Skip to main content
Erschienen in: Cellular Oncology 3/2016

23.03.2016 | Review

Altered primary chromatin structures and their implications in cancer development

verfasst von: Angelo Ferraro

Erschienen in: Cellular Oncology | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Background

Cancer development is a complex process involving both genetic and epigenetic changes. Genetic changes in oncogenes and tumor-suppressor genes are generally considered as primary causes, since these genes may directly regulate cellular growth. In addition, it has been found that changes in epigenetic factors, through mutation or altered gene expression, may contribute to cancer development. In the nucleus of eukaryotic cells DNA and histone proteins form a structure called chromatin which consists of nucleosomes that, like beads on a string, are aligned along the DNA strand. Modifications in chromatin structure are essential for cell type-specific activation or repression of gene transcription, as well as other processes such as DNA repair, DNA replication and chromosome segregation. Alterations in epigenetic factors involved in chromatin dynamics may accelerate cell cycle progression and, ultimately, result in malignant transformation. Abnormal expression of remodeler and modifier enzymes, as well as histone variants, may confer to cancer cells the ability to reprogram their genomes and to yield, maintain or exacerbate malignant hallmarks. At the end, genetic and epigenetic alterations that are encountered in cancer cells may culminate in chromatin changes that may, by altering the quantity and quality of gene expression, promote cancer development.

Methods

During the last decade a vast number of studies has uncovered epigenetic abnormalities that are associated with the (anomalous) packaging and remodeling of chromatin in cancer genomes. In this review I will focus on recently published work dealing with alterations in the primary structure of chromatin resulting from imprecise arrangements of nucleosomes along DNA, and its functional implications for cancer development.

