Skip to main content
Erschienen in: Insights into Imaging 4/2011

Open Access 01.08.2011 | Pictorial Review

Magnetic resonance imaging of abnormal ventricular septal motion in heart diseases: a pictorial review

verfasst von: Cristina Méndez, Rafaela Soler, Esther Rodriguez, Marisol López, Lucia Álvarez, Noela Fernández, Lorenzo Montserrat

Erschienen in: Insights into Imaging | Ausgabe 4/2011

Abstract

The purpose of this article is to illustrate the usefulness of MR imaging in the clinical evaluation of congenital and acquired cardiac diseases characterised by ventricular septal wall motion abnormality. Recognition of the features of abnormal ventricular septal motion in MR images is important to evaluate the haemodynamic status in patients with congenital and acquired heart diseases in routine clinical practice.

Introduction

The interventricular septum (IVS) is an important structure that not only plays a direct role in bi-ventricular function, but can also reflect changes in the function of either ventricle, exhibiting abnormal configurations and motions that have physiological and diagnostic value [1].
Many conditions can cause abnormal motion of the ventricular septum. Although characteristics have been described to help differentiate these entities, its appearance on echocardiography may be similar [2]. Cardiac MRI can evaluate the motion of cardiac structures, accurately assess the right and left ventricular function, and identify myocardial viability in a single examination.
This article reproduces MR images of a wide range of congenital and acquired heart diseases characterised by abnormal configuration and motion of the ventricular septum.

Position and geometry of the ventricular septum

Under normal conditions, the septum has a right convexity, and this configuration is maintained during the cardiac cycle. Because the two ventricles compete for space within the pericardium and share common myocardial fibres in the septal region, filling in one ventricle affects filling in the other, because of septal shift. This is a normal physiological phenomenon known as ventricular interdependence, which is altered by the pressure changes during ventricle filling [1, 3]. Inspiration enhances early right ventricular (RV) filling while the opposite occurs during expiration, which leads to a small septal excursion in normal subjects, and in a minority to inspiratory septal flattening dependent upon the depth of respiration [3].
Paradoxical septal motion (PSM) is the abnormal movement of the IVS towards the left ventricle despite normal thickening. The abnormal ventricular septal motion can occur with right ventricle to left ventricle pressure gradient change, when the pressure overcomes the myocardial stress and contractile force or there is a loss of myocardial contractility [1, 4].
Paradoxical septal motion is a common finding after uncomplicated cardiac surgery, and has been recognised in patients with right-sided regurgitant lesions, left-to-right shunts, pulmonary hypertension, mitral stenosis, constrictive pericarditis and heart diseases with abnormal conduction. Several causes of PSM have been proposed, yet the exact mechanism remains unclear [5].
The ventricular septal motion can be visually assessed on short-axis and four-chamber cine-MR views in the two cardiac phases and, its position classified as normal, flattened or left bowing (convex towards the left ventricle; Fig. 1). A summary of the different types of abnormal septal motion in congenital and acquired heart diseases is presented in Table 1.
Table 1
Types of paradoxical septal motion. RV = right ventricular; RVOT = right ventricular outflow tract; D-TGA = dextroposed transposition of the great arteries; ccTGA = congenitally corrected transposition of the great arteries
Paradoxical septal motion
Systolic
Systolic and diastolic
Diastolic
Left bundle branch block
RV volume overload (left to right shunts, tricuspid and pulmonary regurgitation)
Pericardial constriction
Antero-septal infarction
RV pressure overload (RVOT obstruction, pulmonary hypertension, D-TGA after atrial switch procedures and ccTGA end systole)
Arrhythmogenic RV cardiomyopathy
Post-open heart surgery
In the short-axis view, the abnormal septal motion can be easily quantified on the basis of the septal curvature. A negative value of septal curvature represents leftwards bowing of the septum into the left ventricular (LV) cavity, and a positive value indicates rightwards bowing or a more physiological septal contour [3, 6]. In conjunction with the ratio of septal curvature, the relationship between the left ventricle and the right ventricle can be quantitated on the basis of the ratio between the LV antero-posterior dimension and the septo-lateral dimension at end systole or end diastole. This “eccentricity index” is abnormal when this ratio is more or less than 1.0 (Fig. 2) [7].

