Skip to main content
Erschienen in: BMC Cancer 1/2019

Open Access 01.12.2019 | Research article

Imaging biomarkers for well and moderate hepatocellular carcinoma: preoperative magnetic resonance image and histopathological correlation

verfasst von: Kun Huang, Zhi Dong, Huasong Cai, Mengqi Huang, Zhenpeng Peng, Ling Xu, Yingmei Jia, Chenyu Song, Zi-Ping Li, Shi-Ting Feng

Erschienen in: BMC Cancer | Ausgabe 1/2019

Abstract

Background

Our aim of the study is to investigate the feasibility of preoperative prediction for hepatocellular carcinoma (HCC) histological grading using gadoxetic acid-enhanced magnetic resonance imaging (MRI).

Methods

This study included one hundred and fifty-six patients with solitary HCC. Preoperative gadoxetic acid-enhanced MRI findings were retrospectively analyzed. MRI qualitative features such as tumor size, margin, capsule status, signal homogeneity, intratumoral vessels, peritumoral enhancement during mid-arterial phase, peritumoral hypointensity during the hepatobiliary phase (HBP) were investigated. Apparent diffusion coefficients (ADCs), T1 reduction ratio of pre- and post-contrast enhanced images of the tumors were calculated. HCC histological grading in surgical specimens were confirmed by Edmonson’s criteria. Correlations between these MRI features and HCC histological grading were analyzed using multivariate logistic regression. The receiver operating characteristic (ROC) curve was used to assess the predictive efficacy of the model.

Results

Univariate analysis showed that maximum tumor diameter (p = 0.004), tumor margin (p = 0.006), intratumoral vessels (p = 0.001) and peritumoral hypointensity during HBP (p = 0.000), were significantly correlated with HCC histological grading. There was no relationship between capsule, tumor signal, venous thrombosis, peritumoral enhancement during mid-arterial phase, ADC value, T1 reduction ratio, and HCC histological grading. Multivariate logistic regression analysis demonstrated that the maximum tumor diameter (p = 0.012, odds ratio = 1.002, 95% confidence interval: 1.007–1.046)) was an independent risk factor for high grade HCC.

Conclusions

Greater tumor size, a more irregular margin, presence of intratumoral vessels, and peritumoral hypointensity during HBP were indicators for high grade HCC. The maximum tumor diameter was an independent risk factor for high grade HCC.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12885-019-5574-8) contains supplementary material, which is available to authorized users.
Zhi Dong, Kun Huang and Huasong Cai contributed equally to this work.
Abkürzungen
ADC
Apparent diffusion coefficient
CT
Computed tomography
DWI
Diffusion weighted image
HASTE
Half-Fourier single shot turbo spin-echo
HCC
Hepatocellular carcinoma
IRB
Institutional Review Board
MRI
Magnetic resonance imaging
ROC
Receiver operating characteristic
T1WI
T1 weighted image
T2WI
T2 weighted image
TACE
Transcatheter arterial chemoembolization

