Skip to main content
Erschienen in: Brain Structure and Function 7/2017

06.05.2017 | Review

Melatonin receptors: distribution in mammalian brain and their respective putative functions

verfasst von: Khuen Yen Ng, Mun Kit Leong, Huazheng Liang, George Paxinos

Erschienen in: Brain Structure and Function | Ausgabe 7/2017

Einloggen, um Zugang zu erhalten

Abstract

Melatonin, through its different receptors, has pleiotropic functions in mammalian brain. Melatonin is secreted mainly by the pineal gland and exerts its effects via receptor-mediated and non-receptor-mediated actions. With recent advancement in neuroanatomical mapping, we may now understand better the localizations of the two G protein-coupled melatonin receptors MT1 and MT2. The abundance of these melatonin receptors in respective brain regions suggests that receptor-mediated actions of melatonin might play crucial roles in the functions of central nervous system. Hence, this review aims to summarize the distribution of melatonin receptors in the brain and to discuss the putative functions of melatonin in the retina, cerebral cortex, reticular thalamic nucleus, habenula, hypothalamus, pituitary gland, periaqueductal gray, dorsal raphe nucleus, midbrain and cerebellum. Studies on melatonin receptors in the brain are important because cumulative evidence has pointed out that melatonin receptors not only play important physiological roles in sleep, anxiety, pain and circadian rhythm, but might also be involved in the pathogenesis of a number of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease and Huntington’s disease.
Literatur
Zurück zum Zitat Adamah-Biassi EB, Zhang Y, Jung H, Vissapragada S, Miller RJ, Dubocovich M (2014) Distribution of MT1 melatonin receptor promoter-driven RFP expression in the brains of BAC C3H/HeN transgenic mice. J Histochem Cytochem Off J Histochem Soc 62(1):70–84. doi:10.1369/0022155413507453 CrossRef Adamah-Biassi EB, Zhang Y, Jung H, Vissapragada S, Miller RJ, Dubocovich M (2014) Distribution of MT1 melatonin receptor promoter-driven RFP expression in the brains of BAC C3H/HeN transgenic mice. J Histochem Cytochem Off J Histochem Soc 62(1):70–84. doi:10.​1369/​0022155413507453​ CrossRef
Zurück zum Zitat Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit 16(2):Br61–Br67PubMed Adi N, Mash DC, Ali Y, Singer C, Shehadeh L, Papapetropoulos S (2010) Melatonin MT1 and MT2 receptor expression in Parkinson’s disease. Med Sci Monit 16(2):Br61–Br67PubMed
Zurück zum Zitat Al-Ghoul WM, Herman MD, Dubocovich ML (1998) Melatonin receptor subtype expression in human cerebellum. NeuroReport 9(18):4063–4068PubMedCrossRef Al-Ghoul WM, Herman MD, Dubocovich ML (1998) Melatonin receptor subtype expression in human cerebellum. NeuroReport 9(18):4063–4068PubMedCrossRef
Zurück zum Zitat Barlow-Walden LR, Reiter RJ, Abe M, Pablos M, Menendez-Pelaez A, Chen LD, Poeggeler B (1995) Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 26(5):497–502PubMedCrossRef Barlow-Walden LR, Reiter RJ, Abe M, Pablos M, Menendez-Pelaez A, Chen LD, Poeggeler B (1995) Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 26(5):497–502PubMedCrossRef
Zurück zum Zitat Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269(46):28531–28534PubMed Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N, Andre E, Missbach M, Saurat JH, Carlberg C (1994) Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem 269(46):28531–28534PubMed
Zurück zum Zitat Bordet R, Devos D, Brique S, Touitou Y, Guieu JD, Libersa C, Destee A (2003) Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol 26(2):65–72PubMedCrossRef Bordet R, Devos D, Brique S, Touitou Y, Guieu JD, Libersa C, Destee A (2003) Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol 26(2):65–72PubMedCrossRef
Zurück zum Zitat Breen DP, Nombela C, Vuono R, Jones PS, Fisher K, Burn DJ, Brooks DJ, Reddy AB, Rowe JB, Barker RA (2016) Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. doi:10.1002/mds.26592 Breen DP, Nombela C, Vuono R, Jones PS, Fisher K, Burn DJ, Brooks DJ, Reddy AB, Rowe JB, Barker RA (2016) Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. doi:10.​1002/​mds.​26592
Zurück zum Zitat Brunner P, Sozer-Topcular N, Jockers R, Ravid R, Angeloni D, Fraschini F, Eckert A, Muller-Spahn F, Savaskan E (2006) Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur J Histochem EJH 50(4):311–316PubMed Brunner P, Sozer-Topcular N, Jockers R, Ravid R, Angeloni D, Fraschini F, Eckert A, Muller-Spahn F, Savaskan E (2006) Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur J Histochem EJH 50(4):311–316PubMed
Zurück zum Zitat Bubenik GA (2002) Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci 47(10):2336–2348PubMedCrossRef Bubenik GA (2002) Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci 47(10):2336–2348PubMedCrossRef
