Skip to main content
Erschienen in: Translational Stroke Research 6/2016

30.06.2016 | Commentary

Intraventricular Hemorrhage: the Role of Blood Components in Secondary Injury and Hydrocephalus

verfasst von: Thomas Garton, Richard F. Keep, D. Andrew Wilkinson, Jennifer M. Strahle, Ya Hua, Hugh J. L. Garton, Guohua Xi

Erschienen in: Translational Stroke Research | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Excerpt

Intraventricular hemorrhage (IVH) is characterized by an influx of blood into the ventricles of the brain. It has a highly morbid prognosis and develops in more than 12,000 premature infants every year in the USA [1, 2]. Within the last two decades, about 31 % of successfully resuscitated very preterm infants—born prior to 30-week gestational age—experienced IVH, one third of which were of grade 3 or 4 severity [3]. Furthermore, the incidence of severe IVH has increased over the last 20 years. In addition to the severe neurological deficits associated with the disease, high-grade IVH can lead to post-hemorrhagic hydrocephalus (PHH), with 48 % of patients sustaining grades 3 and 4 IVH developing PHH. When combined, IVH-PHH is a dauntingly critical condition, and one whose pathology is not completely understood. …
Literatur
1.
Zurück zum Zitat Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67(1):1–8. Pubmed Central PMCID: 2799187, Epub 2009/10/10. eng.PubMedPubMedCentralCrossRef Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67(1):1–8. Pubmed Central PMCID: 2799187, Epub 2009/10/10. eng.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res. 2012;3 Suppl 1:25–38. Pubmed Central PMCID: 3750748.PubMedPubMedCentralCrossRef Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res. 2012;3 Suppl 1:25–38. Pubmed Central PMCID: 3750748.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Radic JA, Vincer M, McNeely PD. Temporal trends of intraventricular hemorrhage of prematurity in Nova Scotia from 1993 to 2012. J Neurosurg Pediatr. 2015;15(6):573–9.PubMedCrossRef Radic JA, Vincer M, McNeely PD. Temporal trends of intraventricular hemorrhage of prematurity in Nova Scotia from 1993 to 2012. J Neurosurg Pediatr. 2015;15(6):573–9.PubMedCrossRef
4.
Zurück zum Zitat Schlunk F, Greenberg SM. The pathophysiology of intracerebral hemorrhage formation and expansion. Transl Stroke Res. 2015;6(4):257–63.PubMedCrossRef Schlunk F, Greenberg SM. The pathophysiology of intracerebral hemorrhage formation and expansion. Transl Stroke Res. 2015;6(4):257–63.PubMedCrossRef
6.
Zurück zum Zitat Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral hemorrhage. Lancet Neurol. 2006;5(1):53–63.PubMedCrossRef Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral hemorrhage. Lancet Neurol. 2006;5(1):53–63.PubMedCrossRef
8.
Zurück zum Zitat Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26(11):1341–53. Epub 2006/02/17. eng.PubMedCrossRef Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26(11):1341–53. Epub 2006/02/17. eng.PubMedCrossRef
9.
Zurück zum Zitat Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3(5):256–63. Epub 2007/05/05. eng.PubMedCrossRef Macdonald RL, Pluta RM, Zhang JH. Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol. 2007;3(5):256–63. Epub 2007/05/05. eng.PubMedCrossRef
10.
Zurück zum Zitat Tso MK, Macdonald RL. Subarachnoid hemorrhage: a review of experimental studies on the microcirculation and the neurovascular unit. Transl Stroke Res. 2014;5(2):174–89.PubMedCrossRef Tso MK, Macdonald RL. Subarachnoid hemorrhage: a review of experimental studies on the microcirculation and the neurovascular unit. Transl Stroke Res. 2014;5(2):174–89.PubMedCrossRef
11.
Zurück zum Zitat Bhattathiri PS, Gregson B, Prasad KS, Mendelow AD. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial. Acta Neurochir Suppl. 2006;96:65–8.PubMedCrossRef Bhattathiri PS, Gregson B, Prasad KS, Mendelow AD. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial. Acta Neurochir Suppl. 2006;96:65–8.PubMedCrossRef
12.