Background

Hepatocellular carcinoma (HCC) is one of the most common malignancies and is associated with poor prognosis [1]. Despite the development of various treatments, including surgical resection, liver transplantation, transcatheter arterial chemoembolization (TACE), and radiofrequency ablation, postoperative recurrence remains the most important prognostic factor [2]. Some studies have reported that tumor size, number of lesions, presence of vascular invasion, and degree of tumor differentiation are important factors influencing the early recurrence of tumors [36]. Edmondson-Steiner grade might be an independent factor affecting prognosis or recurrence of HCC. Cucchetti, et al. [7] reported that the postoperative recurrence rate of high histological grade HCC was twice as high when compared to low grade HCC. The structure of intratumoral vessels is also related to the histological grade of HCC [8, 9].
On the other hand, preoperative histological grading of HCC is a main parameter in planning of therapeutic approach. For example, in surgical resection, the internationally recognized tumor-free margin is 1 cm around the lesion [10]. However, if the preoperative pathological grade is high, the resection range can be extended under the condition that normal liver function can be maintained post resection. According to some research, when the tumor-free margin is extended to 2 cm, the recurrence rate of HCC decreases markedly [11]. Furthermore, for postoperatively diagnosed high-grade HCCs, the follow-up period should be shortened and the frequency should be increased. More accurate inspection methods, such as dynamically enhanced magnetic resonance imaging (MRI), may also be applied to detect early recurrence or metastasis. Consequently, the role of pre-operative imaging for the assessment of well, moderate and poor differential HCC is crucial.
Preoperative pathological grading of HCC mainly relies on biopsy. However, due to the typical heterogeneity of the lesion, focal biopsy does not necessarily reflect the overall state of the tumor [1214]. Furthermore, needle biopsy is invasive and is associated with complications such as bleeding and tumor implantation [15, 16]. Imaging methods can give an overall perspective on the tumor, which is of great significance in the preoperative evaluation of HCC. MRI is one of the most important imaging methods for liver diseases, owing to its good soft tissue resolution and multiple sequences and parameters. The application of liver-specific contrast agents has further improved the value of MRI in liver diagnosis. Gadoxetic acid is a widely applied liver-specific contrast agent. Hepatobiliary phase images obtained after gadoxetic acid enhancement not only improve lesion detection and diagnosis, but also reflect the biological behavior of a tumor at the molecular level [17, 18].
Imaging findings for HCC are closely related to the pathology of the lesions. Some studies have found that some features of contrast-enhanced ultrasound and computed tomographic (CT) images were associated with higher pathological grade of HCC [19, 20]. Heo et al. reported that the apparent diffusion coefficient (ADC) values of poorly differentiated HCCs were lower than those of well-differentiated HCCs [21]. Other studies have found that MRI enhancement patterns were closely related to the pathological grading of HCC [2123]. However, most previous studies have focused on only one imaging characteristic, such as the tumor signal or enhancement pattern, to evaluate HCC histological grade. Few studies have comprehensively assessed the relationship between multiple imaging features and HCC histological grading [22, 24].
The purpose of this study was to analyze various qualitative and quantitative imaging features of gadoxetic acid-enhanced MRI in relation to the histological grading of single HCC lesions, and to identify the MRI features associated with high grade HCCs, in order to provide guidance for clinical treatment.

Methods

This study received approval from the Institutional Review Board (IRB). Written informed consent was obtained from each patient.

Patients

In this study, we retrospectively analyzed 156 HCC patients who underwent preoperative MRI examination in our hospital between November 2011 and September 2018. A total of 140 men and 16 women were enrolled, age ranged from 25 to 84 years (mean age: 53.5 ± 11.6 years). The inclusion criteria included: 1. Preoperative gadoxetic acid-enhanced MRI examination. 2. Solitary lesion without distant metastases. 3. No clinical intervention prior to MR examination and surgical resection. 4. Pathology-confirmed HCC. 5. The operation was performed within 2 weeks after MRI examination.

MR examinations

Upper abdominal MR examination was performed on each patient using a Magnetom trio 3.0 T MR scanner (Siemens Healthcare Sector, Erlangen, Germany). Before the examination, the patients were fasted for 6 to 8 h and received adequate respiratory training. The main scan sequences and parameters include T1 weighted image (T1WI), T2 weighted image (T2WI), T1 mapping, and diffusion weighted image (DWI). The contrast agent was administrated by an automatic injector at a rate of 2 mL/s (0.025 mmol/kg). The images of gadoxetic acid-enhanced arterial phase, portal venous phase, equilibrium phase and hepatobiliary phase were acquired at 10–40 s, 50–80 s, 90–120 s and 20 min after contrast agent administration, respectively.

Image analysis

Two experienced radiologists blinded to the pathological results evaluated all MR images independently. Qualitative MRI features were confirmed by the consistency of their reports. To avoid the possible measurement errors in inter-reader, the final results of quantitative MRI characteristics were acquired by the average of both radiologists.
Quantitative MRI features were as followed: 1. The maximum diameter of the tumor; 2. Apparent diffusion coefficient (ADC); 3. Percentage decrease in T1 (T1D%). The maximum diameters were measured in axial and coronal images of hepatobiliary phase. T1 relaxation times on a plain scan (T1P) and on the hepatocellular phase (T1E) were measured in the solid component of the tumor, avoiding visible vessels and necrosis, by regions of interest (ROIs) as large as possible. T1D% was calculated by the following equation: T1D% = (T1P - T1E)/ T1P × 100% [25, 26].
The following qualitative MRI features were evaluated: tumor thrombus, signal intensity, tumor capsule, tumor margins, intratumoral vascular, peritumoral enhancement, and peritumoral hypointensity. These were defined as follows [25, 26]:
1.
Tumor thrombus: filling defect in the portal or hepatic vein with similar enhancement pattern of HCC lesion.
 
2.
Signal intensity: homogeneous or heterogenous signal intensity of the tumor on T2WI.
 
3.
Tumor capsule: Tumors were divided into three groups according to the status of tumor capsule: complete capsular, incomplete capsular and non-capsular tumor.
 