Right ventricular volume overload

Whereas in the short-axis view, the LV cavity maintains a circular profile throughout the cardiac cycle in normal subjects, in RV volume overload, the left ventricle assumes a progressively more D-shaped cavity as the ventricular septum flattens and progressively loses its convexity with respect to the centre of the RV cavity during diastole, with relative sparing of LV deformation at end-systole (Movie 1) [8].
The most common lesions associated with RV volume overload are left to right shunts, tricuspid regurgitation in the setting of Ebstein anomaly and pulmonary regurgitation in the setting of tetralogy of Fallot.

Left to right shunts

Atrial septal defects and partially anomalous pulmonary venous returns to systemic veins or directly to the right atrium result in left-to-right shunting, which when significant, leads to right atrial and ventricular enlargement and pulmonary artery dilatation. In these patients, the degree of flattening and leftwards septal bowing during diastole (Fig. 3) was related to the degree of volume overload [9].
Surgical closure should be considered in the short term for patients with a ratio of pulmonary-to-systemic blood flow (Qp/Qs) higher than 1.5, irrespective of age. After surgical closure, the persistence of right ventricular dilatation and paradoxical septal motion are common, with older age at surgery, systolic pulmonary artery pressure >40 mmHg and a ratio of pulmonary/systemic blood flow >3 [10].

Pulmonary and tricuspid regurgitation

Ebstein’s anomaly is a common primary cause of tricuspid regurgitation characterised by varying degrees of dysplasia and displacement of the tricuspid valve leaflets into the RV [11]. The major haemodynamic consequence of tricuspid regurgitation is an increase in end-diastolic RV volume that leads to paradoxical septal motion during diastole. Although this abnormal septal motion is not specific to valve regurgitation, its presence is considered to be a distinct indirect echocardiographic and Doppler parameter for severe tricuspid regurgitation [12]. In some cases, right ventricular dilatation is so marked that the ventricular septum bulges leftwards during diastole, compressing the left ventricular chamber (Fig. 4). Episodic left ventricular outflow tract obstruction may be observed in extreme cases [11].
Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease after the first year of life. Most patients with TOF nowadays undergo total repair early in life via closure of the ventricular septal defect and relief of RV outflow tract (RVOT) obstruction with good results.
Long-term follow-up studies have reported that following TOF repair, these patients have residual haemodynamic abnormalities, such as pulmonary regurgitation after RVOT patch augmentation, which leads to progressive RV dilatation, tricuspid regurgitation and secondary RV volume overload [7, 13]. This abnormal RV volume overload is associated with flattening (Movie 1) or leftwards septal bowing during diastole that causes alterations in left ventricular geometry and function (Fig. 5 and movie 1) [7].
Left ventricular dysfunction in patients following TOF repair was found to be the strongest predictor of poor clinical status. Proposed mechanisms include akinesia resulting from the ventricular septal defect patch, septal fibrosis, chronic volume loading from early palliative shunt creation, progressive mechanical interaction between an enlarged failing RV and the LV that is mediated through paradoxical septal motion, and myocardial injury at the time of repair [7, 13]. Right ventricular restoration in patients with severe right ventricular dilatation and underlying aneurysm or akinesia of the right ventricular outflow tract has proven to be an effective procedure to return the bowed non-functional septum to a central position that improves right-sided function [13].
This paradoxical septal motion may also be observed in asymptomatic postoperative patients following TOF repair without significant right ventricular volume. Prolongation of the QRS duration secondary to right bundle branch block has been related to the degree of reduced regional septal systolic function. Reduced LV systolic function in this group of patients is mainly secondary to diminished regional septal systolic function and the paradoxical septal motion [7].

