Skip to main content
Erschienen in: Diabetologia 2/2018

01.02.2018 | Article

GIP(3-30)NH2 is an efficacious GIP receptor antagonist in humans: a randomised, double-blinded, placebo-controlled, crossover study

verfasst von: Lærke S. Gasbjerg, Mikkel B. Christensen, Bolette Hartmann, Amalie R. Lanng, Alexander H. Sparre-Ulrich, Maria B. N. Gabe, Flemming Dela, Tina Vilsbøll, Jens J. Holst, Mette M. Rosenkilde, Filip K. Knop

Erschienen in: Diabetologia | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted postprandially from enteroendocrine K cells, but despite therapeutically interesting effects, GIP physiology in humans remains incompletely understood. Progress in this field could be facilitated by a suitable GIP receptor antagonist. For the first time in humans, we investigated the antagonistic properties of the naturally occurring GIP(3-30)NH2 in in vivo and in in vitro receptor studies.

Methods

In transiently transfected COS-7 cells, GIP(3-30)NH2 was evaluated with homologous receptor binding and receptor activation (cAMP accumulation) studies at the glucagon-like peptide 1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucagon, secretin and growth hormone-releasing hormone (GHRH) receptors. Ten healthy men (eligibility criteria: age 20–30 years, HbA1c less than 6.5% [48 mmol/mol] and fasting plasma glucose [FPG] less than 7 mmol/l) were included in the clinical study. Data were collected as plasma and serum samples from a cubital vein cannula. As primary outcome, insulin secretion and glucose requirements were evaluated together with in a randomised, four-period, crossover design by infusing GIP(3-30)NH2 (800 pmol kg−1 min−1), GIP (1.5 pmol kg−1 min−1), a combination of these or placebo during hyperglycaemic clamp experiments. The content of the infusions were blinded to the study participants and experimental personnel. No study participants dropped out.

Results

GIP(3-30)NH2 neither bound, stimulated nor antagonised a series of related receptors in vitro. The elimination plasma half-life of GIP(3-30)NH2 in humans was 7.6 ± 1.4 min. Markedly larger amounts of glucose were required to maintain the clamp during GIP infusion compared with the other days. GIP-induced insulin secretion was reduced by 82% (p < 0.0001) during co-infusion with GIP(3-30)NH2, and the need for glucose was reduced to placebo levels. There were no effects of GIP(3-30)NH2 alone or of GIP with or without GIP(3-30)NH2 on plasma glucagon, GLP-1, somatostatin, triacylglycerols, cholesterol, glycerol or NEFA. GIP(3-30)NH2 administration was well tolerated and without side effects.

Conclusions/interpretation

We conclude that GIP(3-30)NH2 is an efficacious and specific GIP receptor antagonist in humans suitable for studies of GIP physiology and pathophysiology.

Trial registration

ClinicalTrials.​gov registration no. NCT02747472.