Zurück zum Zitat Hanley DF. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke. 2009;40(4):1533–8. Pubmed Central PMCID: 2744212, Epub 2009/02/28. eng.PubMedPubMedCentralCrossRef Hanley DF. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke. 2009;40(4):1533–8. Pubmed Central PMCID: 2744212, Epub 2009/02/28. eng.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Rosen D, Macdonald R, Huo D, Goldenberg F, Novakovic R, Frank J, et al. Intraventricular hemorrhage from ruptured aneurysm: clinical characteristics, complications, and outcomes in a large, prospective, multicenter study population. J Neurosurg. 2007;107(2):261–5.PubMedCrossRef Rosen D, Macdonald R, Huo D, Goldenberg F, Novakovic R, Frank J, et al. Intraventricular hemorrhage from ruptured aneurysm: clinical characteristics, complications, and outcomes in a large, prospective, multicenter study population. J Neurosurg. 2007;107(2):261–5.PubMedCrossRef
14.
Zurück zum Zitat Zhao J, Chen Z, Xi G, Keep RF, Hua Y. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res. 2014;5:586–94.PubMedPubMedCentralCrossRef Zhao J, Chen Z, Xi G, Keep RF, Hua Y. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res. 2014;5:586–94.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Lee J, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain following subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab. 2010;30(11):1793–803.PubMedPubMedCentralCrossRef Lee J, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain following subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab. 2010;30(11):1793–803.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–31. Epub 2012/06/16. eng.PubMedCrossRef Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–31. Epub 2012/06/16. eng.PubMedCrossRef
18.
Zurück zum Zitat Xiong XY, Wang J, Qian ZM, Yang QW. Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res. 2014;5(4):429–41.PubMedCrossRef Xiong XY, Wang J, Qian ZM, Yang QW. Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res. 2014;5(4):429–41.PubMedCrossRef
19.
Zurück zum Zitat Gram M, Sveinsdottir S, Cinthio M, Sveinsdottir K, Hansson SR, Morgelin M, et al. Extracellular hemoglobin—mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J Neuroinflammation. 2014;11:200. Pubmed Central PMCID: 4269927.PubMedPubMedCentralCrossRef Gram M, Sveinsdottir S, Cinthio M, Sveinsdottir K, Hansson SR, Morgelin M, et al. Extracellular hemoglobin—mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage. J Neuroinflammation. 2014;11:200. Pubmed Central PMCID: 4269927.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Gram M, Sveinsdottir S, Ruscher K, Hansson SR, Cinthio M, Akerstrom B, et al. Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation. 2013;10:100. Pubmed Central PMCID: 3750409.PubMedPubMedCentralCrossRef Gram M, Sveinsdottir S, Ruscher K, Hansson SR, Cinthio M, Akerstrom B, et al. Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation. 2013;10:100. Pubmed Central PMCID: 3750409.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Garton TP, He Y, Garton HJ, Keep RF, Xi G, Strahle JM. Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Res. 2016;1635:86–94. Pubmed Central PMCID: 4801173.PubMedCrossRef Garton TP, He Y, Garton HJ, Keep RF, Xi G, Strahle JM. Hemoglobin-induced neuronal degeneration in the hippocampus after neonatal intraventricular hemorrhage. Brain Res. 2016;1635:86–94. Pubmed Central PMCID: 4801173.PubMedCrossRef
22.
Zurück zum Zitat Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery. 2014;75(6):696–705. Pubmed Central PMCID: 4237659, discussion 6.PubMedPubMedCentralCrossRef Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery. 2014;75(6):696–705. Pubmed Central PMCID: 4237659, discussion 6.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Sveinsdottir S, Gram M, Cinthio M, Sveinsdottir K, Morgelin M, Ley D. Altered expression of aquaporin 1 and 5 in the choroid plexus following preterm intraventricular hemorrhage. Dev Neurosci. 2014;36(6):542–51.PubMedCrossRef Sveinsdottir S, Gram M, Cinthio M, Sveinsdottir K, Morgelin M, Ley D. Altered expression of aquaporin 1 and 5 in the choroid plexus following preterm intraventricular hemorrhage. Dev Neurosci. 2014;36(6):542–51.PubMedCrossRef
24.