Right ventricular pressure overload

Right ventricular pressure overload also distorts the normal circular short-axis geometry of the left ventricle by shifting the septum leftwards away from the centre of the right ventricle and towards the centre of the left ventricle, resulting in flattening or leftwards bowing of the ventricular septum predominantly during end systole and early diastole (Movie 2). The distortion in LV cavity at end systole due to septal flattening or leftwards bowing contributes to preserved systolic ventricular function [8].
The most common models of RV pressure overload are RV outflow tract (RVOT) obstruction and conditions with systemic RV pressures (pulmonary hypertension and systemic right ventricle).

Right ventricular outflow tract obstruction

Valvular pulmonary stenosis is found in patients with RVOT obstruction and is almost always congenital. Pulmonary stenosis, when significant, results in delayed ventricular filling and compensatory RV hypertrophy. RV systolic function is initially preserved with RV pressure overload, but diastolic dysfunction occurs as a consequence of myocardial hypertrophy and remodelling [14].
Cardiac MRI can show normal septal function or septal flattening or leftwards bowing throughout the cardiac cycle with most marked distortion of the left ventricle at early diastole. In addition, it is the gold standard method for quantifying RV size and function, and can provide additional information for assessing pulmonary stenosis and locating the exact area of obstruction [15].
After percutaneous pulmonary valve implantation, an increase in LV end-diastolic volume due to an improvement in early diastolic filling has been reported. This better LV filling correlates with more favourable septal motion [14].

Systemic right ventricular pressures

Pulmonary hypertension

Pulmonary hypertension is characterised by a progressive increase in pulmonary vascular resistance from various congenital and acquired causes leading to right ventricular pressure overload and failure.
In patients with severe pulmonary hypertension, the RV pressure overload causes a decrease in the left-to-right transseptal pressure gradient. During early diastole the LV pressure drops to near zero to enable rapid LV filling, and the pressure in the RV prevails, pushing the septum away from the RV centre. This explains IVS flattening or inversion during the filling phase of diastole and the “D-shape” of the left ventricle visible on short-axis views (Movie 2 and Fig. 6) [6].
The radius of septal curvature compared with the free wall curvature, measured with cardiac MR, has been recently proposed as a non-invasive index for estimating elevated RV systolic pressure and for explaining LV cavity deformation occurring in patients with pulmonary hypertension [15]. A leftwards septal bowing has only been observed at systolic pressures higher than 67 mmHg, and severe leftwards ventricular septal bowing is considered to be associated with a poor prognosis in pulmonary hypertension [6].
Left ventricular dysfunction in patients with pulmonary hypertension can be caused by synchronous coronary disease or a congenital defect, or can be secondary to the haemodynamic effects of pulmonary hypertension on the left ventricle. The increase in pulmonary vascular resistance causes a decrease in RV stroke volume and, consequently, the LV filling and LV stroke volume. In addition, the septal bowing further reduces the LV volume in early diastole, thus limiting the LV filling process during the most important phase of rapid filling [6]. Patients with pulmonary hypertension and LV impairment have a poor prognosis, tend to worsen and may require a double lung-heart transplant.

Systemic right ventricle

A morphological right ventricle in the systemic position in adulthood is most commonly encountered in patients with congenitally corrected transposition of the great arteries (ccTGA) and those with dextro transposition of the great arteries (D-TGA) following atrial switch procedures (Mustard or Senning). The result is chronic RV pressure overload. Over time, both conditions may lead to RV dysfunction, and often this becomes a major clinical concern [16, 17].
In both of these conditions, the presence of significant tricuspid regurgitation and/or RV dysfunction is associated with a significantly higher mortality. The factors responsible for this remain unclear [16, 17].
In patients with ccTGA and D-TGA following the atrial switch procedure, in which the right ventricle is exposed to systemic pressure and the left ventricle is exposed to only pulmonary pressure, the ventricular septum can bow into the left ventricle during end-systole (Fig. 7). RV dysfunction and complete heart block are some of the causes implicated in the leftwards septal shift [16, 17].
This abnormal septal configuration could also contribute to tricuspid regurgitation in both conditions as the ventricular septum bows into the left ventricle and the septal attachments of the tricuspid valve are pulled away from its annulus. These geometric alterations potentially lead to a more inferior zone of coaptation, less overlap of the tricuspid valve leaflets and progressive tricuspid regurgitation [16].
It has been observed that tricuspid regurgitation increases after conventional or physiological repair, in which the tricuspid valve is left in the systemic circulation, and tricuspid regurgitation decreases after procedures that increase LV pressure, such as pulmonary artery banding. The clinical significance of these findings suggests that pulmonary artery banding may be effective as an isolated treatment for tricuspid regurgitation in patients with D-TGA after atrial switch repair and ccTGA [17].