Conclusions

The primary chromatin structure is regulated by a variety of epigenetic mechanisms that may be deregulated through gene mutations and/or gene expression alterations. In recent years, it has become evident that changes in chromatin structure may coincide with the occurrence of cancer hallmarks. The functional interrelationships between such epigenetic alterations and cancer development are just becoming manifest and, therefore, the oncology community should continue to explore the molecular mechanisms governing the primary chromatin structure, both in normal and in cancer cells, in order to improve future approaches for cancer detection, prevention and therapy, as also for circumventing drug resistance.
Literatur
1.
Zurück zum Zitat M.B. Dhiab, S. Ziadi, S. Mestiri, R.B. Gacem, F. Ksiaa, M. Trimeche, DNA methylation patterns in EBV-positive and EBV-negative Hodgkin lymphomas. Cell. Oncol. 38, 453–462 (2015)CrossRef M.B. Dhiab, S. Ziadi, S. Mestiri, R.B. Gacem, F. Ksiaa, M. Trimeche, DNA methylation patterns in EBV-positive and EBV-negative Hodgkin lymphomas. Cell. Oncol. 38, 453–462 (2015)CrossRef
2.
Zurück zum Zitat C.B. Moelans, E.J. Vlug, C. Ercan, P. Bult, H. Buerger, G. Cserni, P.J. van Diest, P.W. Derksen, Methylation biomarkers for pleomorphic lobular breast cancer – a short report. Cell. Oncol. 38, 397–405 (2015)CrossRef C.B. Moelans, E.J. Vlug, C. Ercan, P. Bult, H. Buerger, G. Cserni, P.J. van Diest, P.W. Derksen, Methylation biomarkers for pleomorphic lobular breast cancer – a short report. Cell. Oncol. 38, 397–405 (2015)CrossRef
3.
Zurück zum Zitat Y. You, W. Yang, X. Qin, F. Wang, H. Li, C. Lin, W. Li, C. Gu, Y. Zhang, Y. Ran, ECRG4 acts as a tumor suppressor and as a determinant of chemotherapy resistance in human nasopharyngeal carcinoma. Cell. Oncol. 38, 205–214 (2015)CrossRef Y. You, W. Yang, X. Qin, F. Wang, H. Li, C. Lin, W. Li, C. Gu, Y. Zhang, Y. Ran, ECRG4 acts as a tumor suppressor and as a determinant of chemotherapy resistance in human nasopharyngeal carcinoma. Cell. Oncol. 38, 205–214 (2015)CrossRef
4.
Zurück zum Zitat C. Charfi, E. Edouard, E. Rassart, Identification of GPM6A and GPM6B as potential new human lymphoid leukemia-associated oncogenes. Cell. Oncol. 37, 179–191 (2014)CrossRef C. Charfi, E. Edouard, E. Rassart, Identification of GPM6A and GPM6B as potential new human lymphoid leukemia-associated oncogenes. Cell. Oncol. 37, 179–191 (2014)CrossRef
5.
Zurück zum Zitat C. Yu, M. Wang, Z. Li, J. Xiao, F. Peng, X. Guo, Y. Deng, J. Jiang, C. Sun, MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell. Oncol. 38, 173–1781 (2015)CrossRef C. Yu, M. Wang, Z. Li, J. Xiao, F. Peng, X. Guo, Y. Deng, J. Jiang, C. Sun, MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1. Cell. Oncol. 38, 173–1781 (2015)CrossRef
6.
Zurück zum Zitat A. Valouev, S.M. Johnson, S.D. Boyd, C.L. Smith, A.Z. Fire, A. Sidow, Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011)PubMedPubMedCentralCrossRef A. Valouev, S.M. Johnson, S.D. Boyd, C.L. Smith, A.Z. Fire, A. Sidow, Determinants of nucleosome organization in primary human cells. Nature 474, 516–520 (2011)PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat P.B. Becker, W. Horz, ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002)PubMedCrossRef P.B. Becker, W. Horz, ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002)PubMedCrossRef
9.
Zurück zum Zitat A. Flaus, D.M. Martin, G.J. Barton, T. Owen-Hughes, Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006)PubMedPubMedCentralCrossRef A. Flaus, D.M. Martin, G.J. Barton, T. Owen-Hughes, Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006)PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat C.B. Gerhold, S.M. Gasser, INO80 and SWR complexes: relating structure to function in chromatin remodeling. Trends Cell Biol. 24, 619–631 (2014)PubMedCrossRef C.B. Gerhold, S.M. Gasser, INO80 and SWR complexes: relating structure to function in chromatin remodeling. Trends Cell Biol. 24, 619–631 (2014)PubMedCrossRef
11.
Zurück zum Zitat C.R. Clapier, B.R. Cairns, The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009)PubMedCrossRef C.R. Clapier, B.R. Cairns, The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009)PubMedCrossRef
12.
13.
Zurück zum Zitat Y. Cai, J. Jin, A.J. Gottschalk, T. Yao, J.W. Conaway, R.C. Conaway, Purification and assay of the human INO80 and SRCAP chromatin remodeling complexes. Methods 40, 312–317 (2006)PubMedPubMedCentralCrossRef Y. Cai, J. Jin, A.J. Gottschalk, T. Yao, J.W. Conaway, R.C. Conaway, Purification and assay of the human INO80 and SRCAP chromatin remodeling complexes. Methods 40, 312–317 (2006)PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat K. Dennis, T. Fan, T. Geiman, Q. Yan, K. Muegge, Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15, 2940–2944 (2001)PubMedPubMedCentralCrossRef K. Dennis, T. Fan, T. Geiman, Q. Yan, K. Muegge, Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15, 2940–2944 (2001)PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat S. Awad, D. Ryan, P. Prochasson, T. Owen-Hughes, A.H. Hassan, The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme. J. Biol. Chem. 285, 9477–9484 (2010)PubMedPubMedCentralCrossRef S. Awad, D. Ryan, P. Prochasson, T. Owen-Hughes, A.H. Hassan, The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme. J. Biol. Chem. 285, 9477–9484 (2010)PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat T. Costelloe, R. Louge, N. Tomimatsu, B. Mukherjee, E. Martini, B. Khadaroo, K. Dubois, W.W. Wiegant, A. Thierry, S. Burma, H. van Attikum, B. Llorente, The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489, 581–584 (2012)PubMedPubMedCentralCrossRef T. Costelloe, R. Louge, N. Tomimatsu, B. Mukherjee, E. Martini, B. Khadaroo, K. Dubois, W.W. Wiegant, A. Thierry, S. Burma, H. van Attikum, B. Llorente, The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 489, 581–584 (2012)PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat A. Gonzalez-Perez, A. Jene-Sanz, N. Lopez-Bigas, The mutational landscape of chromatin regulatory factors across 4,623 tumor samples. Genome Biol. 14, r106 (2013)PubMedPubMedCentralCrossRef A. Gonzalez-Perez, A. Jene-Sanz, N. Lopez-Bigas, The mutational landscape of chromatin regulatory factors across 4,623 tumor samples. Genome Biol. 14, r106 (2013)PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat J.A. Biegel, T.M. Busse, B.E. Weissman, SWI/SNF chromatin remodeling complexes and cancer. Am. J. Med. Genet. C: Semin. Med. Genet. 166, 350–366 (2014)CrossRef J.A. Biegel, T.M. Busse, B.E. Weissman, SWI/SNF chromatin remodeling complexes and cancer. Am. J. Med. Genet. C: Semin. Med. Genet. 166, 350–366 (2014)CrossRef
20.
Zurück zum Zitat B.G. Wilson, X. Wang, X. Shen, E.S. McKenna, M.E. Lemieux, Y.J. Cho, E.C. Koellhoffer, S.L. Pomeroy, S.H. Orkin, C.W. Roberts, Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010)PubMedPubMedCentralCrossRef B.G. Wilson, X. Wang, X. Shen, E.S. McKenna, M.E. Lemieux, Y.J. Cho, E.C. Koellhoffer, S.L. Pomeroy, S.H. Orkin, C.W. Roberts, Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010)PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat T. Davoli, A.W. Xu, K.E. Mengwasser, L.M. Sack, J.C. Yoon, P.J. Park, S.J. Elledge, Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013)PubMedPubMedCentralCrossRef T. Davoli, A.W. Xu, K.E. Mengwasser, L.M. Sack, J.C. Yoon, P.J. Park, S.J. Elledge, Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013)PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat J. Clark, P.J. Rocques, A.J. Crew, S. Gill, J. Shipley, A.M. Chan, B.A. Gusterson, C.S. Cooper, Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat. Genet. 7, 502–508 (1994)PubMedCrossRef J. Clark, P.J. Rocques, A.J. Crew, S. Gill, J. Shipley, A.M. Chan, B.A. Gusterson, C.S. Cooper, Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat. Genet. 7, 502–508 (1994)PubMedCrossRef
23.
Zurück zum Zitat M. Ladanyi, C.R. Antonescu, D.H. Leung, J.M. Woodruff, A. Kawai, J.H. Healey, M.F. Brennan, J.A. Bridge, J.R. Neff, F.G. Barr, J.D. Goldsmith, J.S. Brooks, J.R. Goldblum, S.Z. Ali, J. Shipley, C.S. Cooper, C. Fisher, B. Skytting, O. Larsson, Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 62, 135–140 (2002)PubMed M. Ladanyi, C.R. Antonescu, D.H. Leung, J.M. Woodruff, A. Kawai, J.H. Healey, M.F. Brennan, J.A. Bridge, J.R. Neff, F.G. Barr, J.D. Goldsmith, J.S. Brooks, J.R. Goldblum, S.Z. Ali, J. Shipley, C.S. Cooper, C. Fisher, B. Skytting, O. Larsson, Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 62, 135–140 (2002)PubMed
24.
Zurück zum Zitat Z. Jagani, E.L. Mora-Blanco, C.G. Sansam, E.S. McKenna, B. Wilson, D. Chen, J. Klekota, P. Tamayo, P.T. Nguyen, M. Tolstorukov, P.J. Park, Y.J. Cho, K. Hsiao, S. Buonamici, S.L. Pomeroy, J.P. Mesirov, H. Ruffner, T. Bouwmeester, S.J. Luchansky, J. Murtie, J.F. Kelleher, M. Warmuth, W.R. Sellers, C.W. Roberts, M. Dorsch, Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat. Med. 16, 1429–1433 (2010)PubMedCrossRef Z. Jagani, E.L. Mora-Blanco, C.G. Sansam, E.S. McKenna, B. Wilson, D. Chen, J. Klekota, P. Tamayo, P.T. Nguyen, M. Tolstorukov, P.J. Park, Y.J. Cho, K. Hsiao, S. Buonamici, S.L. Pomeroy, J.P. Mesirov, H. Ruffner, T. Bouwmeester, S.J. Luchansky, J. Murtie, J.F. Kelleher, M. Warmuth, W.R. Sellers, C.W. Roberts, M. Dorsch, Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat. Med. 16, 1429–1433 (2010)PubMedCrossRef
25.
Zurück zum Zitat J. Caramel, F. Quignon, O. Delattre, RhoA-dependent regulation of cell migration by the tumor suppressor hSNF5/INI1. Cancer Res. 68, 6154–6161 (2008)PubMedCrossRef J. Caramel, F. Quignon, O. Delattre, RhoA-dependent regulation of cell migration by the tumor suppressor hSNF5/INI1. Cancer Res. 68, 6154–6161 (2008)PubMedCrossRef
26.
Zurück zum Zitat D.F. Corona, J.W. Tamkun, Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113–119 (2004)PubMedCrossRef D.F. Corona, J.W. Tamkun, Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 1677, 113–119 (2004)PubMedCrossRef
27.
28.
Zurück zum Zitat Y. Ye, Y. Xiao, W. Wang, Q. Wang, K. Yearsley, A.A. Wani, Q. Yan, J.X. Gao, B.S. Shetuni, S.H. Barsky, Inhibition of expression of the chromatin remodeling gene, SNF2L, selectively leads to DNA damage, growth inhibition, and cancer cell death. Mol. Cancer Res. 7, 1984–1999 (2009)PubMedCrossRef Y. Ye, Y. Xiao, W. Wang, Q. Wang, K. Yearsley, A.A. Wani, Q. Yan, J.X. Gao, B.S. Shetuni, S.H. Barsky, Inhibition of expression of the chromatin remodeling gene, SNF2L, selectively leads to DNA damage, growth inhibition, and cancer cell death. Mol. Cancer Res. 7, 1984–1999 (2009)PubMedCrossRef
29.
Zurück zum Zitat Q. Jin, X. Mao, B. Li, S. Guan, F. Yao, F. Jin, Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumor Biol. 36, 1895–1902 (2015)CrossRef Q. Jin, X. Mao, B. Li, S. Guan, F. Yao, F. Jin, Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumor Biol. 36, 1895–1902 (2015)CrossRef
30.