Zurück zum Zitat Carlson LL, Weaver DR, Reppert SM (1989) Melatonin signal transduction in hamster brain: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein. Endocrinology 125(5):2670–2676. doi:10.1210/endo-125-5-2670 PubMedCrossRef Carlson LL, Weaver DR, Reppert SM (1989) Melatonin signal transduction in hamster brain: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein. Endocrinology 125(5):2670–2676. doi:10.​1210/​endo-125-5-2670 PubMedCrossRef
Zurück zum Zitat Cazevieille C, Safa R, Osborne NN (1997) Melatonin protects primary cultures of rat cortical neurones from NMDA excitotoxicity and hypoxia/reoxygenation. Brain Res 768(1–2):120–124PubMedCrossRef Cazevieille C, Safa R, Osborne NN (1997) Melatonin protects primary cultures of rat cortical neurones from NMDA excitotoxicity and hypoxia/reoxygenation. Brain Res 768(1–2):120–124PubMedCrossRef
Zurück zum Zitat Comai S, Ochoa-Sanchez R, Dominguez-Lopez S, Bambico FR, Gobbi G (2015) Melancholic-like behaviors and circadian neurobiological abnormalities in melatonin MT1 receptor knockout mice. Int J Neuropsychopharmacol. doi:10.1093/ijnp/pyu075 PubMedPubMedCentral Comai S, Ochoa-Sanchez R, Dominguez-Lopez S, Bambico FR, Gobbi G (2015) Melancholic-like behaviors and circadian neurobiological abnormalities in melatonin MT1 receptor knockout mice. Int J Neuropsychopharmacol. doi:10.​1093/​ijnp/​pyu075 PubMedPubMedCentral
Zurück zum Zitat Costa EJ, Lopes RH, Lamy-Freund MT (1995) Permeability of pure lipid bilayers to melatonin. J Pineal Res 19(3):123–126PubMedCrossRef Costa EJ, Lopes RH, Lamy-Freund MT (1995) Permeability of pure lipid bilayers to melatonin. J Pineal Res 19(3):123–126PubMedCrossRef
Zurück zum Zitat Dardente H, Klosen P, Pevet P, Masson-Pevet M (2003) MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod. J Neuroendocrinol 15(8):778–786PubMedCrossRef Dardente H, Klosen P, Pevet P, Masson-Pevet M (2003) MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod. J Neuroendocrinol 15(8):778–786PubMedCrossRef
Zurück zum Zitat Deupi X, Dolker N, Lopez-Rodriguez ML, Campillo M, Ballesteros JA, Pardo L (2007) Structural models of class a G protein-coupled receptors as a tool for drug design: insights on transmembrane bundle plasticity. Curr Top Med Chem 7(10):991–998PubMedCrossRef Deupi X, Dolker N, Lopez-Rodriguez ML, Campillo M, Ballesteros JA, Pardo L (2007) Structural models of class a G protein-coupled receptors as a tool for drug design: insights on transmembrane bundle plasticity. Curr Top Med Chem 7(10):991–998PubMedCrossRef
Zurück zum Zitat Dominguez-Lopez S, Mahar I, Bambico FR, Labonte B, Ochoa-Sanchez R, Leyton M, Gobbi G (2012) Short-term effects of melatonin and pinealectomy on serotonergic neuronal activity across the light–dark cycle. J Psychopharmacol 26(6):830–844. doi:10.1177/0269881111408460 PubMedCrossRef Dominguez-Lopez S, Mahar I, Bambico FR, Labonte B, Ochoa-Sanchez R, Leyton M, Gobbi G (2012) Short-term effects of melatonin and pinealectomy on serotonergic neuronal activity across the light–dark cycle. J Psychopharmacol 26(6):830–844. doi:10.​1177/​0269881111408460​ PubMedCrossRef
Zurück zum Zitat Dubocovich ML, Benloucif S, Masana MI (1996) Melatonin receptors in the mammalian suprachiasmatic nucleus. Behav Brain Res 73(1–2):141–147PubMed Dubocovich ML, Benloucif S, Masana MI (1996) Melatonin receptors in the mammalian suprachiasmatic nucleus. Behav Brain Res 73(1–2):141–147PubMed
Zurück zum Zitat Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J (2010) International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62(3):343–380. doi:10.1124/pr.110.002832 PubMedPubMedCentralCrossRef Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J (2010) International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 62(3):343–380. doi:10.​1124/​pr.​110.​002832 PubMedPubMedCentralCrossRef
Zurück zum Zitat Ebisawa T, Karne S, Lerner MR, Reppert SM (1994) Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci USA 91(13):6133–6137PubMedPubMedCentralCrossRef Ebisawa T, Karne S, Lerner MR, Reppert SM (1994) Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc Natl Acad Sci USA 91(13):6133–6137PubMedPubMedCentralCrossRef
Zurück zum Zitat Ekthuwapranee K, Sotthibundhu A, Govitrapong P (2015) Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro. J Pineal Res 58(4):418–428. doi:10.1111/jpi.12225 PubMedCrossRef Ekthuwapranee K, Sotthibundhu A, Govitrapong P (2015) Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro. J Pineal Res 58(4):418–428. doi:10.​1111/​jpi.​12225 PubMedCrossRef
Zurück zum Zitat El-Sherif Y, Witt-Enderby P, Li PK, Tesoriero J, Hogan MV, Wieraszko A (2004) The actions of a charged melatonin receptor ligand, TMEPI, and an irreversible MT2 receptor agonist, BMNEP, on mouse hippocampal evoked potentials in vitro. Life Sci 75(26):3147–3156. doi:10.1016/j.lfs.2004.06.009 PubMedCrossRef El-Sherif Y, Witt-Enderby P, Li PK, Tesoriero J, Hogan MV, Wieraszko A (2004) The actions of a charged melatonin receptor ligand, TMEPI, and an irreversible MT2 receptor agonist, BMNEP, on mouse hippocampal evoked potentials in vitro. Life Sci 75(26):3147–3156. doi:10.​1016/​j.​lfs.​2004.​06.​009 PubMedCrossRef