Zurück zum Zitat Direito I, Madeira A, Brito MA, Soveral G. Aquaporin-5: from structure to function and dysfunction in cancer. Cellular and molecular life sciences : CMLS. 2016;73(8):1623–40.PubMedCrossRef Direito I, Madeira A, Brito MA, Soveral G. Aquaporin-5: from structure to function and dysfunction in cancer. Cellular and molecular life sciences : CMLS. 2016;73(8):1623–40.PubMedCrossRef
25.
Zurück zum Zitat Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, et al. Hemoglobin and heme scavenging. IUBMB life. 2005;57(11):749–59.PubMedCrossRef Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E, Beringhelli T, et al. Hemoglobin and heme scavenging. IUBMB life. 2005;57(11):749–59.PubMedCrossRef
26.
Zurück zum Zitat Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988;2(10):2557–68.PubMed Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988;2(10):2557–68.PubMed
27.
Zurück zum Zitat Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab. 2014;34(6):1070–5. Pubmed Central PMCID: 4050252.PubMedPubMedCentralCrossRef Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G. Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab. 2014;34(6):1070–5. Pubmed Central PMCID: 4050252.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res. 2001;49(2):208–12.PubMedCrossRef Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res. 2001;49(2):208–12.PubMedCrossRef
29.
Zurück zum Zitat Chen Q, Tang J, Tan L, Guo J, Tao Y, Li L, et al. Intracerebral hematoma contributes to hydrocephalus after intraventricular hemorrhage via aggravating iron accumulation. Stroke. 2015;46(10):2902–8.PubMedCrossRef Chen Q, Tang J, Tan L, Guo J, Tao Y, Li L, et al. Intracerebral hematoma contributes to hydrocephalus after intraventricular hemorrhage via aggravating iron accumulation. Stroke. 2015;46(10):2902–8.PubMedCrossRef
30.
Zurück zum Zitat Guo J, Chen Q, Tang J, Zhang J, Tao Y, Li L, et al. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res. 2015;1594:115–24.PubMedCrossRef Guo J, Chen Q, Tang J, Zhang J, Tao Y, Li L, et al. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res. 2015;1594:115–24.PubMedCrossRef
31.
Zurück zum Zitat Meng H, Li F, Hu R, Yuan Y, Gong G, Hu S, et al. Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition. Brain Res. 2015;1602:44–52.PubMedCrossRef Meng H, Li F, Hu R, Yuan Y, Gong G, Hu S, et al. Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition. Brain Res. 2015;1602:44–52.PubMedCrossRef
32.
Zurück zum Zitat Galea J, Cruickshank G, Teeling JL, Boche D, Garland P, Perry VH, et al. The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage. J Neurochem. 2012;121(5):785–92. Pubmed Central PMCID: 3412209.PubMedPubMedCentralCrossRef Galea J, Cruickshank G, Teeling JL, Boche D, Garland P, Perry VH, et al. The intrathecal CD163-haptoglobin-hemoglobin scavenging system in subarachnoid hemorrhage. J Neurochem. 2012;121(5):785–92. Pubmed Central PMCID: 3412209.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Kessel I, Leib M, Levy A, Miller-Lotan R, Waisman D, Jacobson E, et al. Does haptoglobin phenotype influence postnatal morbidity in preterm neonates? Am J Perinatol. 2016;33(2):130–5.PubMed Kessel I, Leib M, Levy A, Miller-Lotan R, Waisman D, Jacobson E, et al. Does haptoglobin phenotype influence postnatal morbidity in preterm neonates? Am J Perinatol. 2016;33(2):130–5.PubMed
34.