Zurück zum Zitat F.M. Fang, C.F. Li, H.Y. Huang, M.T. Lai, C.M. Chen, I.W. Chiu, T.L. Wang, F.J. Tsai, I.M. Shih, J.J. Sheu, Overexpression of a chromatin remodeling factor, RSF-1/HBXAP, correlates with aggressive oral squamous cell carcinoma. Am. J. Pathol. 178, 2407–2415 (2011)PubMedPubMedCentralCrossRef F.M. Fang, C.F. Li, H.Y. Huang, M.T. Lai, C.M. Chen, I.W. Chiu, T.L. Wang, F.J. Tsai, I.M. Shih, J.J. Sheu, Overexpression of a chromatin remodeling factor, RSF-1/HBXAP, correlates with aggressive oral squamous cell carcinoma. Am. J. Pathol. 178, 2407–2415 (2011)PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat J.J. Sheu, B. Guan, J.H. Choi, A. Lin, C.H. Lee, Y.T. Hsiao, T.L. Wang, F.J. Tsai, I.M. Shih, Rsf-1, a chromatin remodeling protein, induces DNA damage and promotes genomic instability. J. Biol. Chem. 285, 38260–38269 (2010)PubMedPubMedCentralCrossRef J.J. Sheu, B. Guan, J.H. Choi, A. Lin, C.H. Lee, Y.T. Hsiao, T.L. Wang, F.J. Tsai, I.M. Shih, Rsf-1, a chromatin remodeling protein, induces DNA damage and promotes genomic instability. J. Biol. Chem. 285, 38260–38269 (2010)PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat J.J. Sheu, J.H. Choi, I. Yildiz, F.J. Tsai, Y. Shaul, T.L. Wang, I.M. Shih, The roles of human sucrose nonfermenting protein 2 homologue in the tumor-promoting functions of Rsf-1. Cancer Res. 68, 4050–4057 (2008)PubMedPubMedCentralCrossRef J.J. Sheu, J.H. Choi, I. Yildiz, F.J. Tsai, Y. Shaul, T.L. Wang, I.M. Shih, The roles of human sucrose nonfermenting protein 2 homologue in the tumor-promoting functions of Rsf-1. Cancer Res. 68, 4050–4057 (2008)PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat I.M. Shih, J.J. Sheu, A. Santillan, K. Nakayama, M.J. Yen, R.E. Bristow, R. Vang, G. Parmigiani, R.J. Kurman, C.G. Trope, B. Davidson, T.L. Wang, Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc. Natl. Acad. Sci. U. S. A. 102, 14004–14009 (2005)PubMedPubMedCentralCrossRef I.M. Shih, J.J. Sheu, A. Santillan, K. Nakayama, M.J. Yen, R.E. Bristow, R. Vang, G. Parmigiani, R.J. Kurman, C.G. Trope, B. Davidson, T.L. Wang, Amplification of a chromatin remodeling gene, Rsf-1/HBXAP, in ovarian carcinoma. Proc. Natl. Acad. Sci. U. S. A. 102, 14004–14009 (2005)PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat M. Eckey, S. Kuphal, T. Straub, P. Rümmele, E. Kremmer, A.K. Bosserhoff, P.B. Becker, Nucleosome remodeler SNF2L suppresses cell proliferation and migration and attenuates Wnt signaling. Mol. Cell. Biol. 32, 2359–2371 (2012)PubMedPubMedCentralCrossRef M. Eckey, S. Kuphal, T. Straub, P. Rümmele, E. Kremmer, A.K. Bosserhoff, P.B. Becker, Nucleosome remodeler SNF2L suppresses cell proliferation and migration and attenuates Wnt signaling. Mol. Cell. Biol. 32, 2359–2371 (2012)PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat R. Kumar, R.A. Wang, R. Bagheri-Yarmand, Emerging roles of MTA family members in human cancers. Mol. Cell. Biol. 30, 30–37 (2003) R. Kumar, R.A. Wang, R. Bagheri-Yarmand, Emerging roles of MTA family members in human cancers. Mol. Cell. Biol. 30, 30–37 (2003)
36.
Zurück zum Zitat A. Mazumdar, R.A. Wang, S.K. Mishra, L. Adam, R. Bagheri-Yarmand, M. Mandal, R.K. Vadlamudi, R. Kumar, Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat. Cell Biol. 3, 30–37 (2001)PubMedCrossRef A. Mazumdar, R.A. Wang, S.K. Mishra, L. Adam, R. Bagheri-Yarmand, M. Mandal, R.K. Vadlamudi, R. Kumar, Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat. Cell Biol. 3, 30–37 (2001)PubMedCrossRef
37.
Zurück zum Zitat M.D. Hofer, A. Menke, F. Genze, P. Gierschik, K. Giehl, Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br. J. Cancer 90, 455–462 (2004)PubMedPubMedCentralCrossRef M.D. Hofer, A. Menke, F. Genze, P. Gierschik, K. Giehl, Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br. J. Cancer 90, 455–462 (2004)PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat A.E. Gururaj, R.R. Singh, S.K. Rayala, C. Holm, P. den Hollander, H. Zhang, S. Balasenthil, A.H. Talukder, G. Landberg, R. Kumar, MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc. Natl. Acad. Sci. USA 103, 6670–6675 (2006). Erratum in: Proc. Natl. Acad. Sci. USA 110, 4147–4148 (2013) A.E. Gururaj, R.R. Singh, S.K. Rayala, C. Holm, P. den Hollander, H. Zhang, S. Balasenthil, A.H. Talukder, G. Landberg, R. Kumar, MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc. Natl. Acad. Sci. USA 103, 6670–6675 (2006). Erratum in: Proc. Natl. Acad. Sci. USA 110, 4147–4148 (2013)
39.
Zurück zum Zitat O. Monni, M. Barlund, S. Mousses, J. Kononen, G. Sauter, M. Heiskanen, P. Paavola, K. Avela, Y. Chen, M.L. Bittner, A. Kallioniemi, Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc. Natl. Acad. Sci. U. S. A. 98, 5711–5716 (2001)PubMedPubMedCentralCrossRef O. Monni, M. Barlund, S. Mousses, J. Kononen, G. Sauter, M. Heiskanen, P. Paavola, K. Avela, Y. Chen, M.L. Bittner, A. Kallioniemi, Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc. Natl. Acad. Sci. U. S. A. 98, 5711–5716 (2001)PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat J. Basta, M. Rauchman, The nucleosome remodeling and deacetylase complex in development and disease. Transl. Res. 165, 36–47 (2015)PubMedCrossRef J. Basta, M. Rauchman, The nucleosome remodeling and deacetylase complex in development and disease. Transl. Res. 165, 36–47 (2015)PubMedCrossRef
41.
Zurück zum Zitat D. Rodríguez, G. Bretones, V. Quesada, N. Villamor, J.R. Arango, A. López-Guillermo, A.J. Ramsay, T. Baumann, P.M. Quirós, A. Navarro, C. Royo, J.I. Martín-Subero, E. Campo, C. López-Otín, Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia. Blood 126, 195–202 (2015)PubMedCrossRef D. Rodríguez, G. Bretones, V. Quesada, N. Villamor, J.R. Arango, A. López-Guillermo, A.J. Ramsay, T. Baumann, P.M. Quirós, A. Navarro, C. Royo, J.I. Martín-Subero, E. Campo, C. López-Otín, Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia. Blood 126, 195–202 (2015)PubMedCrossRef
42.
Zurück zum Zitat Y. Gui, G. Guo, Y. Huang, X. Hu, A. Tang, S. Gao, R. Wu, C. Chen, X. Li, L. Zhou, M. He, Z. Li, X. Sun, W. Jia, J. Chen, S. Yang, F. Zhou, X. Zhao, S. Wan, R. Ye, C. Liang, Z. Liu, P. Huang, C. Liu, H. Jiang, Y. Wang, H. Zheng, L. Sun, X. Liu, Z. Jiang, D. Feng, J. Chen, S. Wu, J. Zou, Z. Zhang, R. Yang, J. Zhao, C. Xu, W. Yin, Z. Guan, J. Ye, H. Zhang, J. Li, K. Kristiansen, M.L. Nickerson, D. Theodorescu, Y. Li, X. Zhang, S. Li, J. Wang, H. Yang, J. Wang, Z. Cai, Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011)PubMedCrossRef Y. Gui, G. Guo, Y. Huang, X. Hu, A. Tang, S. Gao, R. Wu, C. Chen, X. Li, L. Zhou, M. He, Z. Li, X. Sun, W. Jia, J. Chen, S. Yang, F. Zhou, X. Zhao, S. Wan, R. Ye, C. Liang, Z. Liu, P. Huang, C. Liu, H. Jiang, Y. Wang, H. Zheng, L. Sun, X. Liu, Z. Jiang, D. Feng, J. Chen, S. Wu, J. Zou, Z. Zhang, R. Yang, J. Zhao, C. Xu, W. Yin, Z. Guan, J. Ye, H. Zhang, J. Li, K. Kristiansen, M.L. Nickerson, D. Theodorescu, Y. Li, X. Zhang, S. Li, J. Wang, H. Yang, J. Wang, Z. Cai, Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011)PubMedCrossRef
43.
Zurück zum Zitat D. Mouradov, C. Sloggett, R.N. Jorissen, C.G. Love, S. Li, A.W. Burgess, D. Arango, R.L. Strausberg, D. Buchanan, S. Wormald, L. O’Connor, J.L. Wilding, D. Bicknell, I.P. Tomlinson, W.F. Bodmer, J.M. Mariadason, O.M. Sieber, Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 74, 3238–3247 (2014)PubMedCrossRef D. Mouradov, C. Sloggett, R.N. Jorissen, C.G. Love, S. Li, A.W. Burgess, D. Arango, R.L. Strausberg, D. Buchanan, S. Wormald, L. O’Connor, J.L. Wilding, D. Bicknell, I.P. Tomlinson, W.F. Bodmer, J.M. Mariadason, O.M. Sieber, Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 74, 3238–3247 (2014)PubMedCrossRef
44.
Zurück zum Zitat M.S. Kim, N.G. Chung, M.R. Kang, N.J. Yoo, S.H. Lee, Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology 58, 660–668 (2011)PubMedCrossRef M.S. Kim, N.G. Chung, M.R. Kang, N.J. Yoo, S.H. Lee, Genetic and expressional alterations of CHD genes in gastric and colorectal cancers. Histopathology 58, 660–668 (2011)PubMedCrossRef
45.
Zurück zum Zitat F.K. Stanley, S. Moore, A.A. Goodarzi, CHD chromatin remodelling enzymes and the DNA damage response. Mutat. Res. 750, 31–44 (2013)PubMedCrossRef F.K. Stanley, S. Moore, A.A. Goodarzi, CHD chromatin remodelling enzymes and the DNA damage response. Mutat. Res. 750, 31–44 (2013)PubMedCrossRef
46.
Zurück zum Zitat K. Nio, T. Yamashita, H. Okada, M. Kondo, T. Hayashi, Y. Hara, Y. Nomura, S.S. Zeng, M. Yoshida, T. Hayashi, H. Sunagozaka, N. Oishi, M. Honda, S. Kaneko, Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. J. Hepatol. 63, 1164–1172 (2015)PubMedCrossRef K. Nio, T. Yamashita, H. Okada, M. Kondo, T. Hayashi, Y. Hara, Y. Nomura, S.S. Zeng, M. Yoshida, T. Hayashi, H. Sunagozaka, N. Oishi, M. Honda, S. Kaneko, Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma. J. Hepatol. 63, 1164–1172 (2015)PubMedCrossRef
47.
Zurück zum Zitat S. Guillemette, R.W. Serra, M. Peng, J.A. Hayes, P.A. Konstantinopoulos, M.R. Green, S.B. Cantor, Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4. Genes Dev. 29, 489–494 (2015)PubMedPubMedCentralCrossRef S. Guillemette, R.W. Serra, M. Peng, J.A. Hayes, P.A. Konstantinopoulos, M.R. Green, S.B. Cantor, Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4. Genes Dev. 29, 489–494 (2015)PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat M. Le Gallo, A.J. O’Hara, M.L. Rudd, M.E. Urick, N.F. Hansen, N.J. O’Neil, J.C. Price, S. Zhang, B.M. England, A.K. Godwin, D.C. Sgroi, NIH Intramural Sequencing Center (NISC) Comparative Sequencing Program, P. Hieter, J.C. Mullikin, M.J. Merino, D.W. Bell, Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatinremodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310–1315 (2012)PubMedPubMedCentralCrossRef M. Le Gallo, A.J. O’Hara, M.L. Rudd, M.E. Urick, N.F. Hansen, N.J. O’Neil, J.C. Price, S. Zhang, B.M. England, A.K. Godwin, D.C. Sgroi, NIH Intramural Sequencing Center (NISC) Comparative Sequencing Program, P. Hieter, J.C. Mullikin, M.J. Merino, D.W. Bell, Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatinremodeling and ubiquitin ligase complex genes. Nat. Genet. 44, 1310–1315 (2012)PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat G. Sawada, H. Ueo, T. Matsumura, R. Uchi, M. Ishibashi, K. Mima, J. Kurashige, Y. Takahashi, S. Akiyoshi, T. Sudo, K. Sugimachi, Y. Doki, M. Mori, K. Mimori, CHD8 is an independent prognostic indicator that regulates Wnt/β-catenin signaling and the cell cycle in gastric cancer. Oncol. Rep. 30, 1137–1142 (2013)PubMed G. Sawada, H. Ueo, T. Matsumura, R. Uchi, M. Ishibashi, K. Mima, J. Kurashige, Y. Takahashi, S. Akiyoshi, T. Sudo, K. Sugimachi, Y. Doki, M. Mori, K. Mimori, CHD8 is an independent prognostic indicator that regulates Wnt/β-catenin signaling and the cell cycle in gastric cancer. Oncol. Rep. 30, 1137–1142 (2013)PubMed
50.
Zurück zum Zitat L. Wang, S. He, Y. Tu, P. Ji, J. Zong, J. Zhang, F. Feng, J. Zhao, G. Gao, Y. Zhang, Downregulation of chromatin remodeling factor CHD5 is associated with a poor prognosis in human glioma. J. Clin. Neurosci. 20, 958–963 (2013)PubMedCrossRef L. Wang, S. He, Y. Tu, P. Ji, J. Zong, J. Zhang, F. Feng, J. Zhao, G. Gao, Y. Zhang, Downregulation of chromatin remodeling factor CHD5 is associated with a poor prognosis in human glioma. J. Clin. Neurosci. 20, 958–963 (2013)PubMedCrossRef
51.
Zurück zum Zitat A.J. Morrison, J. Highland, N.J. Krogan, A. Arbel-Eden, J.F. Greenblatt, J.E. Haber, X. Shen, INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004)PubMedCrossRef A.J. Morrison, J. Highland, N.J. Krogan, A. Arbel-Eden, J.F. Greenblatt, J.E. Haber, X. Shen, INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004)PubMedCrossRef
52.
Zurück zum Zitat H. van Attikum, O. Fritsch, S.M. Gasser, Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 26, 4113–4125 (2007)PubMedPubMedCentralCrossRef H. van Attikum, O. Fritsch, S.M. Gasser, Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 26, 4113–4125 (2007)PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat M. Papamichos-Chronakis, S. Watanabe, O.J. Rando, C.L. Peterson, Global regulation of H2A. Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200–213 (2011)PubMedPubMedCentralCrossRef M. Papamichos-Chronakis, S. Watanabe, O.J. Rando, C.L. Peterson, Global regulation of H2A. Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200–213 (2011)PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat S. Watanabe, M. Radman-Livaja, O.J. Rando, C.L. Peterson, A histone acetylation switch regulates H2A. Z deposition by the SWR-C remodeling enzyme. Science 340, 195–199 (2013)PubMedPubMedCentralCrossRef S. Watanabe, M. Radman-Livaja, O.J. Rando, C.L. Peterson, A histone acetylation switch regulates H2A. Z deposition by the SWR-C remodeling enzyme. Science 340, 195–199 (2013)PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat A.J. Morrison, X. Shen, Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat. Rev. Mol. Cell Biol. 10, 373–384 (2009) A.J. Morrison, X. Shen, Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat. Rev. Mol. Cell Biol. 10, 373–384 (2009)
57.
Zurück zum Zitat C. Kadoch, D.C. Hargreaves, C. Hodges, L. Elias, L. Ho, J. Ranish, G.R. Crabtree, Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013)PubMedPubMedCentralCrossRef C. Kadoch, D.C. Hargreaves, C. Hodges, L. Elias, L. Ho, J. Ranish, G.R. Crabtree, Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013)PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat A. Raymond, S. Benhamouche, V. Neaud, J. Di Martino, J. Javary, J. Rosenbaum, Reptin regulates DNA double strand breaks repair in human hepatocellular carcinoma. PLoS One 10, e0123333 (2015)PubMedPubMedCentralCrossRef A. Raymond, S. Benhamouche, V. Neaud, J. Di Martino, J. Javary, J. Rosenbaum, Reptin regulates DNA double strand breaks repair in human hepatocellular carcinoma. PLoS One 10, e0123333 (2015)PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat S. Dong, J. Han, H. Chen, T. Liu, M.S. Huen, Y. Yang, C. Guo, J. Huang, The human SRCAP chromatin remodeling complex promotes DNA-end resection. Curr. Biol. 24, 2097–2110 (2014) S. Dong, J. Han, H. Chen, T. Liu, M.S. Huen, Y. Yang, C. Guo, J. Huang, The human SRCAP chromatin remodeling complex promotes DNA-end resection. Curr. Biol. 24, 2097–2110 (2014)