Zurück zum Zitat Evely KM, Hudson RL, Dubocovich ML, Haj-Dahmane S (2016) Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula. Synapse (New York, NY) 70(5):181–186. doi:10.1002/syn.21892 CrossRef Evely KM, Hudson RL, Dubocovich ML, Haj-Dahmane S (2016) Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula. Synapse (New York, NY) 70(5):181–186. doi:10.​1002/​syn.​21892 CrossRef
Zurück zum Zitat Fujieda H, Hamadanizadeh SA, Wankiewicz E, Pang SF, Brown GM (1999) Expression of mt1 melatonin receptor in rat retina: evidence for multiple cell targets for melatonin. Neuroscience 93(2):793–799PubMedCrossRef Fujieda H, Hamadanizadeh SA, Wankiewicz E, Pang SF, Brown GM (1999) Expression of mt1 melatonin receptor in rat retina: evidence for multiple cell targets for melatonin. Neuroscience 93(2):793–799PubMedCrossRef
Zurück zum Zitat Fujieda H, Scher J, Hamadanizadeh SA, Wankiewicz E, Pang SF, Brown GM (2000) Dopaminergic and GABAergic amacrine cells are direct targets of melatonin: immunocytochemical study of mt1 melatonin receptor in guinea pig retina. Vis Neurosci 17(1):63–70PubMedCrossRef Fujieda H, Scher J, Hamadanizadeh SA, Wankiewicz E, Pang SF, Brown GM (2000) Dopaminergic and GABAergic amacrine cells are direct targets of melatonin: immunocytochemical study of mt1 melatonin receptor in guinea pig retina. Vis Neurosci 17(1):63–70PubMedCrossRef
Zurück zum Zitat Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40(8):959–975PubMedCrossRef Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40(8):959–975PubMedCrossRef
Zurück zum Zitat Graeff FG (2012) New perspective on the pathophysiology of panic: merging serotonin and opioids in the periaqueductal gray. Braz J Med Biol Res Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al] 45(4):366–375 Graeff FG (2012) New perspective on the pathophysiology of panic: merging serotonin and opioids in the periaqueductal gray. Braz J Med Biol Res Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al] 45(4):366–375
Zurück zum Zitat Harsanyi K, Mangel SC (1992) Activation of a D2 receptor increases electrical coupling between retinal horizontal cells by inhibiting dopamine release. Proc Natl Acad Sci USA 89(19):9220–9224PubMedPubMedCentralCrossRef Harsanyi K, Mangel SC (1992) Activation of a D2 receptor increases electrical coupling between retinal horizontal cells by inhibiting dopamine release. Proc Natl Acad Sci USA 89(19):9220–9224PubMedPubMedCentralCrossRef
Zurück zum Zitat Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML (2001) Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 280(1):C110–C118PubMed Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML (2001) Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 280(1):C110–C118PubMed
Zurück zum Zitat Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR (2003) Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 23(3):1054–1060PubMedPubMedCentralCrossRef Jin X, von Gall C, Pieschl RL, Gribkoff VK, Stehle JH, Reppert SM, Weaver DR (2003) Targeted disruption of the mouse Mel(1b) melatonin receptor. Mol Cell Biol 23(3):1054–1060PubMedPubMedCentralCrossRef
Zurück zum Zitat Klosen P, Bienvenu C, Demarteau O, Dardente H, Guerrero H, Pevet P, Masson-Pevet M (2002) The mt1 melatonin receptor and RORbeta receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J Histochem Cytochem Off J Histochem Soc 50(12):1647–1657CrossRef Klosen P, Bienvenu C, Demarteau O, Dardente H, Guerrero H, Pevet P, Masson-Pevet M (2002) The mt1 melatonin receptor and RORbeta receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J Histochem Cytochem Off J Histochem Soc 50(12):1647–1657CrossRef
Zurück zum Zitat Kotler M, Rodriguez C, Sainz RM, Antolin I, Menendez-Pelaez A (1998) Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 24(2):83–89PubMedCrossRef Kotler M, Rodriguez C, Sainz RM, Antolin I, Menendez-Pelaez A (1998) Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 24(2):83–89PubMedCrossRef
Zurück zum Zitat Lacoste B, Angeloni D, Dominguez-Lopez S, Calderoni S, Mauro A, Fraschini F, Descarries L, Gobbi G (2015) Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J Pineal Res 58(4):397–417. doi:10.1111/jpi.12224 PubMedCrossRef Lacoste B, Angeloni D, Dominguez-Lopez S, Calderoni S, Mauro A, Fraschini F, Descarries L, Gobbi G (2015) Anatomical and cellular localization of melatonin MT1 and MT2 receptors in the adult rat brain. J Pineal Res 58(4):397–417. doi:10.​1111/​jpi.​12224 PubMedCrossRef
Zurück zum Zitat Lakin ML, Miller CH, Stott ML, Winters WD (1981) Involvement of the pineal gland and melatonin in murine analgesia. Life Sci 29(24):2543–2551PubMedCrossRef Lakin ML, Miller CH, Stott ML, Winters WD (1981) Involvement of the pineal gland and melatonin in murine analgesia. Life Sci 29(24):2543–2551PubMedCrossRef