Zurück zum Zitat Guo F, Hua Y, Wang J, Keep RF, Xi G. Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage. Translational Stroke Research. 2012;3:130–7.PubMedPubMedCentralCrossRef Guo F, Hua Y, Wang J, Keep RF, Xi G. Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage. Translational Stroke Research. 2012;3:130–7.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Cheng Y, Xi G, Jin H, Keep RF, Feng J, Hua Y. Thrombin-induced cerebral hemorrhage: role of protease-activated receptor-1. Transl Stroke Res. 2014;5(4):472–5. Pubmed Central PMCID: 3962522.PubMedCrossRef Cheng Y, Xi G, Jin H, Keep RF, Feng J, Hua Y. Thrombin-induced cerebral hemorrhage: role of protease-activated receptor-1. Transl Stroke Res. 2014;5(4):472–5. Pubmed Central PMCID: 3962522.PubMedCrossRef
36.
Zurück zum Zitat Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407(6801):258–64.PubMedCrossRef Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407(6801):258–64.PubMedCrossRef
37.
Zurück zum Zitat Gao F, Liu F, Chen Z, Hua Y, Keep RF, Xi G. Hydrocephalus after intraventricular hemorrhage: the role of thrombin. J Cereb Blood Flow Metab. 2014;34(3):489–94. Pubmed Central PMCID: 3948129.PubMedCrossRef Gao F, Liu F, Chen Z, Hua Y, Keep RF, Xi G. Hydrocephalus after intraventricular hemorrhage: the role of thrombin. J Cereb Blood Flow Metab. 2014;34(3):489–94. Pubmed Central PMCID: 3948129.PubMedCrossRef
38.
Zurück zum Zitat Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, et al. Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol. 2010;67(4):526–33. Pubmed Central PMCID: 2919346, Epub 2010/05/04. eng.PubMedPubMedCentralCrossRef Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, et al. Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol. 2010;67(4):526–33. Pubmed Central PMCID: 2919346, Epub 2010/05/04. eng.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Gao F, Zheng M, Hua Y, Keep RF, Xi G. Acetazolamide attenuates thrombin-induced hydrocephalus. Acta Neurochir Suppl. 2016;121:373–7.PubMed Gao F, Zheng M, Hua Y, Keep RF, Xi G. Acetazolamide attenuates thrombin-induced hydrocephalus. Acta Neurochir Suppl. 2016;121:373–7.PubMed
40.
Zurück zum Zitat Li T, Zhang P, Yuan B, Zhao D, Chen Y, Zhang X. Thrombin-induced TGF-beta1 pathway: a cause of communicating hydrocephalus post subarachnoid hemorrhage. Int J Mol Med. 2013;31(3):660–6.PubMed Li T, Zhang P, Yuan B, Zhao D, Chen Y, Zhang X. Thrombin-induced TGF-beta1 pathway: a cause of communicating hydrocephalus post subarachnoid hemorrhage. Int J Mol Med. 2013;31(3):660–6.PubMed
41.
Zurück zum Zitat Whitelaw A, Christie S, Pople I. Transforming growth factor-beta1: a possible signal molecule for posthemorrhagic hydrocephalus? Pediatr Res. 1999;46(5):576–80.PubMedCrossRef Whitelaw A, Christie S, Pople I. Transforming growth factor-beta1: a possible signal molecule for posthemorrhagic hydrocephalus? Pediatr Res. 1999;46(5):576–80.PubMedCrossRef
42.
Zurück zum Zitat Aojula A, Botfield H, McAllister 2nd JP, Gonzalez AM, Abdullah O, Logan A, et al. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus. Fluids and barriers of the CNS. 2016;13(1):9. Pubmed Central PMCID: 4888658.PubMedPubMedCentralCrossRef Aojula A, Botfield H, McAllister 2nd JP, Gonzalez AM, Abdullah O, Logan A, et al. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus. Fluids and barriers of the CNS. 2016;13(1):9. Pubmed Central PMCID: 4888658.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Botfield H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, McAllister 2nd JP, et al. Decorin prevents the development of juvenile communicating hydrocephalus. Brain. 2013;136(Pt 9):2842–58.PubMedCrossRef Botfield H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, McAllister 2nd JP, et al. Decorin prevents the development of juvenile communicating hydrocephalus. Brain. 2013;136(Pt 9):2842–58.PubMedCrossRef
44.