Constriction vs. restriction

Constrictive pericarditis

The most distinctive feature of constrictive pericarditis is increased pericardial stiffness, leading to impaired ventricular filling with a subsequent rise in filling pressures. Although a pericardial width of more than 4 mm has been used as a morphological criterion to diagnose constrictive pericarditis, a significant number of patients with pericardial constriction are found to have a minimally increased or even normal pericardial width during surgery. In such cases, one of the most useful criteria for differentiating constrictive pericarditis from other entities with increased filling pressure, such as restrictive cardiomyopathy, is the presence of abnormal septal bowing towards the LV during early diastole (Movie 3 and Fig. 8) [3]. Early diastolic leftwards ventricular septal bowing can be enhanced at the onset of inspiration as the changes in intrathoracic pressure are not transmitted to the cardiac chambers, because the non-compliant pericardium impedes the outward movement of the ventricular free wall (Movie 3). Therefore, during inspiration, the pulmonary venous left atrial pressure gradient decreases, reducing flow to the left heart, with a concomitant increase in flow to the right chambers, a sign of pathological ventricular interdependence [3, 18].
Inspiratory septal bowing during early diastole can also be seen in inflammatory pericarditis (Fig. 9) because the inflammatory thickened pericardial layers may lower pericardial compliance and lead to transient pericardial constriction [18]. Late enhancement of the inflamed pericardium after the administration of gadolinium-based contrast material is useful to differentiate inflammatory pericarditis from fibrosing forms of chronic pericarditis (Fig. 9b).

Abnormal electrical activity

The conduction delay existing in the left bundle branch block is generally associated with delayed depolarisation and contraction of the lateral LV free wall, causing the septum to move passively to the LV cavity in early systole. Furthermore, tricuspid valve opening and right ventricular filling occur much earlier than mitral valve opening and left ventricular filling, and the resultant additional RV volume may be responsible for the early systolic displacement of the septum into the left ventricle. When the rest of the left ventricle contracts, the septum is relaxed and bows into the right ventricle because of rising left ventricular pressure. This paradoxical motion does not cause any mechanical disadvantage in structurally normal hearts [19].
The presence of left bundle branch block in patients with dilated or ischaemic cardiomyopathy implies a progressive worsening of the LV systolic function and prognosis. The early right ventricular activation leads to right ventricular ejection during the left ventricular end-diastolic period and the septal motion is paradoxical. Consequently there is a reduced LV filling, decreased septal contribution and increased functional mitral regurgitation, which ultimately decreases forward cardiac output [20].

Septal myocardial disease

Myocardial infarction of the septum

Left anterior descending artery occlusion produces necrosis of the apex and anterior septum.
Septal myocardial infarction has many deleterious effects, among which are the loss of contractile function, impairment of electrical conduction and loss of ventricular synchrony [21].
Left bundle branch block is commonly associated with atherosclerotic coronary artery disease, and its identification in these patients is important to stratify the risk and manage the therapy [22].
Patients with antero-septal myocardial infarction and left bundle branch block exhibit similar paradoxical systolic movement of the IVS (Fig. 10), which may limit the interpretation of non-invasive stress tests [23]. Moreover, myocardial perfusion studies often suffer from false-positive antero-septal or septal perfusion defects in the absence of left anterior descending artery stenosis [22].
Only myocardial contrast echocardiography with adenosine and 64-slice computed tomography seems to improve diagnostic accuracy [22].
Recent studies have shown that tagging cardiac MRI combined with viability data obtained by late gadolinium enhancement may be a valuable adjunct for the assessment of myocardial viability in patients with regional wall motion abnormalities and left bundle branch block or myocardial infarction (Fig. 10c) [23].