Funding

The study was funded by Gangstedfonden, the European Foundation for the Study of Diabetes, and Aase og Ejnar Danielsens fond.
Literatur
1.
Zurück zum Zitat Sonne DP, Rehfeld JF, Holst JJ et al (2014) Postprandial gallbladder emptying in patients with type 2 diabetes: potential implications for bile-induced secretion of glucagon-like peptide 1. Eur J Endocrinol 171:407–419CrossRefPubMed Sonne DP, Rehfeld JF, Holst JJ et al (2014) Postprandial gallbladder emptying in patients with type 2 diabetes: potential implications for bile-induced secretion of glucagon-like peptide 1. Eur J Endocrinol 171:407–419CrossRefPubMed
2.
Zurück zum Zitat Kreymann B, Ghatei MA, Williams G, Bloom SR (1987) Glucagon-Like Peptide-1 7-36: a physiological incretin in man. Lancet 330:1300–1304CrossRef Kreymann B, Ghatei MA, Williams G, Bloom SR (1987) Glucagon-Like Peptide-1 7-36: a physiological incretin in man. Lancet 330:1300–1304CrossRef
3.
Zurück zum Zitat Vilsbøll T, Krarup T, Madsbad S, Holst J (2002) Defective amplification of the late phase insulin response to glucose by gip in obese type ii diabetic patients. Diabetologia 45:1111–1119CrossRefPubMed Vilsbøll T, Krarup T, Madsbad S, Holst J (2002) Defective amplification of the late phase insulin response to glucose by gip in obese type ii diabetic patients. Diabetologia 45:1111–1119CrossRefPubMed
4.
Zurück zum Zitat Cornell S (2012) Differentiating among incretin therapies: a multiple-target approach to type 2 diabetes. J Clin Pharm Ther 37:510–524CrossRefPubMed Cornell S (2012) Differentiating among incretin therapies: a multiple-target approach to type 2 diabetes. J Clin Pharm Ther 37:510–524CrossRefPubMed
5.
Zurück zum Zitat Eng J, Kleinman W, Singh L et al (1992) Isolation and characterization of exendin-4, an exendin-3 analogue, from heloderma suspectum venom. J Biol Chem 267:7402–7405PubMed Eng J, Kleinman W, Singh L et al (1992) Isolation and characterization of exendin-4, an exendin-3 analogue, from heloderma suspectum venom. J Biol Chem 267:7402–7405PubMed
6.
Zurück zum Zitat Schirra J, Sturm K, Leicht P et al (1998) Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. J Clin Invest 101:1421–1430CrossRefPubMedPubMedCentral Schirra J, Sturm K, Leicht P et al (1998) Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. J Clin Invest 101:1421–1430CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Edwards C, Todd J, Mahmoudi M et al (1999) Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes 48:86–93CrossRefPubMed Edwards C, Todd J, Mahmoudi M et al (1999) Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes 48:86–93CrossRefPubMed
8.
Zurück zum Zitat Nauck MA, Heimesaat MM, Ørskov C et al (1993) Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307CrossRefPubMedPubMedCentral Nauck MA, Heimesaat MM, Ørskov C et al (1993) Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307CrossRefPubMedPubMedCentral
9.
10.
Zurück zum Zitat Nissen A, Christensen M, Knop FK et al (2014) Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J Clin Endocrinol Metab 99:E2325–E2329CrossRefPubMed Nissen A, Christensen M, Knop FK et al (2014) Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J Clin Endocrinol Metab 99:E2325–E2329CrossRefPubMed
11.
Zurück zum Zitat Asmar M, Simonsen L, Arngrim N et al (2014) Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects. Int J Obes 38:259–265CrossRef Asmar M, Simonsen L, Arngrim N et al (2014) Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects. Int J Obes 38:259–265CrossRef
12.
Zurück zum Zitat Asmar M, Simonsen L, Madsbad S et al (2010) Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 59:2160–2163CrossRefPubMedPubMedCentral Asmar M, Simonsen L, Madsbad S et al (2010) Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 59:2160–2163CrossRefPubMedPubMedCentral