Zurück zum Zitat Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun. 2012;3:1227. Pubmed Central PMCID: 3514498.PubMedPubMedCentralCrossRef Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun. 2012;3:1227. Pubmed Central PMCID: 3514498.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Ryu JK, Petersen MA, Murray SG, Baeten KM, Meyer-Franke A, Chan JP, et al. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun. 2015;6:8164. Pubmed Central PMCID: 4579523.PubMedPubMedCentralCrossRef Ryu JK, Petersen MA, Murray SG, Baeten KM, Meyer-Franke A, Chan JP, et al. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun. 2015;6:8164. Pubmed Central PMCID: 4579523.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Zhao X, Sun G, Zhang H, Ting SM, Song S, Gonzales N, et al. Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage. Transl Stroke Res. 2014;5(5):554–61.PubMedCrossRef Zhao X, Sun G, Zhang H, Ting SM, Song S, Gonzales N, et al. Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage. Transl Stroke Res. 2014;5(5):554–61.PubMedCrossRef
47.
Zurück zum Zitat Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908. Epub 2006/10/13. eng.PubMed Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908. Epub 2006/10/13. eng.PubMed
48.
Zurück zum Zitat Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl Stroke Res. 2015;6(6):407–9. Pubmed Central PMCID: 4628553.PubMedCrossRef Zhao H, Garton T, Keep RF, Hua Y, Xi G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl Stroke Res. 2015;6(6):407–9. Pubmed Central PMCID: 4628553.PubMedCrossRef
49.
Zurück zum Zitat Georgiadis P, Xu H, Chua C, Hu F, Collins L, Huynh C, et al. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke. 2008;39(12):3378–88.PubMedCrossRef Georgiadis P, Xu H, Chua C, Hu F, Collins L, Huynh C, et al. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke. 2008;39(12):3378–88.PubMedCrossRef
50.
Zurück zum Zitat Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M. Microglia activation in the extremely preterm human brain. Pediatr Res. 2013;73(3):301–9.PubMedCrossRef Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M. Microglia activation in the extremely preterm human brain. Pediatr Res. 2013;73(3):301–9.PubMedCrossRef
51.
Zurück zum Zitat Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31(8):318–24. Pubmed Central PMCID: 2930213.PubMedPubMedCentralCrossRef Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31(8):318–24. Pubmed Central PMCID: 2930213.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Yeatts SD, Palesch YY, Moy CS, Selim M. High dose deferoxamine in intracerebral hemorrhage (HI-DEF) trial: rationale, design, and methods. Neurocrit Care. 2013;19(2):257–66. Pubmed Central PMCID: 3932442.PubMedPubMedCentralCrossRef Yeatts SD, Palesch YY, Moy CS, Selim M. High dose deferoxamine in intracerebral hemorrhage (HI-DEF) trial: rationale, design, and methods. Neurocrit Care. 2013;19(2):257–66. Pubmed Central PMCID: 3932442.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Christian EA, Jin DL, Attenello F, Wen T, Cen S, Mack WJ, et al. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J Neurosurg Pediatr. 2016;17(3):260–9.PubMedCrossRef Christian EA, Jin DL, Attenello F, Wen T, Cen S, Mack WJ, et al. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J Neurosurg Pediatr. 2016;17(3):260–9.PubMedCrossRef
Metadaten
Titel
Intraventricular Hemorrhage: the Role of Blood Components in Secondary Injury and Hydrocephalus
verfasst von
Thomas Garton
Richard F. Keep
D. Andrew Wilkinson
Jennifer M. Strahle
Ya Hua
Hugh J. L. Garton
Guohua Xi
Publikationsdatum
30.06.2016
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 6/2016
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-016-0480-8

Weitere Artikel der Ausgabe 6/2016

Translational Stroke Research 6/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.