60.
Zurück zum Zitat D.D. Ruhl, J. Jin, Y. Cai, S. Swanson, L. Florens, M.P. Washburn, R.C. Conaway, J.W. Conaway, J.C. Chrivia, Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A. Z into nucleosomes. Biochemistry 45, 5671–5677 (2006)PubMedCrossRef D.D. Ruhl, J. Jin, Y. Cai, S. Swanson, L. Florens, M.P. Washburn, R.C. Conaway, J.W. Conaway, J.C. Chrivia, Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A. Z into nucleosomes. Biochemistry 45, 5671–5677 (2006)PubMedCrossRef
61.
Zurück zum Zitat M.M. Wong, L.K. Cox, J.C. Chrivia, The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A. Z at promoters. J. Biol. Chem. 282, 26132–26139 (2007)PubMedCrossRef M.M. Wong, L.K. Cox, J.C. Chrivia, The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A. Z at promoters. J. Biol. Chem. 282, 26132–26139 (2007)PubMedCrossRef
62.
Zurück zum Zitat A. Slupianek, S. Yerrum, F.F. Safadi, M.A. Monroy, The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J. Cell. Physiol. 224, 369–375 (2010)PubMedCrossRef A. Slupianek, S. Yerrum, F.F. Safadi, M.A. Monroy, The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J. Cell. Physiol. 224, 369–375 (2010)PubMedCrossRef
63.
Zurück zum Zitat T. Bianco-Miotto, K. Chiam, G. Buchanan, S. Jindal, T.K. Day, M. Thomas, M.A. Pickering, M.A. O’Loughlin, N.K. Ryan, W.A. Raymond, L.G. Horvath, J.G. Kench, P.D. Stricker, V.R. Marshall, R.L. Sutherland, S.M. Henshall, W.L. Gerald, H.I. Scher, G.P. Risbridger, J.A. Clements, L.M. Butler, W.D. Tilley, D.J. Horsfall, C. Ricciardelli, Australian Prostate Cancer BioResource, Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol. Biomarkers Prev. 19, 2611–2622 (2010)PubMedCrossRef T. Bianco-Miotto, K. Chiam, G. Buchanan, S. Jindal, T.K. Day, M. Thomas, M.A. Pickering, M.A. O’Loughlin, N.K. Ryan, W.A. Raymond, L.G. Horvath, J.G. Kench, P.D. Stricker, V.R. Marshall, R.L. Sutherland, S.M. Henshall, W.L. Gerald, H.I. Scher, G.P. Risbridger, J.A. Clements, L.M. Butler, W.D. Tilley, D.J. Horsfall, C. Ricciardelli, Australian Prostate Cancer BioResource, Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol. Biomarkers Prev. 19, 2611–2622 (2010)PubMedCrossRef
64.
Zurück zum Zitat V. Patil, J. Pal, K. Somasundaram, Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget 6, 43452–43471 (2015)PubMedPubMedCentral V. Patil, J. Pal, K. Somasundaram, Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget 6, 43452–43471 (2015)PubMedPubMedCentral
65.
Zurück zum Zitat W. Martin-Doyle, D.J. Kwiatkowski, Molecular biology of bladder cancer. Hematol. Oncol. Clin. N. Am. 29, 191–203 (2015)CrossRef W. Martin-Doyle, D.J. Kwiatkowski, Molecular biology of bladder cancer. Hematol. Oncol. Clin. N. Am. 29, 191–203 (2015)CrossRef
66.
Zurück zum Zitat J. Burrage, A. Termanis, A. Geissner, K. Myant, K. Gordon, I. Stancheva, The SNF2 family ATPase LSH promotes phosphorylation of H2AX and efficient repair of DNA double-strand breaks in mammalian cells. J. Cell Sci. 125, 5524–5534 (2012)PubMedPubMedCentralCrossRef J. Burrage, A. Termanis, A. Geissner, K. Myant, K. Gordon, I. Stancheva, The SNF2 family ATPase LSH promotes phosphorylation of H2AX and efficient repair of DNA double-strand breaks in mammalian cells. J. Cell Sci. 125, 5524–5534 (2012)PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Y. Tao, S. Xi, J. Shan, A. Maunakea, A. Che, V. Briones, E.Y. Lee, T. Geiman, J. Huang, R. Stephens, R.M. Leighty, K. Zhao, K. Muegge, Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proc. Natl. Acad. Sci. U. S. A. 108, 5626–5631 (2011)PubMedPubMedCentralCrossRef Y. Tao, S. Xi, J. Shan, A. Maunakea, A. Che, V. Briones, E.Y. Lee, T. Geiman, J. Huang, R. Stephens, R.M. Leighty, K. Zhao, K. Muegge, Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proc. Natl. Acad. Sci. U. S. A. 108, 5626–5631 (2011)PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat J. Ren, V. Briones, S. Barbour, W. Yu, Y. Han, M. Terashima, K. Muegge, The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences. Nucleic Acids Res. 43, 1444–1455 (2015)PubMedPubMedCentralCrossRef J. Ren, V. Briones, S. Barbour, W. Yu, Y. Han, M. Terashima, K. Muegge, The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences. Nucleic Acids Res. 43, 1444–1455 (2015)PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat D.W. Lee, K. Zhang, Z.Q. Ning, E.H. Raabe, S. Tintner, R. Wieland, B.J. Wilkins, J.M. Kim, R.I. Blough, R.J. Arceci, Proliferation-associated SNF2-like gene (PASG): a SNF2 family member altered in leukemia. Cancer Res. 60, 3612–3622 (2000)PubMed D.W. Lee, K. Zhang, Z.Q. Ning, E.H. Raabe, S. Tintner, R. Wieland, B.J. Wilkins, J.M. Kim, R.I. Blough, R.J. Arceci, Proliferation-associated SNF2-like gene (PASG): a SNF2 family member altered in leukemia. Cancer Res. 60, 3612–3622 (2000)PubMed
70.
Zurück zum Zitat M. Yano, M. Ouchida, H. Shigematsu, N. Tanaka, K. Ichimura, K. Kobayashi, Y. Inaki, S. Toyooka, K. Tsukuda, N. Shimizu, K. Shimizu, Tumor-specific exon creation of the HELLS/SMARCA6 gene in non‐small cell lung cancer. Int. J. Cancer 112, 8–13 (2004)PubMedCrossRef M. Yano, M. Ouchida, H. Shigematsu, N. Tanaka, K. Ichimura, K. Kobayashi, Y. Inaki, S. Toyooka, K. Tsukuda, N. Shimizu, K. Shimizu, Tumor-specific exon creation of the HELLS/SMARCA6 gene in non‐small cell lung cancer. Int. J. Cancer 112, 8–13 (2004)PubMedCrossRef
71.
Zurück zum Zitat B. von Eyss, J. Maaskola, S. Memczak, K. Möllmann, A. Schuetz, C. Loddenkemper, M.D. Tanh, A. Otto, K. Muegge, U. Heinemann, N. Rajewsky, U. Ziebold, The SNF2‐like helicase HELLS mediates E2F3‐dependent transcription and cellular transformation. EMBO J. 31, 972–985 (2012)CrossRef B. von Eyss, J. Maaskola, S. Memczak, K. Möllmann, A. Schuetz, C. Loddenkemper, M.D. Tanh, A. Otto, K. Muegge, U. Heinemann, N. Rajewsky, U. Ziebold, The SNF2‐like helicase HELLS mediates E2F3‐dependent transcription and cellular transformation. EMBO J. 31, 972–985 (2012)CrossRef
72.
Zurück zum Zitat C.A. Benavente, D. Finkelstein, D.A. Johnson, J.C. Marine, R. Ashery-Padan, M.A. Dyer, Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget 5, 9594 (2014)PubMedPubMedCentralCrossRef C.A. Benavente, D. Finkelstein, D.A. Johnson, J.C. Marine, R. Ashery-Padan, M.A. Dyer, Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression. Oncotarget 5, 9594 (2014)PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat S.P. Rowbotham, L. Barki, A. Neves-Costa, F. Santos, W. Dean, N. Hawkes, P. Choudhary, W.R. Will, J. Webster, D. Oxley, C.M. Green, P. Varga-Weisz, J.E. Mermoud, Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell 42, 285–296 (2011)PubMedCrossRef S.P. Rowbotham, L. Barki, A. Neves-Costa, F. Santos, W. Dean, N. Hawkes, P. Choudhary, W.R. Will, J. Webster, D. Oxley, C.M. Green, P. Varga-Weisz, J.E. Mermoud, Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell 42, 285–296 (2011)PubMedCrossRef
74.
Zurück zum Zitat C.N. Adra, J.L. Donato, R. Badovinac, F. Syed, R. Kheraj, H. Cai, C. Moran, M.T. Kolker, H. Turner, S. Weremowicz, T. Shirakawa, C.C. Morton, L.E. Schnipper, R. Drews, SMARCAD1, a novel human helicase family-defining member associated with genetic instability: cloning, expression, and mapping to 4q22–q23, a band rich in breakpoints and deletion mutants involved in several human diseases. Genomics 69, 162–173 (2000)PubMedCrossRef C.N. Adra, J.L. Donato, R. Badovinac, F. Syed, R. Kheraj, H. Cai, C. Moran, M.T. Kolker, H. Turner, S. Weremowicz, T. Shirakawa, C.C. Morton, L.E. Schnipper, R. Drews, SMARCAD1, a novel human helicase family-defining member associated with genetic instability: cloning, expression, and mapping to 4q22–q23, a band rich in breakpoints and deletion mutants involved in several human diseases. Genomics 69, 162–173 (2000)PubMedCrossRef
75.
Zurück zum Zitat M. Berg, T.H. Ågesen, E. Thiis-Evensen, M.A. Merok, M.R. Teixeira, M.H. Vatn, A. Nesbakken, R.I. Skotheim, R.A. Lothe, Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol. Cancer 9, 100 (2010)PubMedPubMedCentralCrossRef M. Berg, T.H. Ågesen, E. Thiis-Evensen, M.A. Merok, M.R. Teixeira, M.H. Vatn, A. Nesbakken, R.I. Skotheim, R.A. Lothe, Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Mol. Cancer 9, 100 (2010)PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat C.C. Chung, P.A. Kanetsky, Z. Wang, M.A. Hildebrandt, R. Koster, R.I. Skotheim, C.P. Kratz, C. Turnbull, V.K. Cortessis, A.C. Bakken, D.T. Bishop, M.B. Cook, R.L. Erickson, S.D. Fosså, K.B. Jacobs, L.A. Korde, S.M. Kraggerud, R.A. Lothe, J.T. Loud, N. Rahman, E.C. Skinner, D.C. Thomas, X. Wu, M. Yeager, F.R. Schumacher, M.H. Greene, S.M. Schwartz, K.A. McGlynn, S.J. Chanock, K.L. Nathanson, Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat. Genet. 45, 680–685 (2013)PubMedPubMedCentralCrossRef C.C. Chung, P.A. Kanetsky, Z. Wang, M.A. Hildebrandt, R. Koster, R.I. Skotheim, C.P. Kratz, C. Turnbull, V.K. Cortessis, A.C. Bakken, D.T. Bishop, M.B. Cook, R.L. Erickson, S.D. Fosså, K.B. Jacobs, L.A. Korde, S.M. Kraggerud, R.A. Lothe, J.T. Loud, N. Rahman, E.C. Skinner, D.C. Thomas, X. Wu, M. Yeager, F.R. Schumacher, M.H. Greene, S.M. Schwartz, K.A. McGlynn, S.J. Chanock, K.L. Nathanson, Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat. Genet. 45, 680–685 (2013)PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat E. Cetin, B. Cengiz, E. Gunduz, M. Gunduz, H. Nagatsuka, L. Bekir-Beder, K. Fukushima, D. Pehlivan, N. M.O., K. Nishizaki, K. Shimizu, N. Nagai, Author information Deletion mapping of chromosome 4q22-35 and identification of four frequently deleted regions in head and neck cancers. Neoplasma 55, 299–304 (2007) E. Cetin, B. Cengiz, E. Gunduz, M. Gunduz, H. Nagatsuka, L. Bekir-Beder, K. Fukushima, D. Pehlivan, N. M.O., K. Nishizaki, K. Shimizu, N. Nagai, Author information Deletion mapping of chromosome 4q22-35 and identification of four frequently deleted regions in head and neck cancers. Neoplasma 55, 299–304 (2007)
78.
Zurück zum Zitat L. Tapak, M. Saidijam, M. Sadeghifar, J. Poorolajal, H. Mahjub, Competing risks data analysis with high-dimensional covariates: an application in bladder cancer. Genomics Proteomics Bioinformatics 13, 169–176 (2015)PubMedPubMedCentralCrossRef L. Tapak, M. Saidijam, M. Sadeghifar, J. Poorolajal, H. Mahjub, Competing risks data analysis with high-dimensional covariates: an application in bladder cancer. Genomics Proteomics Bioinformatics 13, 169–176 (2015)PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat G.G. Wang, C.D. Allis, P. Chi, Chromatin remodeling and cancer. Part I: covalent histone modifications. Trends Mol. Med. 13, 363–372 (2007)PubMedCrossRef G.G. Wang, C.D. Allis, P. Chi, Chromatin remodeling and cancer. Part I: covalent histone modifications. Trends Mol. Med. 13, 363–372 (2007)PubMedCrossRef
80.
Zurück zum Zitat M. Brehove, T. Wang, J. North, Y. Luo, S.J. Dreher, J.C. Shimko, J.J. Ottesen, K. Luger, M.G. Poirier, Histone core phosphorylation regulates DNA accessibility. J. Biol. Chem. 290, 22612–22621 (2015)PubMedCrossRef M. Brehove, T. Wang, J. North, Y. Luo, S.J. Dreher, J.C. Shimko, J.J. Ottesen, K. Luger, M.G. Poirier, Histone core phosphorylation regulates DNA accessibility. J. Biol. Chem. 290, 22612–22621 (2015)PubMedCrossRef
81.
Zurück zum Zitat P. Tessarz, T. Kouzarides, Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell. Biol. 15, 703–708 (2014)PubMedCrossRef P. Tessarz, T. Kouzarides, Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell. Biol. 15, 703–708 (2014)PubMedCrossRef
82.
83.
Zurück zum Zitat P. Filippakopoulos, S. Picaud, M. Mangos, T. Keates, J.P. Lambert, D. Barsyte-Lovejoy, Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012)PubMedPubMedCentralCrossRef P. Filippakopoulos, S. Picaud, M. Mangos, T. Keates, J.P. Lambert, D. Barsyte-Lovejoy, Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012)PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat P. Filippakopoulos, S. Knapp, Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014)PubMedCrossRef P. Filippakopoulos, S. Knapp, Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13, 337–356 (2014)PubMedCrossRef