Zurück zum Zitat Lee CH, Yoo KY, Choi JH, Park OK, Hwang IK, Kwon YG, Kim YM, Won MH (2010) Melatonin’s protective action against ischemic neuronal damage is associated with up-regulation of the MT2 melatonin receptor. J Neurosci Res 88(12):2630–2640. doi:10.1002/jnr.22430 PubMed Lee CH, Yoo KY, Choi JH, Park OK, Hwang IK, Kwon YG, Kim YM, Won MH (2010) Melatonin’s protective action against ischemic neuronal damage is associated with up-regulation of the MT2 melatonin receptor. J Neurosci Res 88(12):2630–2640. doi:10.​1002/​jnr.​22430 PubMed
Zurück zum Zitat Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19(1):91–102PubMedCrossRef Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM (1997) Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19(1):91–102PubMedCrossRef
Zurück zum Zitat Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 84(1):323–327. doi:10.1210/jcem.84.1.5394 PubMed Liu RY, Zhou JN, van Heerikhuize J, Hofman MA, Swaab DF (1999) Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J Clin Endocrinol Metab 84(1):323–327. doi:10.​1210/​jcem.​84.​1.​5394 PubMed
Zurück zum Zitat Liu J, Somera-Molina KC, Hudson RL, Dubocovich ML (2013) Melatonin potentiates running wheel-induced neurogenesis in the dentate gyrus of adult C3H/HeN mice hippocampus. J Pineal Res 54(2):222–231. doi:10.1111/jpi.12023 PubMedCrossRef Liu J, Somera-Molina KC, Hudson RL, Dubocovich ML (2013) Melatonin potentiates running wheel-induced neurogenesis in the dentate gyrus of adult C3H/HeN mice hippocampus. J Pineal Res 54(2):222–231. doi:10.​1111/​jpi.​12023 PubMedCrossRef
Zurück zum Zitat Lopez-Canul M, Palazzo E, Dominguez-Lopez S, Luongo L, Lacoste B, Comai S, Angeloni D, Fraschini F, Boccella S, Spadoni G, Bedini A, Tarzia G, Maione S, Granados-Soto V, Gobbi G (2015b) Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain 156(2):305–317. doi:10.1097/01.j.pain.0000460311.71572.5f PubMedCrossRef Lopez-Canul M, Palazzo E, Dominguez-Lopez S, Luongo L, Lacoste B, Comai S, Angeloni D, Fraschini F, Boccella S, Spadoni G, Bedini A, Tarzia G, Maione S, Granados-Soto V, Gobbi G (2015b) Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain 156(2):305–317. doi:10.​1097/​01.​j.​pain.​0000460311.​71572.​5f PubMedCrossRef
Zurück zum Zitat Lowenstein PR, Rosenstein R, Cardinali DP (1985) Melatonin reverses pinealectomy-induced decrease of benzodiazepine binding in rat cerebral cortex. Neurochem Int 7(4):675–681PubMedCrossRef Lowenstein PR, Rosenstein R, Cardinali DP (1985) Melatonin reverses pinealectomy-induced decrease of benzodiazepine binding in rat cerebral cortex. Neurochem Int 7(4):675–681PubMedCrossRef
Zurück zum Zitat Manto M, Bower JM, Conforto AB, Delgado-García Jé M, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Ben Taib NO, Pelisson D, Tesche CD, Tilikete C, Timmann D (2012) Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11(2):457–487. doi:10.1007/s12311-011-0331-9 PubMedPubMedCentralCrossRef Manto M, Bower JM, Conforto AB, Delgado-García Jé M, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Ben Taib NO, Pelisson D, Tesche CD, Tilikete C, Timmann D (2012) Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11(2):457–487. doi:10.​1007/​s12311-011-0331-9 PubMedPubMedCentralCrossRef
Zurück zum Zitat Marangos PJ, Patel J, Hirata F, Sondhein D, Paul SM, Skolnick P, Goodwin FK (1981) Inhibition of diazepam binding by tryptophan derivatives including melatonin and its brain metabolite N-acetyl-5-methoxy kynurenamine. Life Sci 29(3):259–267PubMedCrossRef Marangos PJ, Patel J, Hirata F, Sondhein D, Paul SM, Skolnick P, Goodwin FK (1981) Inhibition of diazepam binding by tryptophan derivatives including melatonin and its brain metabolite N-acetyl-5-methoxy kynurenamine. Life Sci 29(3):259–267PubMedCrossRef
Zurück zum Zitat Masson-Pevet M, George D, Kalsbeek A, Saboureau M, Lakhdar-Ghazal N, Pevet P (1994) An attempt to correlate brain areas containing melatonin-binding sites with rhythmic functions: a study in five hibernator species. Cell Tissue Res 278(1):97–106PubMedCrossRef Masson-Pevet M, George D, Kalsbeek A, Saboureau M, Lakhdar-Ghazal N, Pevet P (1994) An attempt to correlate brain areas containing melatonin-binding sites with rhythmic functions: a study in five hibernator species. Cell Tissue Res 278(1):97–106PubMedCrossRef
Zurück zum Zitat Mazzucchelli C, Pannacci M, Nonno R, Lucini V, Fraschini F, Stankov BM (1996) The melatonin receptor in the human brain: cloning experiments and distribution studies. Brain Res Mol Brain Res 39(1–2):117–126PubMedCrossRef Mazzucchelli C, Pannacci M, Nonno R, Lucini V, Fraschini F, Stankov BM (1996) The melatonin receptor in the human brain: cloning experiments and distribution studies. Brain Res Mol Brain Res 39(1–2):117–126PubMedCrossRef