4.
Tumor margins: Tumors were divided into four groups according to the forms evaluated on the hepatobiliary phase image: infiltrating lesion, smooth nodules, protruding nodules, and fusion of multiple nodules.
 
5.
Intratumoral vessels: visible tumoral vessels on the arterial images.
 
6.
Peritumoral enhancement: dominant enhanced around the tumor on the arterial image with isointensity on the portal and equilibrium images.
 
7.
Peritumoral hypointensity: hypointensity around the tumor on the hepatobiliary images. The signal intensity is slightly higher than that of the tumor and lower than that of the surrounding normal liver parenchyma.
 

Pathological analysis

Gross specimens of postoperative HCC were drawn and sliced continuously, with slices ranging from 0.3 cm to 2.0 cm depending on the size of the lesion. The specimens were routinely prepared with 4% formaldehyde, decalcified using 8% hydrochloric acid, embedded in paraffin, and sliced for hematoxylin and eosin staining. Multiple samples were collected in each lesion. The specimens were examined using a light microscope by experienced pathologists blinded to the MRI results. Eight slices of each lesion were analyzed, and the histological grading of each slice was evaluated, with the highest grading used as the overall result. All the specimens were graded using the Edmonson method. According to the differentiation degree of tumor cells, HCC were categorized into grades I to IV. Grades I and II were defined as low-grade HCC, grade III was defined as medium-grade HCC, and grade IV was defined as high-grade HCC.

Statistical analysis

The statistical analysis was performed using SPSS 20 software. Tumor histological grade was used as the dependent variable, and the MR image features were used as independent variables. In the univariate analysis, categorical data were compared using chi-square tests or Fisher’s exact tests. Results with P < 0.05 were considered statistically significant. For the multivariate analysis, variables with significant differences in the univariate analysis were included in a stepwise logistic regression model. The forward (LR) method was used, with inclusion criteria of 0.05 and exclusion of 0.1. Results with P < 0.05 were considered to indicate significant effects. Receiver operating characteristic (ROC) analyses were performed for quantitative variables, with the histological grade of HCC taken as the “gold standard.”

Results

Histological grade

Based on the Edmonson grading method, the cohort of patients included 8 cases with grade I HCC, 104 cases with grade II, 44 cases with grade III, and 0 cases with grade IV. These cases were recategorized into low-grade HCC (112 cases), medium-grade HCC (44 cases), and high-grade HCC (0 cases).

Qualitative MRI features

Tumor thrombi were detected in 11 patients (7%). Homogeneous tumor signal intensity was found in 57 cases (36%). There were 55 complete capsular tumors (35%), 86 incomplete capsular tumors (55%), and 15 non- capsular tumors (9%). There were 39 tumors of smooth solitary nodules (25%), 77 protruding nodules (49%), and 40 cases of fusion of multiple nodules (26%). Intratumoral vessels were detected in 67 cases (43%). Peritumoral enhancement was found in 40 cases (26%), and peritumoral hypointensity was observed in 40 cases (26%).

Quantitative MRI features

The maximum diameters of the 156 HCCs ranged from 11.5 mm to 183.0 mm, and the average diameter was 48.9 ± 32.1 mm. DWI sequence was performed in 126 patients, and the ADC values were (0.24–2.16) × 10− 3 mm2/s, with the average value of (0.98 ± 0.26) × 10− 3 mm2/s. T1 mapping was performed in 97 patients. And the calculated T1D% values were 10–90%, with the average value of 36 ± 13%.

Correlation analysis

According to the univariate analysis, there was statistical significance in predicting HCC histological grade for the tumor margin type (χ2 = 5.305, P = 0.006). A pairwise comparison demonstrated that the mean HCC histological grade of single nodular tumors was lower than multinodular fusion tumors (P = 0.002). There was no significant difference identified between the single-nodular type and the locally protruding type (P = 0.940), as well as between locally protruding nodules type and multinodular fusion type (P = 0.117) There were statistically significant differences between HCCs with and without intratumoral vascularity (χ2 =7.412, p = 0.001). The histological grade of HCCs with intratumoral vascularity tended to be higher than that of HCCs without intratumoral vascularity. HCCs with and without peritumoral hypointensity also showed statistically significant differences (χ2 = 8.722, p = 0.000). HCCs with peritumoral hypointensity had higher histological grades (Figs. 1, 2). There was no statistically significant relationship between HCC histological grade and the other qualitative MRI features, including tumor thrombus, signal intensity, tumor capsule, intratumoral vascular, and peritumoral enhancement. (Table 1).
Table 1
Univariate analysis comparing qualitative magnetic resonance imaging (MRI) features and hepatocellular carcinoma (HCC) differentiation level
Imaging features
Low-grade
Medium- grade
χ 2
P
Tumor thrombus
Yes
5(45%)
6(55%)
2.117
0.117
No
107(74%)
38(26%)
  