85.
Zurück zum Zitat P. Marks, R.A. Rifkind, V.M. Richon, R. Breslow, T. Miller, W.K. Kelly, Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194–202 (2001)PubMedCrossRef P. Marks, R.A. Rifkind, V.M. Richon, R. Breslow, T. Miller, W.K. Kelly, Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194–202 (2001)PubMedCrossRef
86.
Zurück zum Zitat V.M. Richon, J.P. O’Brien, Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Commentary re: V. Sandor et al., Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res. 8, 718–728 (2002); Clin. Cancer Res. 8, 662–664 (2002) V.M. Richon, J.P. O’Brien, Histone deacetylase inhibitors: a new class of potential therapeutic agents for cancer treatment. Commentary re: V. Sandor et al., Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin. Cancer Res. 8, 718–728 (2002); Clin. Cancer Res. 8, 662–664 (2002)
87.
Zurück zum Zitat K.C. Lakshmaiah, L.A. Jacob, S. Aparna, D. Lokanatha, S.C. Saldanha, Epigenetic therapy of cancer with histone deacetylase inhibitors. J. Cancer Res. Ther. 10, 469–478 (2014)PubMed K.C. Lakshmaiah, L.A. Jacob, S. Aparna, D. Lokanatha, S.C. Saldanha, Epigenetic therapy of cancer with histone deacetylase inhibitors. J. Cancer Res. Ther. 10, 469–478 (2014)PubMed
88.
Zurück zum Zitat C. Cortés, S.C. Kozma, A. Tauler, S. Ambrosio, MYCN concurrence with SAHA-induced cell death in human neuroblastoma cells. Cell. Oncol. 38, 341–352 (2015)CrossRef C. Cortés, S.C. Kozma, A. Tauler, S. Ambrosio, MYCN concurrence with SAHA-induced cell death in human neuroblastoma cells. Cell. Oncol. 38, 341–352 (2015)CrossRef
89.
91.
Zurück zum Zitat G.E. Zentner, S. Henikoff, Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259–266 (2013)PubMedCrossRef G.E. Zentner, S. Henikoff, Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20, 259–266 (2013)PubMedCrossRef
92.
Zurück zum Zitat M.F. Fraga, E. Ballestar, A. Villar-Garea, M. Boix-Chornet, J. Espada, G. Schotta, T. Bonaldi, C. Haydon, S. Ropero, K. Petrie, N.G. Iyer, A. Pérez-Rosado, E. Calvo, J.A. Lopez, A. Cano, M.J. Calasanz, D. Colomer, M.A. Piris, N. Ahn, A. Imhof, C. Caldas, T. Jenuwein, M. Esteller, Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005)PubMedCrossRef M.F. Fraga, E. Ballestar, A. Villar-Garea, M. Boix-Chornet, J. Espada, G. Schotta, T. Bonaldi, C. Haydon, S. Ropero, K. Petrie, N.G. Iyer, A. Pérez-Rosado, E. Calvo, J.A. Lopez, A. Cano, M.J. Calasanz, D. Colomer, M.A. Piris, N. Ahn, A. Imhof, C. Caldas, T. Jenuwein, M. Esteller, Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005)PubMedCrossRef
93.
Zurück zum Zitat M.A. Hahn, A.X. Li, X. Wu, R. Yang, D.A. Drew, D.W. Rosenberg, G.P. Pfeifer, Loss of the polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors. Cancer Res. 74, 3617–3629 (2014)PubMedPubMedCentralCrossRef M.A. Hahn, A.X. Li, X. Wu, R. Yang, D.A. Drew, D.W. Rosenberg, G.P. Pfeifer, Loss of the polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors. Cancer Res. 74, 3617–3629 (2014)PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat S. Bhatnagar, C. Gazin, L. Chamberlain, J. Ou, X. Zhu, J.S. Tushir, C.M. Virbasius, L. Lin, L.J. Zhu, N. Wajapeyee, M.R. Green, TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature 516, 116–120 (2014)PubMedPubMedCentral S. Bhatnagar, C. Gazin, L. Chamberlain, J. Ou, X. Zhu, J.S. Tushir, C.M. Virbasius, L. Lin, L.J. Zhu, N. Wajapeyee, M.R. Green, TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature 516, 116–120 (2014)PubMedPubMedCentral
95.
Zurück zum Zitat A.J. Cole, R. Clifton-Bligh, D.J. Marsh, Histone H2B monoubiquitination: roles to play in human malignancy. Endocr. Relat. Cancer 22, T19–T33 (2015)PubMedCrossRef A.J. Cole, R. Clifton-Bligh, D.J. Marsh, Histone H2B monoubiquitination: roles to play in human malignancy. Endocr. Relat. Cancer 22, T19–T33 (2015)PubMedCrossRef
96.
Zurück zum Zitat M.A. Hahn, K.A. Dickson, S. Jackson, A. Clarkson, A.J. Gill, D.J. Marsh, The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Hum. Mol. Genet. 21, 559–568 (2012)PubMedCrossRef M.A. Hahn, K.A. Dickson, S. Jackson, A. Clarkson, A.J. Gill, D.J. Marsh, The tumor suppressor CDC73 interacts with the ring finger proteins RNF20 and RNF40 and is required for the maintenance of histone 2B monoubiquitination. Hum. Mol. Genet. 21, 559–568 (2012)PubMedCrossRef
97.
Zurück zum Zitat D.B. Seligson, S. Horvath, T. Shi, H. Yu, S. Tze, M. Grunstein, S.K. Kurdistani, Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005)PubMedCrossRef D.B. Seligson, S. Horvath, T. Shi, H. Yu, S. Tze, M. Grunstein, S.K. Kurdistani, Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266 (2005)PubMedCrossRef
98.
Zurück zum Zitat F. Barlési, G. Giaccone, M.I. Gallegos-Ruiz, A. Loundou, S.W. Span, P. Lefesvre, F.A. Kruyt, J.A. Rodriguez, Global histone modifications predict prognosis of resected non small-cell lung cancer. J. Clin. Oncol. 25, 4358–4364 (2007)PubMedCrossRef F. Barlési, G. Giaccone, M.I. Gallegos-Ruiz, A. Loundou, S.W. Span, P. Lefesvre, F.A. Kruyt, J.A. Rodriguez, Global histone modifications predict prognosis of resected non small-cell lung cancer. J. Clin. Oncol. 25, 4358–4364 (2007)PubMedCrossRef
99.
Zurück zum Zitat Y.S. Park, M.Y. Jin, Y.J. Kim, J.H. Yook, B.S. Kim, S.J. Jang, The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann. Surg. Oncol. 15, 1968–1976 (2008)PubMedCrossRef Y.S. Park, M.Y. Jin, Y.J. Kim, J.H. Yook, B.S. Kim, S.J. Jang, The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann. Surg. Oncol. 15, 1968–1976 (2008)PubMedCrossRef
100.
Zurück zum Zitat S.E. Elsheikh, A.R. Green, E.A. Rakha, D.G. Powe, R.A. Ahmed, H.M. Collins, D. Soria, J.M. Garibaldi, C.E. Paish, A.A. Ammar, M.J. Grainge, G.R. Ball, M.K. Abdelghany, L. Martinez-Pomares, D.M. Heery, I.O. Ellis, Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 69, 3802–3809 (2009)PubMedCrossRef S.E. Elsheikh, A.R. Green, E.A. Rakha, D.G. Powe, R.A. Ahmed, H.M. Collins, D. Soria, J.M. Garibaldi, C.E. Paish, A.A. Ammar, M.J. Grainge, G.R. Ball, M.K. Abdelghany, L. Martinez-Pomares, D.M. Heery, I.O. Ellis, Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 69, 3802–3809 (2009)PubMedCrossRef
101.
Zurück zum Zitat K. Zhang, L. Li, M. Zhu, G. Wang, J. Xie, Y. Zhao, E. Fan, L. Xu, E. Li, Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities. J. Proteomics 112, 180–189 (2015)PubMedCrossRef K. Zhang, L. Li, M. Zhu, G. Wang, J. Xie, Y. Zhao, E. Fan, L. Xu, E. Li, Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities. J. Proteomics 112, 180–189 (2015)PubMedCrossRef
102.
Zurück zum Zitat C. Müller-Tidow, H.U. Klein, A. Hascher, F. Isken, L. Tickenbrock, A. Thoennissen, S. Agrawal-Singh, P. Tschanter, C. Disselhoff, Y. Wang, A. Becker, C. Thiede, G. Ehninger, U. zur Stadt, S. Koschmieder, M. Seidl, F.U. Müller, W. Schmitz, P. Schlenke, M. McClelland, W.E. Berdel, M. Dugas, H. Serve, Study Alliance Leukemia, Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 116, 3564–3571 (2010)PubMedPubMedCentralCrossRef C. Müller-Tidow, H.U. Klein, A. Hascher, F. Isken, L. Tickenbrock, A. Thoennissen, S. Agrawal-Singh, P. Tschanter, C. Disselhoff, Y. Wang, A. Becker, C. Thiede, G. Ehninger, U. zur Stadt, S. Koschmieder, M. Seidl, F.U. Müller, W. Schmitz, P. Schlenke, M. McClelland, W.E. Berdel, M. Dugas, H. Serve, Study Alliance Leukemia, Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 116, 3564–3571 (2010)PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat A. Laugesen, K. Helin, Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14, 735–751 (2014)PubMedCrossRef A. Laugesen, K. Helin, Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell 14, 735–751 (2014)PubMedCrossRef
104.
Zurück zum Zitat C. Bödör, V. Grossmann, N. Popov, J. Okosun, C. O’Riain, K. Tan, J. Marzec, S. Araf, J. Wang, A.M. Lee, A. Clear, S. Montoto, J. Matthews, S. Iqbal, H. Rajnai, A. Rosenwald, G. Ott, E. Campo, L.M. Rimsza, E.B. Smeland, W.C. Chan, R.M. Braziel, L.M. Staudt, G. Wright, T.A. Lister, O. Elemento, R. Hills, J.G. Gribben, C. Chelala, A. Matolcsy, A. Kohlmann, T. Haferlach, R.D. Gascoyne, J. Fitzgibbon, EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 122, 3165–3168 (2013)PubMedPubMedCentralCrossRef C. Bödör, V. Grossmann, N. Popov, J. Okosun, C. O’Riain, K. Tan, J. Marzec, S. Araf, J. Wang, A.M. Lee, A. Clear, S. Montoto, J. Matthews, S. Iqbal, H. Rajnai, A. Rosenwald, G. Ott, E. Campo, L.M. Rimsza, E.B. Smeland, W.C. Chan, R.M. Braziel, L.M. Staudt, G. Wright, T.A. Lister, O. Elemento, R. Hills, J.G. Gribben, C. Chelala, A. Matolcsy, A. Kohlmann, T. Haferlach, R.D. Gascoyne, J. Fitzgibbon, EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 122, 3165–3168 (2013)PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat M. Wassef, V. Rodilla, A. Teissandier, B. Zeitouni, N. Gruel, B. Sadacca, M. Irondelle, M. Charruel, B. Ducos, A. Michaud, M. Caron, E. Marangoni, P. Chavrier, C. Le Tourneau, M. Kamal, E. Pasmant, M. Vidaud, N. Servant, F. Reyal, D. Meseure, A. Vincent-Salomon, S. Fre, R. Margueron, Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 29, 2547–2562 (2015)PubMedPubMedCentral M. Wassef, V. Rodilla, A. Teissandier, B. Zeitouni, N. Gruel, B. Sadacca, M. Irondelle, M. Charruel, B. Ducos, A. Michaud, M. Caron, E. Marangoni, P. Chavrier, C. Le Tourneau, M. Kamal, E. Pasmant, M. Vidaud, N. Servant, F. Reyal, D. Meseure, A. Vincent-Salomon, S. Fre, R. Margueron, Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes Dev. 29, 2547–2562 (2015)PubMedPubMedCentral
106.
Zurück zum Zitat I.M. Schaefer, C.D. Fletcher, J.L. Hornick, Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod. Pathol. 29, 4–13 (2015)PubMedCrossRef I.M. Schaefer, C.D. Fletcher, J.L. Hornick, Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod. Pathol. 29, 4–13 (2015)PubMedCrossRef
107.
Zurück zum Zitat B.E. Bernstein, T.S. Mikkelsen, X. Xie, M. Kamal, D.J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S.L. Schreiber, E.S. Lander, A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006)PubMedCrossRef B.E. Bernstein, T.S. Mikkelsen, X. Xie, M. Kamal, D.J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S.L. Schreiber, E.S. Lander, A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006)PubMedCrossRef
108.
Zurück zum Zitat A.P. Bracken, D. Kleine-Kohlbrecher, N. Dietrich, D. Pasini, G. Gargiulo, C. Beekman, K. Theilgaard-Mönch, S. Minucci, B.T. Porse, J.C. Marine, K.H. Hansen, K. Helin, The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007)PubMedPubMedCentralCrossRef A.P. Bracken, D. Kleine-Kohlbrecher, N. Dietrich, D. Pasini, G. Gargiulo, C. Beekman, K. Theilgaard-Mönch, S. Minucci, B.T. Porse, J.C. Marine, K.H. Hansen, K. Helin, The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21, 525–530 (2007)PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat J.Y. Yao, L. Zhang, X. Zhang, Z.Y. He, Y. Ma, L.J. Hui, X. Wang, Y.P. Hu, H3K27 trimethylation is an early epigenetic event of p16INK4a silencing for regaining tumorigenesis in fusion reprogrammed hepatoma cells. J. Biol. Chem. 285, 18828–18837 (2010)PubMedPubMedCentral J.Y. Yao, L. Zhang, X. Zhang, Z.Y. He, Y. Ma, L.J. Hui, X. Wang, Y.P. Hu, H3K27 trimethylation is an early epigenetic event of p16INK4a silencing for regaining tumorigenesis in fusion reprogrammed hepatoma cells. J. Biol. Chem. 285, 18828–18837 (2010)PubMedPubMedCentral
110.
Zurück zum Zitat C. Vallot, A. Hérault, S. Boyle, W.A. Bickmore, F. Radvanyi, PRC2-independent chromatin compaction and transcriptional repression in cancer. Oncogene 34, 741–751 (2015)PubMedCrossRef C. Vallot, A. Hérault, S. Boyle, W.A. Bickmore, F. Radvanyi, PRC2-independent chromatin compaction and transcriptional repression in cancer. Oncogene 34, 741–751 (2015)PubMedCrossRef
111.
Zurück zum Zitat P.B. Talbert, S. Henikoff, Histone variants-ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11, 264–275 (2010)PubMedCrossRef P.B. Talbert, S. Henikoff, Histone variants-ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 11, 264–275 (2010)PubMedCrossRef
112.
Zurück zum Zitat M. Hondele, A.G. Ladurner, The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity. Curr. Opin. Struct. Biol. 21, 698–708 (2011)PubMedCrossRef M. Hondele, A.G. Ladurner, The chaperone-histone partnership: for the greater good of histone traffic and chromatin plasticity. Curr. Opin. Struct. Biol. 21, 698–708 (2011)PubMedCrossRef