Arrhythmogenic right ventricular cardiomyopathy

The septum plays a central role in the understanding and management of the RV failure seen in RV dysplasia. The disease involvement is not limited only to the RV as LV has also been reportedly affected. Right ventricular free wall is replaced by a fatty deposition that allows the free wall to dilate and become aneurysmal. These right ventricular changes exist despite normal pulmonary artery pressure. Left ventricular involvement is associated with increased myocardial mass, inflammatory infiltrates, clinical arrhythmic events and more severe right ventricular wall thinning and heart failure [24].
Cardiac MRI can show normal septal function or septal flattening or leftwards bowing during early diastole, which may lead to left ventricular dysfunction. Understanding septal function and its contribution to RV performance has allowed for a rational design of a procedure to treat this disease. The treatment goals are to limit free wall aneurysm, as reported experimentally, and restore the midline septal position [25].

Multi-factorial causes

Abnormal septal motion due to multi-factorial causes may also be observed after cardiac surgery and cardiac transplant.

Cardiac surgery

Systolic movement of the interventricular septum towards the LV despite normal thickening is assumed to be a usual and inevitable event after uncomplicated heart valve surgery, coronary artery bypass grafting and cardiac transplantation. The cause is uncertain but is likely to be related to alterations in heart mobility in the chest due to postoperative adhesions, conduction abnormalities and some mechanism that injures the IVS. In general, PSM is typically transient, not due to septal ischaemia or infarct, and resolves within the first year as pericardial adhesions form or as conduction abnormalities [5].
Leftwards septal bowing during systole can also be seen in cardiac transplant patients (Fig. 11) with RV pressure overload in the donor heart secondary to the effect of the recipient’s increased pulmonary resistance by chronic LV failure of the excised heart [26].