13.
14.
Zurück zum Zitat Christensen M, Vedtofte L, Holst JJ et al (2011) Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes 60:3103–3109CrossRefPubMedPubMedCentral Christensen M, Vedtofte L, Holst JJ et al (2011) Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans. Diabetes 60:3103–3109CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Christensen M, Calanna S, Sparre-Ulrich AH et al (2015) Glucose-dependent insulinotropic polypeptide augments glucagon responses to hypoglycemia in type 1 diabetes. Diabetes 64:72–78CrossRefPubMed Christensen M, Calanna S, Sparre-Ulrich AH et al (2015) Glucose-dependent insulinotropic polypeptide augments glucagon responses to hypoglycemia in type 1 diabetes. Diabetes 64:72–78CrossRefPubMed
16.
Zurück zum Zitat Sparre-Ulrich AH, Hansen LS, Svendsen B et al (2016) Species-specific action of (Pro3)GIP - a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors. Br J Pharmacol 173:27–38CrossRefPubMed Sparre-Ulrich AH, Hansen LS, Svendsen B et al (2016) Species-specific action of (Pro3)GIP - a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors. Br J Pharmacol 173:27–38CrossRefPubMed
17.
Zurück zum Zitat Hansen LS, Sparre-Ulrich AH, Christensen M et al (2016) N-terminally and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor. Br J Pharmacol 173:826–838CrossRefPubMedPubMedCentral Hansen LS, Sparre-Ulrich AH, Christensen M et al (2016) N-terminally and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor. Br J Pharmacol 173:826–838CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Getty-Kaushik L, Song DH, Boylan MO et al (2006) Glucose-dependent insulinotropic polypeptide modulates adipocyte lipolysis and reesterification. Obesity (Silver Spring) 14:1124–1131CrossRef Getty-Kaushik L, Song DH, Boylan MO et al (2006) Glucose-dependent insulinotropic polypeptide modulates adipocyte lipolysis and reesterification. Obesity (Silver Spring) 14:1124–1131CrossRef
19.
Zurück zum Zitat Tseng CC, Kieffer TJ, Jarboe LA et al (1996) Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP): effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest 98:2440–2445CrossRefPubMedPubMedCentral Tseng CC, Kieffer TJ, Jarboe LA et al (1996) Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP): effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest 98:2440–2445CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Gelling RW, Coy DH, Pederson RA et al (1997) GIP(6-30amide) contains the high affinity binding region of GIP and is a potent inhibitor of GIP1-42 action in vitro. Regul Pept 69:151–154CrossRefPubMed Gelling RW, Coy DH, Pederson RA et al (1997) GIP(6-30amide) contains the high affinity binding region of GIP and is a potent inhibitor of GIP1-42 action in vitro. Regul Pept 69:151–154CrossRefPubMed
21.
Zurück zum Zitat Deacon CF, Plamboeck A, Rosenkilde MM et al (2006) GIP-(3-42) does not antagonize insulinotropic effects of GIP at physiological concentrations. Am J Physiol Endocrinol Metab 291:E468–E475CrossRefPubMed Deacon CF, Plamboeck A, Rosenkilde MM et al (2006) GIP-(3-42) does not antagonize insulinotropic effects of GIP at physiological concentrations. Am J Physiol Endocrinol Metab 291:E468–E475CrossRefPubMed
22.
Zurück zum Zitat Gault VA, O’Harte FPM, Harriott P, Flatt PR (2002) Characterization of the cellular and metabolic effects of a novel enzyme-resistant antagonist of glucose-dependent insulinotropic polypeptide. Biochem Biophys Res Commun 290:1420–1426CrossRefPubMed Gault VA, O’Harte FPM, Harriott P, Flatt PR (2002) Characterization of the cellular and metabolic effects of a novel enzyme-resistant antagonist of glucose-dependent insulinotropic polypeptide. Biochem Biophys Res Commun 290:1420–1426CrossRefPubMed
23.