113.
114.
Zurück zum Zitat H. Tachiwana, A. Osakabe, T. Shiga, Y. Miya, H. Kimura, W. Kagawa, H. Kurumizaka, Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr. 67, 578–583 (2011) H. Tachiwana, A. Osakabe, T. Shiga, Y. Miya, H. Kimura, W. Kagawa, H. Kurumizaka, Structures of human nucleosomes containing major histone H3 variants. Acta Crystallogr. 67, 578–583 (2011)
115.
Zurück zum Zitat A. Izzo, K. Kamieniarz, R. Schneider, The histone H1 family: specific members, specific functions? Biol. Chem. 389, 333–343 (2008)PubMedCrossRef A. Izzo, K. Kamieniarz, R. Schneider, The histone H1 family: specific members, specific functions? Biol. Chem. 389, 333–343 (2008)PubMedCrossRef
116.
Zurück zum Zitat E. Dardenne, S. Pierredon, K. Driouch, L. Gratadou, M. Lacroix-Triki, M.P. Espinoza, E. Zonta, S. Germann, H. Mortada, J.P. Villemin, M. Dutertre, R. Lidereau, S. Vagner, D. Auboeuf, Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat. Struct. Mol. Biol. 19, 1139–1146 (2012)PubMedCrossRef E. Dardenne, S. Pierredon, K. Driouch, L. Gratadou, M. Lacroix-Triki, M.P. Espinoza, E. Zonta, S. Germann, H. Mortada, J.P. Villemin, M. Dutertre, R. Lidereau, S. Vagner, D. Auboeuf, Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat. Struct. Mol. Biol. 19, 1139–1146 (2012)PubMedCrossRef
117.
Zurück zum Zitat C. Vardabasso, A. Gaspar-Maia, D. Hasson, S. Pünzeler, D. Valle-Garcia, T. Straub, E.C. Keilhauer, T. Strub, J. Dong, T. Panda, C.Y. Chung, J.L. Yao, R. Singh, M.F. Segura, B. Fontanals-Cirera, A. Verma, M. Mann, E. Hernando, S.B. Hake, E. Bernstein, Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol. Cell 59, 75–88 (2015)PubMedCrossRef C. Vardabasso, A. Gaspar-Maia, D. Hasson, S. Pünzeler, D. Valle-Garcia, T. Straub, E.C. Keilhauer, T. Strub, J. Dong, T. Panda, C.Y. Chung, J.L. Yao, R. Singh, M.F. Segura, B. Fontanals-Cirera, A. Verma, M. Mann, E. Hernando, S.B. Hake, E. Bernstein, Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol. Cell 59, 75–88 (2015)PubMedCrossRef
118.
Zurück zum Zitat A. Kapoor, M.S. Goldberg, L.K. Cumberland, K. Ratnakumar, M. Segura, P.O. Emanuel, S. Menendez, C. Vardabasso, G. Leroy, C.I. Vidal, D. Polsky, I. Osman, B.A. Garcia, E. Hernando, E. Bernstein, The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468, 1105–1109 (2010)PubMedPubMedCentralCrossRef A. Kapoor, M.S. Goldberg, L.K. Cumberland, K. Ratnakumar, M. Segura, P.O. Emanuel, S. Menendez, C. Vardabasso, G. Leroy, C.I. Vidal, D. Polsky, I. Osman, B.A. Garcia, E. Hernando, E. Bernstein, The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468, 1105–1109 (2010)PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat L. Novikov, J.W. Park, H. Chen, H. Klerman, A.S. Jalloh, M.J. Gamble, QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol. Cell. Biol. 31, 4244–4255 (2011)PubMedPubMedCentralCrossRef L. Novikov, J.W. Park, H. Chen, H. Klerman, A.S. Jalloh, M.J. Gamble, QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol. Cell. Biol. 31, 4244–4255 (2011)PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat A. Gaspar-Maia, Z.A. Qadeer, D. Hasson, K. Ratnakumar, N.A. Leu, G. Leroy, S. Liu, C. Costanzi, D. Valle-Garcia, C. Schaniel, I. Lemischka, B. Garcia, J.R. Pehrson, E. Bernstein, MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun. 4, 1565 (2013)PubMedPubMedCentralCrossRef A. Gaspar-Maia, Z.A. Qadeer, D. Hasson, K. Ratnakumar, N.A. Leu, G. Leroy, S. Liu, C. Costanzi, D. Valle-Garcia, C. Schaniel, I. Lemischka, B. Garcia, J.R. Pehrson, E. Bernstein, MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun. 4, 1565 (2013)PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat M.C. Barnhart, P.H. Kuich, M.E. Stellfox, J.A. Ward, E.A. Bassett, B.E. Black, D.R. Foltz, HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229–243 (2011)PubMedPubMedCentralCrossRef M.C. Barnhart, P.H. Kuich, M.E. Stellfox, J.A. Ward, E.A. Bassett, B.E. Black, D.R. Foltz, HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J. Cell Biol. 194, 229–243 (2011)PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat T. Tomonaga, K. Matsushita, S. Yamaguchi, T. Oohashi, H. Shimada, T. Ochiai, K. Yoda, F. Nomura, Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63, 3511–3516 (2003)PubMed T. Tomonaga, K. Matsushita, S. Yamaguchi, T. Oohashi, H. Shimada, T. Ochiai, K. Yoda, F. Nomura, Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63, 3511–3516 (2003)PubMed
124.
Zurück zum Zitat Q. Wu, Y.M. Qian, X.L. Zhao, S.M. Wang, X.J. Feng, X.F. Chen, S.H. Zhang, Expression and prognostic significance of centromere protein A in human lung adenocarcinoma. Lung Cancer 77, 407–414 (2012)PubMedCrossRef Q. Wu, Y.M. Qian, X.L. Zhao, S.M. Wang, X.J. Feng, X.F. Chen, S.H. Zhang, Expression and prognostic significance of centromere protein A in human lung adenocarcinoma. Lung Cancer 77, 407–414 (2012)PubMedCrossRef
125.
Zurück zum Zitat K. Biermann, L.C. Heukamp, K. Steger, H. Zhou, F.E. Franke, I. Guetgemann, V. Sonnack, R. Brehm, J. Berg, P.J. Bastian, S.C. Müller, L. Wang-Eckert, H. Schorle, R. Büttner, Gene expression profiling identifies new biological markers of neoplastic germ cells. Anticancer Res. 27, 3091–3100 (2007)PubMed K. Biermann, L.C. Heukamp, K. Steger, H. Zhou, F.E. Franke, I. Guetgemann, V. Sonnack, R. Brehm, J. Berg, P.J. Bastian, S.C. Müller, L. Wang-Eckert, H. Schorle, R. Büttner, Gene expression profiling identifies new biological markers of neoplastic germ cells. Anticancer Res. 27, 3091–3100 (2007)PubMed
126.
Zurück zum Zitat X.M. Gu, J. Fu, X.J. Feng, X. Huang, S.M. Wang, X.F. Chen, M.H. Zhu, S.H. Zhang, Expression and prognostic relevance of centromere protein A in primary osteosarcoma. Pathol. Res. Pract. 210, 228–233 (2014)PubMedCrossRef X.M. Gu, J. Fu, X.J. Feng, X. Huang, S.M. Wang, X.F. Chen, M.H. Zhu, S.H. Zhang, Expression and prognostic relevance of centromere protein A in primary osteosarcoma. Pathol. Res. Pract. 210, 228–233 (2014)PubMedCrossRef
127.
Zurück zum Zitat J.J. Qiu, J.J. Guo, T.J. Lv, H.Y. Jin, J.X. Ding, W.W. Feng, Y. Zhang, K.Q. Hua, Prognostic value of centromere protein-A expression in patients with epithelial ovarian cancer. Tumour Biol. 34, 2971–2975 (2013)PubMedCrossRef J.J. Qiu, J.J. Guo, T.J. Lv, H.Y. Jin, J.X. Ding, W.W. Feng, Y. Zhang, K.Q. Hua, Prognostic value of centromere protein-A expression in patients with epithelial ovarian cancer. Tumour Biol. 34, 2971–2975 (2013)PubMedCrossRef
128.
Zurück zum Zitat S.L. McGovern, Y. Qi, L. Pusztai, W.F. Symmans, T.A. Buchholz, Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer. Breast Cancer Res. 14, R72 (2012)PubMedPubMedCentralCrossRef S.L. McGovern, Y. Qi, L. Pusztai, W.F. Symmans, T.A. Buchholz, Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer. Breast Cancer Res. 14, R72 (2012)PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Q. Wu, Y.F. Chen, J. Fu, Q.H. You, S.M. Wang, X. Huang, X.J. Feng, S.H. Zhang, Short hairpin RNA-mediated down-regulation of CENP-A attenuates the aggressive phenotype of lung adenocarcinoma cells. Cell. Oncol. 37, 399–407 (2014)CrossRef Q. Wu, Y.F. Chen, J. Fu, Q.H. You, S.M. Wang, X. Huang, X.J. Feng, S.H. Zhang, Short hairpin RNA-mediated down-regulation of CENP-A attenuates the aggressive phenotype of lung adenocarcinoma cells. Cell. Oncol. 37, 399–407 (2014)CrossRef
130.
Zurück zum Zitat R.K. Athwal, M.P. Walkiewicz, S. Baek, S. Fu, M. Bui, J. Camps, T. Ried, M.H. Sung, Y. Dalal, CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics Chromatin 8, 2 (2015)PubMedPubMedCentralCrossRef R.K. Athwal, M.P. Walkiewicz, S. Baek, S. Fu, M. Bui, J. Camps, T. Ried, M.H. Sung, Y. Dalal, CENP-A nucleosomes localize to transcription factor hotspots and subtelomeric sites in human cancer cells. Epigenetics Chromatin 8, 2 (2015)PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat J. Bieniek, C. Childress, M.D. Swatski, W. Yang, COX-2 inhibitors arrest prostate cancer cell cycle progression by down-regulation of kinetochore/centromere proteins. Prostate 74, 999–1011 (2014)PubMedCrossRef J. Bieniek, C. Childress, M.D. Swatski, W. Yang, COX-2 inhibitors arrest prostate cancer cell cycle progression by down-regulation of kinetochore/centromere proteins. Prostate 74, 999–1011 (2014)PubMedCrossRef
132.
Zurück zum Zitat J. Schwartzentruber, A. Korshunov, X.Y. Liu, D.T. Jones, E. Pfaff, K. Jacob, D. Sturm, A.M. Fontebasso, D.A. Quang, M. Tönjes, V. Hovestadt, S. Albrecht, M. Kool, A. Nantel, C. Konermann, A. Lindroth, N. Jäger, T. Rausch, M. Ryzhova, J.O. Korbel, T. Hielscher, P. Hauser, M. Garami, A. Klekner, L. Bognar, M. Ebinger, M.U. Schuhmann, W. Scheurlen, A. Pekrun, M.C. Frühwald, W. Roggendorf, C. Kramm, M. Dürken, J. Atkinson, P. Lepage, A. Montpetit, M. Zakrzewska, K. Zakrzewski, P.P. Liberski, Z. Dong, P. Siegel, A.E. Kulozik, M. Zapatka, A. Guha, D. Malkin, J. Felsberg, G. Reifenberger, A. von Deimling, K. Ichimura, V.P. Collins, H. Witt, T. Milde, O. Witt, C. Zhang, P. Castelo-Branco, P. Lichter, D. Faury, U. Tabori, C. Plass, J. Majewski, S.M. Pfister, N. Jabado, Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012)PubMedCrossRef J. Schwartzentruber, A. Korshunov, X.Y. Liu, D.T. Jones, E. Pfaff, K. Jacob, D. Sturm, A.M. Fontebasso, D.A. Quang, M. Tönjes, V. Hovestadt, S. Albrecht, M. Kool, A. Nantel, C. Konermann, A. Lindroth, N. Jäger, T. Rausch, M. Ryzhova, J.O. Korbel, T. Hielscher, P. Hauser, M. Garami, A. Klekner, L. Bognar, M. Ebinger, M.U. Schuhmann, W. Scheurlen, A. Pekrun, M.C. Frühwald, W. Roggendorf, C. Kramm, M. Dürken, J. Atkinson, P. Lepage, A. Montpetit, M. Zakrzewska, K. Zakrzewski, P.P. Liberski, Z. Dong, P. Siegel, A.E. Kulozik, M. Zapatka, A. Guha, D. Malkin, J. Felsberg, G. Reifenberger, A. von Deimling, K. Ichimura, V.P. Collins, H. Witt, T. Milde, O. Witt, C. Zhang, P. Castelo-Branco, P. Lichter, D. Faury, U. Tabori, C. Plass, J. Majewski, S.M. Pfister, N. Jabado, Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012)PubMedCrossRef
133.
Zurück zum Zitat G. Wu, A. Broniscer, T.A. McEachron, C. Lu, B.S. Paugh, J. Becksfort, C. Qu, L. Ding, R. Huether, M. Parker, J. Zhang, A. Gajjar, M.A. Dyer, C.G. Mullighan, R.J. Gilbertson, E.R. Mardis, R.K. Wilson, J.R. Downing, D.W. Ellison, J. Zhang, S.J. Baker, St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project, Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012)PubMedPubMedCentralCrossRef G. Wu, A. Broniscer, T.A. McEachron, C. Lu, B.S. Paugh, J. Becksfort, C. Qu, L. Ding, R. Huether, M. Parker, J. Zhang, A. Gajjar, M.A. Dyer, C.G. Mullighan, R.J. Gilbertson, E.R. Mardis, R.K. Wilson, J.R. Downing, D.W. Ellison, J. Zhang, S.J. Baker, St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project, Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012)PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat J. Okosun, C. Bödör, J. Wang, S. Araf, C.Y. Yang, C. Pan, S. Boller, D. Cittaro, M. Bozek, S. Iqbal, J. Matthews, D. Wrench, J. Marzec, K. Tawana, N. Popov, C. O’Riain, D. O’Shea, E. Carlotti, A. Davies, C.H. Lawrie, A. Matolcsy, M. Calaminici, A. Norton, R.J. Byers, C. Mein, E. Stupka, T.A. Lister, G. Lenz, S. Montoto, J.G. Gribben, Y. Fan, R. Grosschedl, C. Chelala, J. Fitzgibbon, Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46, 176–181 (2014)PubMedCrossRef J. Okosun, C. Bödör, J. Wang, S. Araf, C.Y. Yang, C. Pan, S. Boller, D. Cittaro, M. Bozek, S. Iqbal, J. Matthews, D. Wrench, J. Marzec, K. Tawana, N. Popov, C. O’Riain, D. O’Shea, E. Carlotti, A. Davies, C.H. Lawrie, A. Matolcsy, M. Calaminici, A. Norton, R.J. Byers, C. Mein, E. Stupka, T.A. Lister, G. Lenz, S. Montoto, J.G. Gribben, Y. Fan, R. Grosschedl, C. Chelala, J. Fitzgibbon, Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46, 176–181 (2014)PubMedCrossRef
136.
Zurück zum Zitat J.L. Workman, R.E. Kingston, Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998)PubMedCrossRef J.L. Workman, R.E. Kingston, Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 (1998)PubMedCrossRef
137.
Zurück zum Zitat G.C. Yuan, Y.J. Liu, M.F. Dion, M.D. Slack, L.F. Wu, S.J. Altschuler, O.J. Rando, Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005)PubMedCrossRef G.C. Yuan, Y.J. Liu, M.F. Dion, M.D. Slack, L.F. Wu, S.J. Altschuler, O.J. Rando, Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005)PubMedCrossRef