Conclusion

Cardiac MRI assessment of ventricular septal curvature in systole and diastole is important for evaluating the haemodynamic status in patients with congenital and acquired heart disease in routine clinical practice.
Paradoxical septal wall motion can be seen in structurally normal hearts with a history of left bundle branch block or is typically transient after open cardiac surgery. However, with the presence of abnormal septal motion, additional emphasis should be placed on the confirmation, as well as determination, of the aetiology and severity of right-sided pressure and/or volume overload. Future studies are required to show the predictability of septal wall motion abnormality and the degree of cardiac dysfunction.
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Literatur
1.
Zurück zum Zitat Saleh S, Liakopoulos OJ, Buckberg GD (2008) The septal motor of biventricular function. Eur J Cardiothorac Surg 29(Suppl 1):S126–S138 Saleh S, Liakopoulos OJ, Buckberg GD (2008) The septal motor of biventricular function. Eur J Cardiothorac Surg 29(Suppl 1):S126–S138
2.
Zurück zum Zitat Joshi SB, Salah AK, Mendoza DD, Goldstein SA, Fuisz AR, Lindsay J (2009) Mechanism of paradoxical ventricular septal motion after coronary artery bypass grafting. Am J Cardiol 103:212–215PubMedCrossRef Joshi SB, Salah AK, Mendoza DD, Goldstein SA, Fuisz AR, Lindsay J (2009) Mechanism of paradoxical ventricular septal motion after coronary artery bypass grafting. Am J Cardiol 103:212–215PubMedCrossRef
3.
Zurück zum Zitat Giorgi B, Mollet NR, Dymarkowski S, Rademakers FE, Bogaert J (2003) Clinically suspected constrictive pericarditis: MR imaging assessment of ventricular septal motion and configuration in patients and healthy subjects. Radiology 228:417–424PubMedCrossRef Giorgi B, Mollet NR, Dymarkowski S, Rademakers FE, Bogaert J (2003) Clinically suspected constrictive pericarditis: MR imaging assessment of ventricular septal motion and configuration in patients and healthy subjects. Radiology 228:417–424PubMedCrossRef
4.
Zurück zum Zitat Grosberg A, Gharib M, Kheradvar A (2009) Effect of fiber geometry on pulsatile pumping and energy expenditure. Bull Math Biol 71:1580–1598PubMedCrossRef Grosberg A, Gharib M, Kheradvar A (2009) Effect of fiber geometry on pulsatile pumping and energy expenditure. Bull Math Biol 71:1580–1598PubMedCrossRef
5.
Zurück zum Zitat Reynolds HR, Tunick PA, Grossi EA, Dilmanian H, Colvin SB, Kronzon I (2007) Paradoxical septal motion after cardiac surgery: a review of 3,292 cases. Clin Cardiol 30:621–623PubMedCrossRef Reynolds HR, Tunick PA, Grossi EA, Dilmanian H, Colvin SB, Kronzon I (2007) Paradoxical septal motion after cardiac surgery: a review of 3,292 cases. Clin Cardiol 30:621–623PubMedCrossRef
6.
Zurück zum Zitat Roeleveld RJ, Marcus JT, Faes TJ, Gan TJ, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2005) Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology 234:710–717PubMedCrossRef Roeleveld RJ, Marcus JT, Faes TJ, Gan TJ, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2005) Interventricular septal configuration at MR imaging and pulmonary arterial pressure in pulmonary hypertension. Radiology 234:710–717PubMedCrossRef
7.
Zurück zum Zitat Abd El Rahman MY, Hui W, Dsebissowa F, Schubert S, Gutberlet M, Hetzer R, Lange PE, Abdul-Khaliq H (2005) Quantitative analysis of paradoxical interventricular septal motion following corrective surgery of tetralogy of Fallot. Pediatr Cardiol 26:379–384PubMedCrossRef Abd El Rahman MY, Hui W, Dsebissowa F, Schubert S, Gutberlet M, Hetzer R, Lange PE, Abdul-Khaliq H (2005) Quantitative analysis of paradoxical interventricular septal motion following corrective surgery of tetralogy of Fallot. Pediatr Cardiol 26:379–384PubMedCrossRef
8.
Zurück zum Zitat Louie EK, Rich S, Levitsky S, Brundage BH (1992) Doppler echocardiographic demonstration of the differential effects of right ventricular pressure and volume overload on left ventricular geometry and filling. J Am Coll Cardiol 19:84–90PubMedCrossRef Louie EK, Rich S, Levitsky S, Brundage BH (1992) Doppler echocardiographic demonstration of the differential effects of right ventricular pressure and volume overload on left ventricular geometry and filling. J Am Coll Cardiol 19:84–90PubMedCrossRef