Zurück zum Zitat McClean PL, Irwin N, Cassidy RS et al (2007) GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab 293:E1746–E1755CrossRefPubMed McClean PL, Irwin N, Cassidy RS et al (2007) GIP receptor antagonism reverses obesity, insulin resistance, and associated metabolic disturbances induced in mice by prolonged consumption of high-fat diet. Am J Physiol Endocrinol Metab 293:E1746–E1755CrossRefPubMed
24.
Zurück zum Zitat Ravn P, Madhurantakam C, Kunze S et al (2013) Structural and pharmacological characterization of novel potent and selective monoclonal antibody antagonists of glucose-dependent insulinotropic polypeptide receptor. J Biol Chem 288:19760–19772CrossRefPubMedPubMedCentral Ravn P, Madhurantakam C, Kunze S et al (2013) Structural and pharmacological characterization of novel potent and selective monoclonal antibody antagonists of glucose-dependent insulinotropic polypeptide receptor. J Biol Chem 288:19760–19772CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Nakamura T, Tanimoto H, Mizuno Y et al (2012) Biological and functional characteristics of a novel low-molecular weight antagonist of glucose-dependent insulinotropic polypeptide receptor, SKL-14959, in vitro and in vivo. Diabetes Obes Metab 14:511–517CrossRefPubMed Nakamura T, Tanimoto H, Mizuno Y et al (2012) Biological and functional characteristics of a novel low-molecular weight antagonist of glucose-dependent insulinotropic polypeptide receptor, SKL-14959, in vitro and in vivo. Diabetes Obes Metab 14:511–517CrossRefPubMed
26.
Zurück zum Zitat Ugleholdt R, Poulsen MLH, Holst PJ et al (2006) Prohormone convertase 1/3 is essential for processing of the glucose-dependent insulinotropic polypeptide precursor. J Biol Chem 281:11050–11057CrossRefPubMed Ugleholdt R, Poulsen MLH, Holst PJ et al (2006) Prohormone convertase 1/3 is essential for processing of the glucose-dependent insulinotropic polypeptide precursor. J Biol Chem 281:11050–11057CrossRefPubMed
27.
Zurück zum Zitat Portela-Gomes GM, Grimelius L, Stridsberg M (2008) Prohormone convertases 1/3, 2, furin and protein 7B2 (Secretogranin V) in endocrine cells of the human pancreas. Regul Pept 146:117–124CrossRefPubMed Portela-Gomes GM, Grimelius L, Stridsberg M (2008) Prohormone convertases 1/3, 2, furin and protein 7B2 (Secretogranin V) in endocrine cells of the human pancreas. Regul Pept 146:117–124CrossRefPubMed
28.
Zurück zum Zitat Fujita Y, Asadi A, Yang GK et al (2010) Differential processing of pro-glucose-dependent insulinotropic polypeptide in gut. Am J Physiol Gastrointest Liver Physiol 298:G608–G614CrossRefPubMed Fujita Y, Asadi A, Yang GK et al (2010) Differential processing of pro-glucose-dependent insulinotropic polypeptide in gut. Am J Physiol Gastrointest Liver Physiol 298:G608–G614CrossRefPubMed
29.
Zurück zum Zitat Gallwitz B, Witt M, Folsch UR, Creutzfeldt WSW (1993) Binding specificity and signal transduction of receptors for glucagon-like peptide-1 (7–36) amide and gastric inhibitory polypeptide on RINm5F insulinoma cells. J Mol Endocrinol 10:259–268CrossRefPubMed Gallwitz B, Witt M, Folsch UR, Creutzfeldt WSW (1993) Binding specificity and signal transduction of receptors for glucagon-like peptide-1 (7–36) amide and gastric inhibitory polypeptide on RINm5F insulinoma cells. J Mol Endocrinol 10:259–268CrossRefPubMed
30.
Zurück zum Zitat Ørskov C, Rabenhøj L, Wettergren A et al (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide 1 in humans. Diabetes 43:535–539CrossRefPubMed Ørskov C, Rabenhøj L, Wettergren A et al (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide 1 in humans. Diabetes 43:535–539CrossRefPubMed
31.
Zurück zum Zitat Lindgren O, Carr RD, Deacon CF et al (2011) Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab 96:2519–2524CrossRefPubMed Lindgren O, Carr RD, Deacon CF et al (2011) Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab 96:2519–2524CrossRefPubMed