Zurück zum Zitat Meyer P, Pache M, Loeffler KU, Brydon L, Jockers R, Flammer J, Wirz-Justice A, Savaskan E (2002) Melatonin MT-1-receptor immunoreactivity in the human eye. Br J Ophthalmol 86(9):1053–1057PubMedPubMedCentralCrossRef Meyer P, Pache M, Loeffler KU, Brydon L, Jockers R, Flammer J, Wirz-Justice A, Savaskan E (2002) Melatonin MT-1-receptor immunoreactivity in the human eye. Br J Ophthalmol 86(9):1053–1057PubMedPubMedCentralCrossRef
Zurück zum Zitat Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24(2):101–146PubMedCrossRef Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24(2):101–146PubMedCrossRef
Zurück zum Zitat Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ (2002) Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus 12(2):165–173. doi:10.1002/hipo.1105 PubMedCrossRef Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ (2002) Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus 12(2):165–173. doi:10.​1002/​hipo.​1105 PubMedCrossRef
Zurück zum Zitat Neu JM, Niles LP (1997) A marked diurnal rhythm of melatonin ML1A receptor mRNA expression in the suprachiasmatic nucleus. Brain Res Mol Brain Res 49(1–2):303–306PubMedCrossRef Neu JM, Niles LP (1997) A marked diurnal rhythm of melatonin ML1A receptor mRNA expression in the suprachiasmatic nucleus. Brain Res Mol Brain Res 49(1–2):303–306PubMedCrossRef
Zurück zum Zitat Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, Fauchere JL, Delagrange P, Canet E, Boutin JA (2000) Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem 275(40):31311–31317. doi:10.1074/jbc.M005141200 PubMedCrossRef Nosjean O, Ferro M, Coge F, Beauverger P, Henlin JM, Lefoulon F, Fauchere JL, Delagrange P, Canet E, Boutin JA (2000) Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem 275(40):31311–31317. doi:10.​1074/​jbc.​M005141200 PubMedCrossRef
Zurück zum Zitat Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S, Spadoni G, Rivara S, Bedini A, Angeloni D, Fraschini F, Mor M, Tarzia G, Descarries L, Gobbi G (2011) Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci 31(50):18439–18452. doi:10.1523/jneurosci.2676-11.2011 PubMedCrossRef Ochoa-Sanchez R, Comai S, Lacoste B, Bambico FR, Dominguez-Lopez S, Spadoni G, Rivara S, Bedini A, Angeloni D, Fraschini F, Mor M, Tarzia G, Descarries L, Gobbi G (2011) Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci 31(50):18439–18452. doi:10.​1523/​jneurosci.​2676-11.​2011 PubMedCrossRef
Zurück zum Zitat O’Neal-Moffitt G, Delic V, Bradshaw PC, Olcese J (2015) Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AbetaPP(swe)/PS1 mice. Mol Neurodegener 10:27. doi:10.1186/s13024-015-0027-6 PubMedPubMedCentralCrossRef O’Neal-Moffitt G, Delic V, Bradshaw PC, Olcese J (2015) Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AbetaPP(swe)/PS1 mice. Mol Neurodegener 10:27. doi:10.​1186/​s13024-015-0027-6 PubMedPubMedCentralCrossRef
Zurück zum Zitat Parada E, Buendia I, Leon R, Negredo P, Romero A, Cuadrado A, Lopez MG, Egea J (2014) Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res 56(2):204–212. doi:10.1111/jpi.12113 PubMedCrossRef Parada E, Buendia I, Leon R, Negredo P, Romero A, Cuadrado A, Lopez MG, Egea J (2014) Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res 56(2):204–212. doi:10.​1111/​jpi.​12113 PubMedCrossRef
Zurück zum Zitat Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Elsevier Academic Press, San Diego Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates, 7th edn. Elsevier Academic Press, San Diego
Zurück zum Zitat Petit L, Lacroix I, de Coppet P, Strosberg AD, Jockers R (1999) Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3′–5′-monophosphate pathway. Biochem Pharmacol 58(4):633–639PubMedCrossRef Petit L, Lacroix I, de Coppet P, Strosberg AD, Jockers R (1999) Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3′–5′-monophosphate pathway. Biochem Pharmacol 58(4):633–639PubMedCrossRef
Zurück zum Zitat Pinato L, da Silveira Cruz-Machado S, Franco DG, Campos LMG, Cecon E, Fernandes P, Bittencourt JC, Markus RP (2015) Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis. Brain Struct Funct 220(2):827–840. doi:10.1007/s00429-013-0686-4 PubMedCrossRef Pinato L, da Silveira Cruz-Machado S, Franco DG, Campos LMG, Cecon E, Fernandes P, Bittencourt JC, Markus RP (2015) Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis. Brain Struct Funct 220(2):827–840. doi:10.​1007/​s00429-013-0686-4 PubMedCrossRef
Zurück zum Zitat Poirel VJ, Masson-Pevet M, Pevet P, Gauer F (2002) MT1 melatonin receptor mRNA expression exhibits a circadian variation in the rat suprachiasmatic nuclei. Brain Res 946(1):64–71PubMedCrossRef Poirel VJ, Masson-Pevet M, Pevet P, Gauer F (2002) MT1 melatonin receptor mRNA expression exhibits a circadian variation in the rat suprachiasmatic nuclei. Brain Res 946(1):64–71PubMedCrossRef