9.
Zurück zum Zitat Kardesoglu E, Cebeci BS, Celik T, Cingozbay BY, Dincturk M, Demiralp E (2004) Assessment of interventricular septal motion using colour tissue Doppler imaging in adult patients with atrial septal defect. J Int Med Res 32:14–18PubMedCrossRef Kardesoglu E, Cebeci BS, Celik T, Cingozbay BY, Dincturk M, Demiralp E (2004) Assessment of interventricular septal motion using colour tissue Doppler imaging in adult patients with atrial septal defect. J Int Med Res 32:14–18PubMedCrossRef
10.
Zurück zum Zitat Davlouros PA, Niwa K, Webb G, Gatzoulis MA (2008) The right ventricle in congenital heart disease. Heart 92(Suppl 1):i27–i38 Davlouros PA, Niwa K, Webb G, Gatzoulis MA (2008) The right ventricle in congenital heart disease. Heart 92(Suppl 1):i27–i38
11.
Zurück zum Zitat Attenhofer Jost CH, Connolly HM, Dearani JA, Edwards WD, Danielson GK (2007) Ebstein's anomaly. Circulation 115:277–285PubMedCrossRef Attenhofer Jost CH, Connolly HM, Dearani JA, Edwards WD, Danielson GK (2007) Ebstein's anomaly. Circulation 115:277–285PubMedCrossRef
12.
Zurück zum Zitat Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ (2003) American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802PubMedCrossRef Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ (2003) American Society of Echocardiography. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802PubMedCrossRef
13.
Zurück zum Zitat Buckberg GD, RESTORE Group (2006) The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur J Cardiothorac Surg 29:S272–S278PubMedCrossRef Buckberg GD, RESTORE Group (2006) The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur J Cardiothorac Surg 29:S272–S278PubMedCrossRef
14.
Zurück zum Zitat Lurz P, Puranik R, Nordmeyer J, Muthurangu V, Hansen MS, Schievano S, Marek J, Bonhoeffer P, Taylor AM (2009) Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: contribution of septal motion and interventricular mechanical delay. Eur Heart J 30:2266–2274PubMedCrossRef Lurz P, Puranik R, Nordmeyer J, Muthurangu V, Hansen MS, Schievano S, Marek J, Bonhoeffer P, Taylor AM (2009) Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: contribution of septal motion and interventricular mechanical delay. Eur Heart J 30:2266–2274PubMedCrossRef
15.
Zurück zum Zitat Dellegrottaglie S, Sanz J, Poon M, Viles-Gonzalez JF, Sulica R, Goyenechea M, Macaluso F, Fuster V, Rajagopalan S (2007) Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology 243:63–69PubMedCrossRef Dellegrottaglie S, Sanz J, Poon M, Viles-Gonzalez JF, Sulica R, Goyenechea M, Macaluso F, Fuster V, Rajagopalan S (2007) Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology 243:63–69PubMedCrossRef
16.
Zurück zum Zitat Love BA, Mehta D, Fuster VF, Medscape (2008) Evaluation and management of the adult patient with transposition of the great arteries following atrial-level (Senning or Mustard) repair. Nat Clin Pract Cardiovasc 5:454–467CrossRef Love BA, Mehta D, Fuster VF, Medscape (2008) Evaluation and management of the adult patient with transposition of the great arteries following atrial-level (Senning or Mustard) repair. Nat Clin Pract Cardiovasc 5:454–467CrossRef
17.
Zurück zum Zitat Kral Kollars CA, Gelehrter S, Bove EL, Ensing G (2010) Effects of morphologic left ventricular pressure on right ventricular geometry and tricuspid valve regurgitation in patients with congenitally corrected transposition of the great arteries. Am J Cardiol 105:735–739PubMedCrossRef Kral Kollars CA, Gelehrter S, Bove EL, Ensing G (2010) Effects of morphologic left ventricular pressure on right ventricular geometry and tricuspid valve regurgitation in patients with congenitally corrected transposition of the great arteries. Am J Cardiol 105:735–739PubMedCrossRef
18.
Zurück zum Zitat Francone M, Dymarkowski S, Kalantzi M, Rademakers FE, Bogaert J (2006) Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol 16:944–951PubMedCrossRef Francone M, Dymarkowski S, Kalantzi M, Rademakers FE, Bogaert J (2006) Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol 16:944–951PubMedCrossRef
19.
Zurück zum Zitat Grines CL, Bashore TM, Boudoulas H, Olson S, Shafer P, Wooley CF (1989) Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation 79:845–853PubMedCrossRef Grines CL, Bashore TM, Boudoulas H, Olson S, Shafer P, Wooley CF (1989) Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation 79:845–853PubMedCrossRef