32.
Zurück zum Zitat Hilsted L, Holst JJ (1982) On the accuracy of radioimmunological determination of somatostatin in plasma. Regul Pept 4:13–31CrossRefPubMed Hilsted L, Holst JJ (1982) On the accuracy of radioimmunological determination of somatostatin in plasma. Regul Pept 4:13–31CrossRefPubMed
33.
Zurück zum Zitat Holst JJ, Bersani M (1991) Assays for the peptide products of somatostatin gene expression. Methods Neurosci 5:3–22CrossRef Holst JJ, Bersani M (1991) Assays for the peptide products of somatostatin gene expression. Methods Neurosci 5:3–22CrossRef
34.
Zurück zum Zitat Kissow H, Hartmann B, Holst JJ et al (2012) Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice. Regul Pept 179:91–100CrossRefPubMed Kissow H, Hartmann B, Holst JJ et al (2012) Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice. Regul Pept 179:91–100CrossRefPubMed
35.
Zurück zum Zitat Hovorka R, Soons PA, Young MA (1996) ISEC: a program to calculate insulin secretion. Comput Methods Prog Biomed 50:253–264CrossRef Hovorka R, Soons PA, Young MA (1996) ISEC: a program to calculate insulin secretion. Comput Methods Prog Biomed 50:253–264CrossRef
36.
Zurück zum Zitat Kjems LL, Christiansen E, Vølund A et al (2000) Validation of methods for measurement of insulin secretion in humans in vivo. Diabetes 49:580–588CrossRefPubMed Kjems LL, Christiansen E, Vølund A et al (2000) Validation of methods for measurement of insulin secretion in humans in vivo. Diabetes 49:580–588CrossRefPubMed
37.
Zurück zum Zitat Sparre-Ulrich AH, Gabe MN, Gasbjerg LS et al (2017) GIP(3–30)NH2 is a potent competitive antagonist of the GIP receptor and effectively inhibits GIP-mediated insulin, glucagon, and somatostatin release. Biochem Pharmacol 131:78–88CrossRefPubMed Sparre-Ulrich AH, Gabe MN, Gasbjerg LS et al (2017) GIP(3–30)NH2 is a potent competitive antagonist of the GIP receptor and effectively inhibits GIP-mediated insulin, glucagon, and somatostatin release. Biochem Pharmacol 131:78–88CrossRefPubMed
38.
Zurück zum Zitat Schirra J, Nicolaus M, Woerle HJ et al (2009) GLP-1 regulates gastroduodenal motility involving cholinergic pathways. Neurogastroenterol Motil 21:609–618CrossRefPubMed Schirra J, Nicolaus M, Woerle HJ et al (2009) GLP-1 regulates gastroduodenal motility involving cholinergic pathways. Neurogastroenterol Motil 21:609–618CrossRefPubMed
39.
Zurück zum Zitat Salehi M, Vahl TP, D’Alessio DA (2008) Regulation of islet hormone release and gastric emptying by endogenous glucagon-like peptide 1 after glucose ingestion. J Clin Endocrinol Metab 93:4909–4916CrossRefPubMedPubMedCentral Salehi M, Vahl TP, D’Alessio DA (2008) Regulation of islet hormone release and gastric emptying by endogenous glucagon-like peptide 1 after glucose ingestion. J Clin Endocrinol Metab 93:4909–4916CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Kielgast U, Holst JJ, Madsbad S (2011) Antidiabetic actions of endogenous and exogenous GLP-1 in type 1 diabetic patients with and without residual B -cell function. Diabetes 60:1599–1607CrossRefPubMedPubMedCentral Kielgast U, Holst JJ, Madsbad S (2011) Antidiabetic actions of endogenous and exogenous GLP-1 in type 1 diabetic patients with and without residual B -cell function. Diabetes 60:1599–1607CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272CrossRefPubMed Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272CrossRefPubMed
42.
Zurück zum Zitat Al-Sabah S, Al-Fulaij M, Ahmed HA (2014) Selectivity of peptide ligands for the human incretin receptors expressed in HEK-293 cells. Eur J Pharmacol 741:311–315CrossRefPubMed Al-Sabah S, Al-Fulaij M, Ahmed HA (2014) Selectivity of peptide ligands for the human incretin receptors expressed in HEK-293 cells. Eur J Pharmacol 741:311–315CrossRefPubMed