Zurück zum Zitat Ramirez-Rodriguez G, Klempin F, Babu H, Benitez-King G, Kempermann G (2009) Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology 34(9):2180–2191. doi:10.1038/npp.2009.46 PubMedCrossRef Ramirez-Rodriguez G, Klempin F, Babu H, Benitez-King G, Kempermann G (2009) Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology 34(9):2180–2191. doi:10.​1038/​npp.​2009.​46 PubMedCrossRef
Zurück zum Zitat Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 40(4):557–567. doi:10.1017/s0033291709990821 PubMedCrossRef Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG (2010) Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 40(4):557–567. doi:10.​1017/​s003329170999082​1 PubMedCrossRef
Zurück zum Zitat Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S (2007) Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci 52:11–28PubMed Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S (2007) Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv Med Sci 52:11–28PubMed
Zurück zum Zitat Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13(5):1177–1185PubMedCrossRef Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13(5):1177–1185PubMedCrossRef
Zurück zum Zitat Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci USA 92(19):8734–8738PubMedPubMedCentralCrossRef Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci USA 92(19):8734–8738PubMedPubMedCentralCrossRef
Zurück zum Zitat Reppert SM, Weaver DR, Ebisawa T, Mahle CD, Kolakowski LF Jr (1996) Cloning of a melatonin-related receptor from human pituitary. FEBS Lett 386(2–3):219–224PubMedCrossRef Reppert SM, Weaver DR, Ebisawa T, Mahle CD, Kolakowski LF Jr (1996) Cloning of a melatonin-related receptor from human pituitary. FEBS Lett 386(2–3):219–224PubMedCrossRef
Zurück zum Zitat Ruksee N, Tongjaroenbuangam W, Mahanam T, Govitrapong P (2014) Melatonin pretreatment prevented the effect of dexamethasone negative alterations on behavior and hippocampal neurogenesis in the mouse brain. J Steroid Biochem Mol Biol 143:72–80. doi:10.1016/j.jsbmb.2014.02.011 PubMedCrossRef Ruksee N, Tongjaroenbuangam W, Mahanam T, Govitrapong P (2014) Melatonin pretreatment prevented the effect of dexamethasone negative alterations on behavior and hippocampal neurogenesis in the mouse brain. J Steroid Biochem Mol Biol 143:72–80. doi:10.​1016/​j.​jsbmb.​2014.​02.​011 PubMedCrossRef
Zurück zum Zitat Saarela S, Reiter RJ (1994) Function of melatonin in thermoregulatory processes. Life Sci 54(5):295–311PubMedCrossRef Saarela S, Reiter RJ (1994) Function of melatonin in thermoregulatory processes. Life Sci 54(5):295–311PubMedCrossRef
Zurück zum Zitat Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R, Wirz-Justice A, Muller-Spahn F (2002a) Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J Pineal Res 32(1):59–62PubMedCrossRef Savaskan E, Olivieri G, Meier F, Brydon L, Jockers R, Ravid R, Wirz-Justice A, Muller-Spahn F (2002a) Increased melatonin 1a-receptor immunoreactivity in the hippocampus of Alzheimer’s disease patients. J Pineal Res 32(1):59–62PubMedCrossRef
Zurück zum Zitat Savaskan E, Wirz-Justice A, Olivieri G, Pache M, Krauchi K, Brydon L, Jockers R, Muller-Spahn F, Meyer P (2002b) Distribution of melatonin MT1 receptor immunoreactivity in human retina. J Histochem Cytochem Off J Histochem Soc 50(4):519–526. doi:10.1177/002215540205000408 CrossRef Savaskan E, Wirz-Justice A, Olivieri G, Pache M, Krauchi K, Brydon L, Jockers R, Muller-Spahn F, Meyer P (2002b) Distribution of melatonin MT1 receptor immunoreactivity in human retina. J Histochem Cytochem Off J Histochem Soc 50(4):519–526. doi:10.​1177/​0022155402050004​08 CrossRef
Zurück zum Zitat Savaskan E, Jockers R, Ayoub M, Angeloni D, Fraschini F, Flammer J, Eckert A, Muller-Spahn F, Meyer P (2007) The MT2 melatonin receptor subtype is present in human retina and decreases in Alzheimer’s disease. Curr Alzheimer Res 4(1):47–51PubMedCrossRef Savaskan E, Jockers R, Ayoub M, Angeloni D, Fraschini F, Flammer J, Eckert A, Muller-Spahn F, Meyer P (2007) The MT2 melatonin receptor subtype is present in human retina and decreases in Alzheimer’s disease. Curr Alzheimer Res 4(1):47–51PubMedCrossRef
Zurück zum Zitat Scher J, Wankiewicz E, Brown GM, Fujieda H (2002) MT(1) melatonin receptor in the human retina: expression and localization. Investig Ophthalmol Vis Sci 43(3):889–897 Scher J, Wankiewicz E, Brown GM, Fujieda H (2002) MT(1) melatonin receptor in the human retina: expression and localization. Investig Ophthalmol Vis Sci 43(3):889–897
Zurück zum Zitat Sharkey J, Olcese J (2007) Transcriptional inhibition of oxytocin receptor expression in human myometrial cells by melatonin involves protein kinase C signaling. J Clin Endocrinol Metab 92(10):4015–4019. doi:10.1210/jc.2007-1128 PubMedCrossRef Sharkey J, Olcese J (2007) Transcriptional inhibition of oxytocin receptor expression in human myometrial cells by melatonin involves protein kinase C signaling. J Clin Endocrinol Metab 92(10):4015–4019. doi:10.​1210/​jc.​2007-1128 PubMedCrossRef