20.
Zurück zum Zitat Ansalone G, Giannantoni P, Ricci R, Trambaiolo P, Fedele F, Santini M (2003) Biventricular pacing in heart failure: back to basics in the pathophysiology of left bundle branch block to reduce the number of nonresponders. Am J Cardiol 91(9A):55F–61F, 8PubMedCrossRef Ansalone G, Giannantoni P, Ricci R, Trambaiolo P, Fedele F, Santini M (2003) Biventricular pacing in heart failure: back to basics in the pathophysiology of left bundle branch block to reduce the number of nonresponders. Am J Cardiol 91(9A):55F–61F, 8PubMedCrossRef
21.
Zurück zum Zitat Karavidas AI, Matsakas EP, Lazaros GA, Brestas PS, Avramidis DA, Zacharoulis AA, Fotiadis IN, Korres DA, Zacharoulis AA (2006) Comparison of myocardial contrast echocardiography with SPECT in the evaluation of coronary artery disease in asymptomatic patients with LBBB. Int J Cardiol 112:334–340PubMedCrossRef Karavidas AI, Matsakas EP, Lazaros GA, Brestas PS, Avramidis DA, Zacharoulis AA, Fotiadis IN, Korres DA, Zacharoulis AA (2006) Comparison of myocardial contrast echocardiography with SPECT in the evaluation of coronary artery disease in asymptomatic patients with LBBB. Int J Cardiol 112:334–340PubMedCrossRef
22.
Zurück zum Zitat Ghostine S, Caussin C, Daoud B, Habis M, Perrier E, Pesenti-Rossi D, Sigal-Cinqualbre A, Angel CY, Lancelin B, Capderou A, Paul JF (2006) Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol 48:1929–1234, 21PubMedCrossRef Ghostine S, Caussin C, Daoud B, Habis M, Perrier E, Pesenti-Rossi D, Sigal-Cinqualbre A, Angel CY, Lancelin B, Capderou A, Paul JF (2006) Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol 48:1929–1234, 21PubMedCrossRef
23.
Zurück zum Zitat Rutz AK, Manka R, Kozerke S, Roas S, Boesiger P (2009) Schwitter J (2009) Left ventricular dyssynchrony in patients with left bundle branch block and patients after myocardial infarction: integration of mechanics and viability by cardiac magnetic resonance. Eur Heart J 30:2117–2127PubMedCrossRef Rutz AK, Manka R, Kozerke S, Roas S, Boesiger P (2009) Schwitter J (2009) Left ventricular dyssynchrony in patients with left bundle branch block and patients after myocardial infarction: integration of mechanics and viability by cardiac magnetic resonance. Eur Heart J 30:2117–2127PubMedCrossRef
24.
Zurück zum Zitat Jain A, Tandri H, Calkins H, Bluemke DA (2008) Role of cardiovascular magnetic resonance imaging in arrhythmogenic right ventricular dysplasia. J Cardiovasc Magn Reson 20:10–32 Jain A, Tandri H, Calkins H, Bluemke DA (2008) Role of cardiovascular magnetic resonance imaging in arrhythmogenic right ventricular dysplasia. J Cardiovasc Magn Reson 20:10–32
25.
Zurück zum Zitat Frigiola A, Giamberti A, Chessa M, Di Donato M, Abella R, Foresti S, Carlucci C, Negura D, Carminati M, Buckberg G, Menicanti L (2006) RESTORE group. Right ventricular restoration during pulmonary valve implantation in adults with congenital heart disease. Eur J Cardiothorac Surg 29:S279–S285PubMedCrossRef Frigiola A, Giamberti A, Chessa M, Di Donato M, Abella R, Foresti S, Carlucci C, Negura D, Carminati M, Buckberg G, Menicanti L (2006) RESTORE group. Right ventricular restoration during pulmonary valve implantation in adults with congenital heart disease. Eur J Cardiothorac Surg 29:S279–S285PubMedCrossRef
26.
Zurück zum Zitat Nwakanma LU, Shah AS, Conte JV, Baumgartner WA (2008) In: Cohn LH (ed) Heart transplantation in cardiac surgery in the adult. McGraw-Hill, New York, pp 1539–1578 Nwakanma LU, Shah AS, Conte JV, Baumgartner WA (2008) In: Cohn LH (ed) Heart transplantation in cardiac surgery in the adult. McGraw-Hill, New York, pp 1539–1578
Metadaten
Titel
Magnetic resonance imaging of abnormal ventricular septal motion in heart diseases: a pictorial review
verfasst von
Cristina Méndez
Rafaela Soler
Esther Rodriguez
Marisol López
Lucia Álvarez
Noela Fernández
Lorenzo Montserrat
Publikationsdatum
01.08.2011
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 4/2011
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-011-0093-4

Weitere Artikel der Ausgabe 4/2011

Insights into Imaging 4/2011 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.