardial energy recovery in human heart failure. Circulation. Cardiovascular Genetics, 7, 266–276.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Savvatis, K., Schultheiss, H. P., & Tschope, C. (2015). Endomyocardial biopsy and ultrastructural changes in dilated cardiomyopathy: taking a ‘deeper’ look into patients’ prognosis. European Heart Journal, 36, 708–710.CrossRefPubMed Savvatis, K., Schultheiss, H. P., & Tschope, C. (2015). Endomyocardial biopsy and ultrastructural changes in dilated cardiomyopathy: taking a ‘deeper’ look into patients’ prognosis. European Heart Journal, 36, 708–710.CrossRefPubMed
39.
Zurück zum Zitat Van Linthout, S., & Tschope, C. (2017). Lost in markers? Time for phenomics and phenomapping in dilated cardiomyopathy. European Journal of Heart Failure, 19, 499–501.CrossRefPubMed Van Linthout, S., & Tschope, C. (2017). Lost in markers? Time for phenomics and phenomapping in dilated cardiomyopathy. European Journal of Heart Failure, 19, 499–501.CrossRefPubMed
40.
Zurück zum Zitat Neubauer, S. (2007). The failing heart--an engine out of fuel. The New England Journal of Medicine, 356, 1140–1151.CrossRefPubMed Neubauer, S. (2007). The failing heart--an engine out of fuel. The New England Journal of Medicine, 356, 1140–1151.CrossRefPubMed
41.
Zurück zum Zitat Wang, Y., Li, C., Chuo, W., Liu, Z., Ouyang, Y., Li, D., Han, J., Wu, Y., Guo, S., & Wang, W. (2013). Integrated proteomic and metabolomic analysis reveals the NADH-mediated TCA cycle and energy metabolism disorders based on a new model of chronic progressive heart failure. Molecular BioSystems, 9, 3135–3145.CrossRefPubMed Wang, Y., Li, C., Chuo, W., Liu, Z., Ouyang, Y., Li, D., Han, J., Wu, Y., Guo, S., & Wang, W. (2013). Integrated proteomic and metabolomic analysis reveals the NADH-mediated TCA cycle and energy metabolism disorders based on a new model of chronic progressive heart failure. Molecular BioSystems, 9, 3135–3145.CrossRefPubMed
42.
Zurück zum Zitat Sheeran, F. L., & Pepe, S. (2017). Mitochondrial bioenergetics and dysfunction in failing heart. Advances in Experimental Medicine and Biology, 982, 65–80.CrossRefPubMed Sheeran, F. L., & Pepe, S. (2017). Mitochondrial bioenergetics and dysfunction in failing heart. Advances in Experimental Medicine and Biology, 982, 65–80.CrossRefPubMed
43.
Zurück zum Zitat Diakos, N. A., Navankasattusas, S., Abel, E. D., Rutter, J., McCreath, L., Ferrin, P., McKellar, S. H., Miller, D. V., Park, S. Y., Richardson, R. S., Deberardinis, R., Cox, J. E., Kfoury, A. G., Selzman, C. H., Stehlik, J., Fang, J. C., Li, D. Y., & Drakos, S. G. (2016). Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: Implications for cardiac reloading and conditioning. JACC Basic Transl Sci, 1, 432–444.CrossRefPubMedPubMedCentral Diakos, N. A., Navankasattusas, S., Abel, E. D., Rutter, J., McCreath, L., Ferrin, P., McKellar, S. H., Miller, D. V., Park, S. Y., Richardson, R. S., Deberardinis, R., Cox, J. E., Kfoury, A. G., Selzman, C. H., Stehlik, J., Fang, J. C., Li, D. Y., & Drakos, S. G. (2016). Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: Implications for cardiac reloading and conditioning. JACC Basic Transl Sci, 1, 432–444.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Fiser, S. M., Tribble, C. G., Kaza, A. K., Long, S. M., Zacour, R. K., Kern, J. A., & Kron, I. L. (2001). When to discontinue extracorporeal membrane oxygenation for postcardiotomy support. The Annals of Thoracic Surgery, 71, 210–214.CrossRefPubMed Fiser, S. M., Tribble, C. G., Kaza, A. K., Long, S. M., Zacour, R. K., Kern, J. A., & Kron, I. L. (2001). When to discontinue extracorporeal membrane oxygenation for postcardiotomy support. The Annals of Thoracic Surgery, 71, 210–214.CrossRefPubMed
45.
Zurück zum Zitat Wei, X., Li, T., Hagen, B., Zhang, P., Sanchez, P. G., Williams, K., Li, S., Bianchi, G., Son, H. S., Wu, C., DeFilippi, C., Xu, K., Lederer, W. J., Wu, Z. J., & Griffith, B. P. (2013). Short-term mechanical unloading with left ventricular assist devices after acute myocardial infarction conserves calcium cycling and improves heart function. JACC. Cardiovascular Interventions, 6, 406–415.CrossRefPubMedPubMedCentral Wei, X., Li, T., Hagen, B., Zhang, P., Sanchez, P. G., Williams, K., Li, S., Bianchi, G., Son, H. S., Wu, C., DeFilippi, C., Xu, K., Lederer, W. J., Wu, Z. J., & Griffith, B. P. (2013). Short-term mechanical unloading with left ventricular assist devices after acute myocardial infarction conserves calcium cycling and improves heart function. JACC. Cardiovascular Interventions, 6, 406–415.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Watanabe, S., Fish, K., Kovacic, J. C., Bikou, O., Leonardson, L., Nomoto, K., Aguero, J., Kapur, N. K., Hajjar, R. J., Ishikawa, K. (2018). Left ventricular unloading using an Impella CP improves coronary flow and infarct zone perfusion in ischemic heart failure. Journal of the American Heart Association, 7. Watanabe, S., Fish, K., Kovacic, J. C., Bikou, O., Leonardson, L., Nomoto, K., Aguero, J., Kapur, N. K., Hajjar, R. J., Ishikawa, K. (2018). Left ventricular unloading using an Impella CP improves coronary flow and infarct zone perfusion in ischemic heart failure. Journal of the American Heart Association, 7.
47.
Zurück zum Zitat Van Linthout, S., Tschope, C. (2018). Viral myocarditis: a prime example for endomyocardial biopsy-guided diagnosis and therapy. Current Opinion in Cardiology. Van Linthout, S., Tschope, C. (2018). Viral myocarditis: a prime example for endomyocardial biopsy-guided diagnosis and therapy. Current Opinion in Cardiology.
Metadaten
Titel
Mechanical Unloading by Fulminant Myocarditis: LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA Concepts
verfasst von
Carsten Tschöpe
Sophie Van Linthout
Oliver Klein
Thomas Mairinger
Florian Krackhardt
Evgenij V. Potapov
Gunther Schmidt
Daniel Burkhoff
Burkert Pieske
Frank Spillmann
Publikationsdatum
06.08.2018
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 2/2019
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-018-9820-2

Weitere Artikel der Ausgabe 2/2019

Journal of Cardiovascular Translational Research 2/2019 Zur Ausgabe

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.