Zurück zum Zitat Shibata S, Cassone VM, Moore RY (1989) Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 97(1–2):140–144PubMedCrossRef Shibata S, Cassone VM, Moore RY (1989) Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci Lett 97(1–2):140–144PubMedCrossRef
Zurück zum Zitat Siuciak JA, Fang JM, Dubocovich ML (1990) Autoradiographic localization of 2-[125I]iodomelatonin binding sites in the brains of C3H/HeN and C57BL/6J strains of mice. Eur J Pharmacol 180(2–3):387–390PubMedCrossRef Siuciak JA, Fang JM, Dubocovich ML (1990) Autoradiographic localization of 2-[125I]iodomelatonin binding sites in the brains of C3H/HeN and C57BL/6J strains of mice. Eur J Pharmacol 180(2–3):387–390PubMedCrossRef
Zurück zum Zitat Song Y, Ayre EA, Pang SF (1992) The identification and characterization of 125I-labelled iodomelatonin-binding sites in the duck kidney. J Endocrinol 135(2):353–359PubMedCrossRef Song Y, Ayre EA, Pang SF (1992) The identification and characterization of 125I-labelled iodomelatonin-binding sites in the duck kidney. J Endocrinol 135(2):353–359PubMedCrossRef
Zurück zum Zitat Song Y, Chan CW, Brown GM, Pang SF, Silverman M (1997) Studies of the renal action of melatonin: evidence that the effects are mediated by 37 kDa receptors of the Mel1a subtype localized primarily to the basolateral membrane of the proximal tubule. Faseb J 11(1):93–100PubMed Song Y, Chan CW, Brown GM, Pang SF, Silverman M (1997) Studies of the renal action of melatonin: evidence that the effects are mediated by 37 kDa receptors of the Mel1a subtype localized primarily to the basolateral membrane of the proximal tubule. Faseb J 11(1):93–100PubMed
Zurück zum Zitat Srinivasan V, Cardinali DP, Srinivasan US, Kaur C, Brown GM, Spence DW, Hardeland R, Pandi-Perumal SR (2011) Therapeutic potential of melatonin and its analogs in Parkinson’s disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord 4(5):297–317. doi:10.1177/1756285611406166 PubMedPubMedCentralCrossRef Srinivasan V, Cardinali DP, Srinivasan US, Kaur C, Brown GM, Spence DW, Hardeland R, Pandi-Perumal SR (2011) Therapeutic potential of melatonin and its analogs in Parkinson’s disease: focus on sleep and neuroprotection. Ther Adv Neurol Disord 4(5):297–317. doi:10.​1177/​1756285611406166​ PubMedPubMedCentralCrossRef
Zurück zum Zitat Stankov B, Cozzi B, Lucini V, Fumagalli P, Scaglione F, Fraschini F (1991) Characterization and mapping of melatonin receptors in the brain of three mammalian species: rabbit, horse and sheep. A comparative in vitro binding study. Neuroendocrinology 53(3):214–221PubMedCrossRef Stankov B, Cozzi B, Lucini V, Fumagalli P, Scaglione F, Fraschini F (1991) Characterization and mapping of melatonin receptors in the brain of three mammalian species: rabbit, horse and sheep. A comparative in vitro binding study. Neuroendocrinology 53(3):214–221PubMedCrossRef
Zurück zum Zitat Stankov B, Biella G, Panara C, Lucini V, Capsoni S, Fauteck J, Cozzi B, Fraschini F (1992) Melatonin signal transduction and mechanism of action in the central nervous system: using the rabbit cortex as a model. Endocrinology 130(4):2152–2159. doi:10.1210/endo.130.4.1312448 PubMed Stankov B, Biella G, Panara C, Lucini V, Capsoni S, Fauteck J, Cozzi B, Fraschini F (1992) Melatonin signal transduction and mechanism of action in the central nervous system: using the rabbit cortex as a model. Endocrinology 130(4):2152–2159. doi:10.​1210/​endo.​130.​4.​1312448 PubMed
Zurück zum Zitat Sugden D, McArthur AJ, Ajpru S, Duniec K, Piggins HD (1999) Expression of mt(1) melatonin receptor subtype mRNA in the entrained rat suprachiasmatic nucleus: a quantitative RT-PCR study across the diurnal cycle. Brain Res Mol Brain Res 72(2):176–182PubMedCrossRef Sugden D, McArthur AJ, Ajpru S, Duniec K, Piggins HD (1999) Expression of mt(1) melatonin receptor subtype mRNA in the entrained rat suprachiasmatic nucleus: a quantitative RT-PCR study across the diurnal cycle. Brain Res Mol Brain Res 72(2):176–182PubMedCrossRef
Zurück zum Zitat Uz T, Akhisaroglu M, Ahmed R, Manev H (2003) The pineal gland is critical for circadian Period1 expression in the striatum and for circadian cocaine sensitization in mice. Neuropsychopharmacology 28(12):2117–2123. doi:10.1038/sj.npp.1300254 PubMed Uz T, Akhisaroglu M, Ahmed R, Manev H (2003) The pineal gland is critical for circadian Period1 expression in the striatum and for circadian cocaine sensitization in mice. Neuropsychopharmacology 28(12):2117–2123. doi:10.​1038/​sj.​npp.​1300254 PubMed
Zurück zum Zitat von Gall C, Weaver DR, Moek J, Jilg A, Stehle JH, Korf HW (2005) Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann N Y Acad Sci 1040:508–511. doi:10.1196/annals.1327.105 CrossRef von Gall C, Weaver DR, Moek J, Jilg A, Stehle JH, Korf HW (2005) Melatonin plays a crucial role in the regulation of rhythmic clock gene expression in the mouse pars tuberalis. Ann N Y Acad Sci 1040:508–511. doi:10.​1196/​annals.​1327.​105 CrossRef