138.
Zurück zum Zitat F. Ozsolak, J.S. Song, X.S. Liu, D.E. Fisher, High-throughput mapping of the chromatin structure of human promoters. Nat. Biotechnol. 25, 244–248 (2007)PubMedCrossRef F. Ozsolak, J.S. Song, X.S. Liu, D.E. Fisher, High-throughput mapping of the chromatin structure of human promoters. Nat. Biotechnol. 25, 244–248 (2007)PubMedCrossRef
139.
Zurück zum Zitat W. Lee, D. Tillo, N. Bray, R.H. Morse, R.W. Davis, T.R. Hughes, C. Nislow, A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007)PubMedCrossRef W. Lee, D. Tillo, N. Bray, R.H. Morse, R.W. Davis, T.R. Hughes, C. Nislow, A high-resolution atlas of nucleosome occupancy in yeast. Nat. Genet. 39, 1235–1244 (2007)PubMedCrossRef
140.
Zurück zum Zitat D.E. Schones, K. Cui, S. Cuddapah, T.Y. Roh, A. Barski, Z. Wang, G. Wei, K. Zhao, Dynamic regulation of nucleosome positioning in the human genome. Cell 32, 887–898 (2008)CrossRef D.E. Schones, K. Cui, S. Cuddapah, T.Y. Roh, A. Barski, Z. Wang, G. Wei, K. Zhao, Dynamic regulation of nucleosome positioning in the human genome. Cell 32, 887–898 (2008)CrossRef
141.
Zurück zum Zitat S. Schwartz, E. Meshorer, G. Ast, Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16, 990–995 (2009)PubMedCrossRef S. Schwartz, E. Meshorer, G. Ast, Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16, 990–995 (2009)PubMedCrossRef
142.
Zurück zum Zitat T. Misteli, E. Soutoglou, The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell. Biol. 10, 243–254 (2009)PubMedPubMedCentralCrossRef T. Misteli, E. Soutoglou, The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat. Rev. Mol. Cell. Biol. 10, 243–254 (2009)PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat S. Sasaki, C.C. Mello, A. Shimada, Y. Nakatani, S. Hashimoto, M. Ogawa, K. Matsushima, S.G. Gu, M. Kasahara, B. Ahsan, A. Sasaki, T. Saito, Y. Suzuki, S. Sugano, Y. Kohara, H. Takeda, A. Fire, S. Morishita, Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323, 401–404 (2009)PubMedCrossRef S. Sasaki, C.C. Mello, A. Shimada, Y. Nakatani, S. Hashimoto, M. Ogawa, K. Matsushima, S.G. Gu, M. Kasahara, B. Ahsan, A. Sasaki, T. Saito, Y. Suzuki, S. Sugano, Y. Kohara, H. Takeda, A. Fire, S. Morishita, Chromatin-associated periodicity in genetic variation downstream of transcriptional start sites. Science 323, 401–404 (2009)PubMedCrossRef
145.
Zurück zum Zitat J.G. Prendergast, H. Campbell, N. Gilbert, M.G. Dunlop, W.A. Bickmore, C.A. Semple, Chromatin structure and evolution in the human genome. BMC Evol. Biol. 7, 72 (2007)PubMedPubMedCentralCrossRef J.G. Prendergast, H. Campbell, N. Gilbert, M.G. Dunlop, W.A. Bickmore, C.A. Semple, Chromatin structure and evolution in the human genome. BMC Evol. Biol. 7, 72 (2007)PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat P.G. Yazdi, B.A. Pedersen, J.F. Taylor, O.S. Khattab, Y.H. Chen, Y. Chen, S.E. Jacobsen, P.H. Wang, Increasing nucleosome occupancy is correlated with an increasing mutation rate so long as DNA repair machinery is intact. PLoS One 10, e0136574 (2015)PubMedPubMedCentralCrossRef P.G. Yazdi, B.A. Pedersen, J.F. Taylor, O.S. Khattab, Y.H. Chen, Y. Chen, S.E. Jacobsen, P.H. Wang, Increasing nucleosome occupancy is correlated with an increasing mutation rate so long as DNA repair machinery is intact. PLoS One 10, e0136574 (2015)PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat P. Polak, R. Karlić, A. Koren, R. Thurman, R. Sandstrom, M.S. Lawrence, A. Reynolds, E. Rynes, K. Vlahoviček, J.A. Stamatoyannopoulos, S.R. Sunyaev, Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015)PubMedPubMedCentralCrossRef P. Polak, R. Karlić, A. Koren, R. Thurman, R. Sandstrom, M.S. Lawrence, A. Reynolds, E. Rynes, K. Vlahoviček, J.A. Stamatoyannopoulos, S.R. Sunyaev, Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, 360–364 (2015)PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat P. Polak, M.S. Lawrence, E. Haugen, N. Stoletzki, P. Stojanov, R.E. Thurman, L.A. Garraway, S. Mirkin, G. Getz, J.A. Stamatoyannopoulos, S.R. Sunyaev, Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nat. Biotechnol. 32, 71–75 (2014)PubMedCrossRef P. Polak, M.S. Lawrence, E. Haugen, N. Stoletzki, P. Stojanov, R.E. Thurman, L.A. Garraway, S. Mirkin, G. Getz, J.A. Stamatoyannopoulos, S.R. Sunyaev, Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nat. Biotechnol. 32, 71–75 (2014)PubMedCrossRef
149.
Zurück zum Zitat B. Schuster-Böckler, B. Lehner, Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488, 504–507 (2012)PubMedCrossRef B. Schuster-Böckler, B. Lehner, Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488, 504–507 (2012)PubMedCrossRef
150.
Zurück zum Zitat A. Hodgkinson, Y. Chen, A. Eyre-Walker, The large-scale distribution of somatic mutations in cancer genomes. Hum. Mutat. 33, 136–143 (2012)PubMedCrossRef A. Hodgkinson, Y. Chen, A. Eyre-Walker, The large-scale distribution of somatic mutations in cancer genomes. Hum. Mutat. 33, 136–143 (2012)PubMedCrossRef
151.
Zurück zum Zitat S. Ortiz-Cuaran, D. Cox, S. Villar, M.D. Friesen, G. Durand, A. Chabrier, T. Khuhaprema, S. Sangrajrang, S. Ognjanovic, J.D. Groopman, P. Hainaut, F. Le Calvez-Kelm, Association between TP53 R249S mutation and polymorphisms in TP53 intron 1 in hepatocellular carcinoma. Genes Chromosom. Cancer 52, 912–919 (2013)PubMedCrossRef S. Ortiz-Cuaran, D. Cox, S. Villar, M.D. Friesen, G. Durand, A. Chabrier, T. Khuhaprema, S. Sangrajrang, S. Ognjanovic, J.D. Groopman, P. Hainaut, F. Le Calvez-Kelm, Association between TP53 R249S mutation and polymorphisms in TP53 intron 1 in hepatocellular carcinoma. Genes Chromosom. Cancer 52, 912–919 (2013)PubMedCrossRef
152.
Zurück zum Zitat L.E. Mechanic, E.D. Bowman, J.A. Welsh, M.A. Khan, N. Hagiwara, L. Enewold, P.G. Shields, L. Burdette, S. Chanock, C.C. Harris, Common genetic variation in TP53 is associated with lung cancer risk and prognosis in African Americans and somatic mutations in lung tumors. Cancer Epidemiol. Biomarkers Prev. 16, 214–222 (2007)PubMedCrossRef L.E. Mechanic, E.D. Bowman, J.A. Welsh, M.A. Khan, N. Hagiwara, L. Enewold, P.G. Shields, L. Burdette, S. Chanock, C.C. Harris, Common genetic variation in TP53 is associated with lung cancer risk and prognosis in African Americans and somatic mutations in lung tumors. Cancer Epidemiol. Biomarkers Prev. 16, 214–222 (2007)PubMedCrossRef
153.
Zurück zum Zitat C. Lemaître, A. Grabarz, K. Tsouroula, L. Andronov, A. Furst, T. Pankotai, V. Heyer, M. Rogier, K.M. Attwood, P. Kessler, G. Dellaire, B. Klaholz, B. Reina-San-Martin, E. Soutoglou, Nuclear position dictates DNA repair pathway choice. Genes Dev. 28, 2450–2463 (2014)PubMedPubMedCentralCrossRef C. Lemaître, A. Grabarz, K. Tsouroula, L. Andronov, A. Furst, T. Pankotai, V. Heyer, M. Rogier, K.M. Attwood, P. Kessler, G. Dellaire, B. Klaholz, B. Reina-San-Martin, E. Soutoglou, Nuclear position dictates DNA repair pathway choice. Genes Dev. 28, 2450–2463 (2014)PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat F. Aymard, B. Bugler, C.K. Schmidt, E. Guillou, P. Caron, S. Briois, J.S. Iacovoni, V. Daburon, K.M. Miller, S.P. Jackson, G. Legube, Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 366–374 (2014)PubMedPubMedCentralCrossRef F. Aymard, B. Bugler, C.K. Schmidt, E. Guillou, P. Caron, S. Briois, J.S. Iacovoni, V. Daburon, K.M. Miller, S.P. Jackson, G. Legube, Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 366–374 (2014)PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat S.X. Pfister, S. Ahrabi, L.P. Zalmas, S. Sarkar, F. Aymard, C.Z. Bachrati, T. Helleday, G. Legube, N.B. La Thangue, A.C. Porter, T.C. Humphrey, SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep. 7, 2006–2018 (2014)PubMedPubMedCentralCrossRef S.X. Pfister, S. Ahrabi, L.P. Zalmas, S. Sarkar, F. Aymard, C.Z. Bachrati, T. Helleday, G. Legube, N.B. La Thangue, A.C. Porter, T.C. Humphrey, SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability. Cell Rep. 7, 2006–2018 (2014)PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat C.L. Zheng, N.J. Wang, J. Chung, H. Moslehi, J.Z. Sanborn, J.S. Hur, E.A. Collisson, S.S. Vemula, A. Naujokas, K.E. Chiotti, J.B. Cheng, H. Fassihi, A.J. Blumberg, C.V. Bailey, G.M. Fudem, F.G. Mihm, B.B. Cunningham, I.M. Neuhaus, W. Liao, D.H. Oh, J.E. Cleaver, P.E. LeBoit, J.F. Costello, A.R. Lehmann, J.W. Gray, P.T. Spellman, S.T. Arron, N. Huh, E. Purdom, R.J. Cho, Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep. 9, 1228–1234 (2014)PubMedPubMedCentralCrossRef C.L. Zheng, N.J. Wang, J. Chung, H. Moslehi, J.Z. Sanborn, J.S. Hur, E.A. Collisson, S.S. Vemula, A. Naujokas, K.E. Chiotti, J.B. Cheng, H. Fassihi, A.J. Blumberg, C.V. Bailey, G.M. Fudem, F.G. Mihm, B.B. Cunningham, I.M. Neuhaus, W. Liao, D.H. Oh, J.E. Cleaver, P.E. LeBoit, J.F. Costello, A.R. Lehmann, J.W. Gray, P.T. Spellman, S.T. Arron, N. Huh, E. Purdom, R.J. Cho, Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep. 9, 1228–1234 (2014)PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat A. Kalousi, A.S. Hoffbeck, P.N. Selemenakis, J. Pinder, K.I. Savage, K.K. Khanna, L. Brino, G. Dellaire, V.G. Gorgoulis, E. Soutoglou, The nuclear oncogene SET controls DNA repair by KAP1 and HP1 retention to chromatin. Cell Rep. 11, 149–163 (2015)PubMedCrossRef A. Kalousi, A.S. Hoffbeck, P.N. Selemenakis, J. Pinder, K.I. Savage, K.K. Khanna, L. Brino, G. Dellaire, V.G. Gorgoulis, E. Soutoglou, The nuclear oncogene SET controls DNA repair by KAP1 and HP1 retention to chromatin. Cell Rep. 11, 149–163 (2015)PubMedCrossRef
158.
Zurück zum Zitat M. Gkotzamanidou, E. Terpos, C. Bamia, S.A. Kyrtopoulos, P.P. Sfikakis, M.A. Dimopoulos, V.L. Souliotis, Progressive changes in chromatin structure and DNA damage response signals in bone marrow and peripheral blood during myelomagenesis. Leukemia 28, 1113–1121 (2014)PubMedCrossRef M. Gkotzamanidou, E. Terpos, C. Bamia, S.A. Kyrtopoulos, P.P. Sfikakis, M.A. Dimopoulos, V.L. Souliotis, Progressive changes in chromatin structure and DNA damage response signals in bone marrow and peripheral blood during myelomagenesis. Leukemia 28, 1113–1121 (2014)PubMedCrossRef
159.
Zurück zum Zitat L.B. Hesson, M.A. Sloane, J.W. Wong, A.C. Nunez, S. Srivastava, B. Ng, N.J. Hawkins, M.J. Bourke, R.L. Ward, Altered promoter nucleosome positioning is an early event in gene silencing. Epigenetics 9, 1422–1430 (2014)PubMedPubMedCentralCrossRef L.B. Hesson, M.A. Sloane, J.W. Wong, A.C. Nunez, S. Srivastava, B. Ng, N.J. Hawkins, M.J. Bourke, R.L. Ward, Altered promoter nucleosome positioning is an early event in gene silencing. Epigenetics 9, 1422–1430 (2014)PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat L.B. Hesson, V. Patil, M.A. Sloane, A.C. Nunez, J. Liu, J.E. Pimanda, R.L. Ward, Reassembly of nucleosomes at the MLH1 promoter initiates resilencing following decitabine exposure. PLoS Genet. 9, e1003636 (2013)PubMedPubMedCentralCrossRef L.B. Hesson, V. Patil, M.A. Sloane, A.C. Nunez, J. Liu, J.E. Pimanda, R.L. Ward, Reassembly of nucleosomes at the MLH1 promoter initiates resilencing following decitabine exposure. PLoS Genet. 9, e1003636 (2013)PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat A.A. Alekseyenko, E.M. Walsh, X. Wang, A.R. Grayson, P.T. Hsi, P.V. Kharchenko, M.I. Kuroda, C.A. French, The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 29, 1507–1523 (2015)PubMedPubMedCentralCrossRef A.A. Alekseyenko, E.M. Walsh, X. Wang, A.R. Grayson, P.T. Hsi, P.V. Kharchenko, M.I. Kuroda, C.A. French, The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 29, 1507–1523 (2015)PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat S.R. James, C.D. Cedeno, A. Sharma, W. Zhang, J.L. Mohler, K. Odunsi, E.M. Wilson, A.R. Karpf, DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics 8, 849–863 (2013)PubMedPubMedCentralCrossRef S.R. James, C.D. Cedeno, A. Sharma, W. Zhang, J.L. Mohler, K. Odunsi, E.M. Wilson, A.R. Karpf, DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics 8, 849–863 (2013)PubMedPubMedCentralCrossRef
Metadaten
Titel
Altered primary chromatin structures and their implications in cancer development
verfasst von
Angelo Ferraro
Publikationsdatum
23.03.2016
Verlag
Springer Netherlands
Erschienen in
Cellular Oncology / Ausgabe 3/2016
Print ISSN: 2211-3428
Elektronische ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-016-0276-6