43.
Zurück zum Zitat Brubaker PL, Drucker DJ (2002) Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Recept Channels 8:179–188CrossRefPubMed Brubaker PL, Drucker DJ (2002) Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Recept Channels 8:179–188CrossRefPubMed
44.
Zurück zum Zitat Svane MS, Jørgensen NB, Bojsen-Møller KN, et al (2016) Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int J Obes (Lond): 1–8 Svane MS, Jørgensen NB, Bojsen-Møller KN, et al (2016) Peptide YY and glucagon-like peptide-1 contribute to decreased food intake after Roux-en-Y gastric bypass surgery. Int J Obes (Lond): 1–8
45.
Zurück zum Zitat Steinert RE, Schirra J, Meyer-Gerspach AC et al (2014) Effect of glucagon-like peptide-1 receptor antagonism on appetite and food intake in healthy men 1 – 3. Am J Clin Nutr 100:514–523CrossRefPubMed Steinert RE, Schirra J, Meyer-Gerspach AC et al (2014) Effect of glucagon-like peptide-1 receptor antagonism on appetite and food intake in healthy men 1 – 3. Am J Clin Nutr 100:514–523CrossRefPubMed
46.
Zurück zum Zitat Hansen L, Hartmann B, Bisgaard T et al (2000) Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated perfused porcine ileum. Am J Physiol Endocrinol Metab 278:E1010–E1018CrossRefPubMed Hansen L, Hartmann B, Bisgaard T et al (2000) Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated perfused porcine ileum. Am J Physiol Endocrinol Metab 278:E1010–E1018CrossRefPubMed
47.
Zurück zum Zitat Solloway MJ, Madjidi A, Gu C et al (2015) Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass. Cell Rep 12:495–510CrossRefPubMed Solloway MJ, Madjidi A, Gu C et al (2015) Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass. Cell Rep 12:495–510CrossRefPubMed
48.
Zurück zum Zitat Asmar M, Asmar A, Simonsen L et al (2017) The gluco- and liporegulatory and the vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor. Diabetes 66:2363–2237CrossRefPubMed Asmar M, Asmar A, Simonsen L et al (2017) The gluco- and liporegulatory and the vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor. Diabetes 66:2363–2237CrossRefPubMed
49.
Zurück zum Zitat Thondam SK, Daousi C, Wilding JPH et al (2017) Glucose-dependent Insulinotropic Polypeptide promotes lipid deposition in subcutaneous adipocytes in obese, type 2 diabetes patients: a maladaptive response. Am J Physiol Endocrinol Metab 1:224–233CrossRef Thondam SK, Daousi C, Wilding JPH et al (2017) Glucose-dependent Insulinotropic Polypeptide promotes lipid deposition in subcutaneous adipocytes in obese, type 2 diabetes patients: a maladaptive response. Am J Physiol Endocrinol Metab 1:224–233CrossRef
50.
Zurück zum Zitat Irwin N, Gault V, Flatt PR (2010) Therapeutic potential of the original incretin hormone glucose-dependent insulinotropic polypeptide: diabetes, obesity, osteoporosis and Alzheimer’s disease? Expert Opin Investig Drugs 19:1039–1048CrossRefPubMed Irwin N, Gault V, Flatt PR (2010) Therapeutic potential of the original incretin hormone glucose-dependent insulinotropic polypeptide: diabetes, obesity, osteoporosis and Alzheimer’s disease? Expert Opin Investig Drugs 19:1039–1048CrossRefPubMed
Metadaten
Titel
GIP(3-30)NH2 is an efficacious GIP receptor antagonist in humans: a randomised, double-blinded, placebo-controlled, crossover study
verfasst von
Lærke S. Gasbjerg
Mikkel B. Christensen
Bolette Hartmann
Amalie R. Lanng
Alexander H. Sparre-Ulrich
Maria B. N. Gabe
Flemming Dela
Tina Vilsbøll
Jens J. Holst
Mette M. Rosenkilde
Filip K. Knop
Publikationsdatum
01.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 2/2018
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4447-4

Weitere Artikel der Ausgabe 2/2018

Diabetologia 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.