Zurück zum Zitat Waly N, Hallworth R (2015) Circadian Pattern of melatonin MT1 and MT2 receptor localization in the rat suprachiasmatic nucleus. J Circadian Rhythms 13:Art. 1CrossRef Waly N, Hallworth R (2015) Circadian Pattern of melatonin MT1 and MT2 receptor localization in the rat suprachiasmatic nucleus. J Circadian Rhythms 13:Art. 1CrossRef
Zurück zum Zitat Weaver DR, Stehle JH, Stopa EG, Reppert SM (1993) Melatonin receptors in human hypothalamus and pituitary: implications for circadian and reproductive responses to melatonin. J Clin Endocrinol Metab 76(2):295–301. doi:10.1210/jcem.76.2.8381796 PubMed Weaver DR, Stehle JH, Stopa EG, Reppert SM (1993) Melatonin receptors in human hypothalamus and pituitary: implications for circadian and reproductive responses to melatonin. J Clin Endocrinol Metab 76(2):295–301. doi:10.​1210/​jcem.​76.​2.​8381796 PubMed
Zurück zum Zitat Weaver DR, Reppert SM (1996) The Mel1a melatonin receptor gene is expressed in human suprachiasmatic nuclei. Neuroreport 8(1):109–112PubMedCrossRef Weaver DR, Reppert SM (1996) The Mel1a melatonin receptor gene is expressed in human suprachiasmatic nuclei. Neuroreport 8(1):109–112PubMedCrossRef
Zurück zum Zitat Weaver DR, Liu C, Reppert SM (1996) Nature’s knockout: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Mol Endocrinol 10(11):1478–1487. doi:10.1210/mend.10.11.8923472 PubMed Weaver DR, Liu C, Reppert SM (1996) Nature’s knockout: the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters. Mol Endocrinol 10(11):1478–1487. doi:10.​1210/​mend.​10.​11.​8923472 PubMed
Zurück zum Zitat Williams LM (1989) Melatonin-binding sites in the rat brain and pituitary mapped by in vitro autoradiography. J Mol Endocrinol 3(1):71–75PubMedCrossRef Williams LM (1989) Melatonin-binding sites in the rat brain and pituitary mapped by in vitro autoradiography. J Mol Endocrinol 3(1):71–75PubMedCrossRef
Zurück zum Zitat Williams LM, Lincoln GA, Mercer JG, Barrett P, Morgan PJ, Clarke IJ (1997) Melatonin receptors in the brain and pituitary gland of hypothalamo-pituitary disconnected Soay rams. J Neuroendocrinol 9(8):639–643PubMedCrossRef Williams LM, Lincoln GA, Mercer JG, Barrett P, Morgan PJ, Clarke IJ (1997) Melatonin receptors in the brain and pituitary gland of hypothalamo-pituitary disconnected Soay rams. J Neuroendocrinol 9(8):639–643PubMedCrossRef
Zurück zum Zitat Witt-Enderby PA, Bennett J, Jarzynka MJ, Firestine S, Melan MA (2003) Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci 72(20):2183–2198PubMedCrossRef Witt-Enderby PA, Bennett J, Jarzynka MJ, Firestine S, Melan MA (2003) Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci 72(20):2183–2198PubMedCrossRef
Zurück zum Zitat Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, Van Heerikhuize J, Swaab DF (2006) Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J Comp Neurol 499(6):897–910. doi:10.1002/cne.21152 PubMedCrossRef Wu YH, Zhou JN, Balesar R, Unmehopa U, Bao A, Jockers R, Van Heerikhuize J, Swaab DF (2006) Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J Comp Neurol 499(6):897–910. doi:10.​1002/​cne.​21152 PubMedCrossRef
Zurück zum Zitat Wu YH, Ursinus J, Zhou JN, Scheer FA, Ai-Min B, Jockers R, van Heerikhuize J, Swaab DF (2013) Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression. J Affect Disord 148(2–3):357–367. doi:10.1016/j.jad.2012.12.025 PubMedCrossRef Wu YH, Ursinus J, Zhou JN, Scheer FA, Ai-Min B, Jockers R, van Heerikhuize J, Swaab DF (2013) Alterations of melatonin receptors MT1 and MT2 in the hypothalamic suprachiasmatic nucleus during depression. J Affect Disord 148(2–3):357–367. doi:10.​1016/​j.​jad.​2012.​12.​025 PubMedCrossRef
Zurück zum Zitat Yu CX, Wu GC, Xu SF, Chen CH (2000) Melatonin influences the release of endogenous opioid peptides in rat periaqueductal gray. Sheng li xue bao [Acta physiologica Sinica] 52(3):207–210 Yu CX, Wu GC, Xu SF, Chen CH (2000) Melatonin influences the release of endogenous opioid peptides in rat periaqueductal gray. Sheng li xue bao [Acta physiologica Sinica] 52(3):207–210
Zurück zum Zitat Zisapel N (2001) Melatonin-dopamine interactions: from basic neurochemistry to a clinical setting. Cell Mol Neurobiol 21(6):605–616PubMedCrossRef Zisapel N (2001) Melatonin-dopamine interactions: from basic neurochemistry to a clinical setting. Cell Mol Neurobiol 21(6):605–616PubMedCrossRef
Metadaten
Titel
Melatonin receptors: distribution in mammalian brain and their respective putative functions
verfasst von
Khuen Yen Ng
Mun Kit Leong
Huazheng Liang
George Paxinos
Publikationsdatum
06.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 7/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1439-6

Weitere Artikel der Ausgabe 7/2017

Brain Structure and Function 7/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.