Weitere Artikel der Ausgabe 3/2016

Cellular Oncology 3/2016 Zur Ausgabe

Neu im Fachgebiet Pathologie

Molekularpathologische Untersuchungen im Wandel der Zeit

Open Access Biomarker Leitthema

Um auch an kleinen Gewebeproben zuverlässige und reproduzierbare Ergebnisse zu gewährleisten ist eine strenge Qualitätskontrolle in jedem Schritt des Arbeitsablaufs erforderlich. Eine nicht ordnungsgemäße Prüfung oder Behandlung des …

Vergleichende Pathologie in der onkologischen Forschung

Pathologie Leitthema

Die vergleichende experimentelle Pathologie („comparative experimental pathology“) ist ein Fachbereich an der Schnittstelle von Human- und Veterinärmedizin. Sie widmet sich der vergleichenden Erforschung von Gemeinsamkeiten und Unterschieden von …

Gastrointestinale Stromatumoren

Open Access GIST CME-Artikel

Gastrointestinale Stromatumoren (GIST) stellen seit über 20 Jahren ein Paradigma für die zielgerichtete Therapie mit Tyrosinkinaseinhibitoren dar. Eine elementare Voraussetzung für eine mögliche neoadjuvante oder adjuvante Behandlung bei …

Personalisierte Medizin in der Onkologie

Aufgrund des erheblichen technologischen Fortschritts in der molekularen und genetischen Diagnostik sowie zunehmender Erkenntnisse über die molekulare Pathogenese von Krankheiten hat in den letzten zwei Jahrzehnten ein grundlegender …