Signal intensity
homogeneous
44(77%)
13(23%)
0.852
0.428
heterogeneous
68(68%)
31(31%)
  
Tumor capsule
Complete
45(82%)
10(18%)
2.311
0.103
Incomplete
55(64%)
31(36%)
  
None
12(80%)
3(20%)
  
Tumor margins
smooth solitary nodule
33(85%)
6(15%)
5.305
0.006
protruding nodule
58(75%)
19(25%)
  
fusion of multiple nodules
21(53%)
19(47%)
  
Intratumoral vascularity
s
42(58%)
31(42%)
7.412
0.001
No
70(84%)
13(16%)
  
Peritumoral enhancement
Yes
24(60%)
16(40%)
2.042
0.133
No
88(76%)
28(24%)
  
Peritumoral hypointense
Yes
20(49%)
21(51%)
8.722
0.000
No
92(80%)
23(20%)
  
The average value of maximum tumor diameter in the low-grade tumor group was 43.61 mm, and the average value of maximum tumor diameter in the medium-grade group was 62.36 mm. The maximum tumor diameter of the medium-grade group was significantly higher than the low-grade group (t = − 2.611, p = 0.004). The average ADC value for the low-grade group was 1.01 × 10− 3 mm2/s, and the average ADC value for the medium-grade group was 0.95 × 10− 3 mm2/s. There was no significant difference between these two groups (t = 0.659, p = 0.519). The average T1D% in the low-grade group was 36%, and the average T1D% in the medium-grade group was 33%. No significant difference was found between these two groups (t = 0.838, p = 0.436) (Table 2). The inter-reader agreement of in these quantitative MR image features was shown in Additional file 1.
Table 2
Correlation analysis for quantitative magnetic resonance imaging (MRI) features and hepatocellular carcinoma (HCC) differentiation level
 
Low-grade
Medium- grade
t
p
Maximum diameter (mm)
43.61 ± 27.79
62.36 ± 38.12
−2.611
0.004
ADC (×10−3 mm2/s)a
1.01 ± 0.27
0.95 ± 0.23
0.659
0.519
T1D%a
36 ± 12
33 ± 15
0.838
0.436
aADC apparent diffusion coefficient, T1D% percentage decrease in T1
Table 3
Receiver operating characteristic (ROC) analysis of tumor maximum diameter for predicting the degree of differentiation of hepatocellular carcinoma
variable
AUC
P value
sensitivity
specificity
OR
95% C.I. for OR
maximum diameter (mm)
0.666
0.001
47.7%
83%
0.361
0.571–0.762
AUC area under the ROC curve, OR odds ratio, C.I. confidence interval

Multivariate analysis of HCC histological grade and MRI features

The maximum diameter of the tumor was an independent predictor of HCC with high histological grade (p = 0.012, OR = 1.002, 95% CI: 1.007–1.046). However, tumor margins (p = 0.230), intratumoral vascularity (P = 0.432), and peritumoral hypointensity (p = 0.178) were not independent predictors of HCC histological grading.
The prediction accuracy was analyzed in terms of a ROC curve, using the histological grade of HCC as gold standard and the maximum diameter of the tumor as predictor. (Table 3, Fig. 3) The critical value for prediction was 53 mm, and the area under the ROC curve was 0.666. Using the critical value as a threshold, the odds ratio for predicting the histological grade was 0.361, with 95% confidence interval 0.571–0.762.

Discussion

This study found that the tumor maximum diameter was an independent predictor of HCC histological grading. Other imaging features, including irregular tumor margin, presence of intratumoral vessels and peritumoral hypointensity were also associated with the higher histological grading of HCC. Other qualitative MRI features such as tumor thrombus, signal intensity, tumor capsule, tumor margins, and peritumoral enhancement, as well as quantitative features including ADC value and percentage decrease in T1 (T1D%), had no statistical correlation with HCC histological grades.
Tumor maximum diameter is an important prognostic factor for HCC. With each increase in tumor size, HCCs become more prone to blood vessel invasion and extrahepatic metastasis, which are associated with higher histological grades [27, 28]. According to Lee et al., 86% of medium-grade HCCs are more than 20 mm in diameter, compared to 52% of low-grade HCCs [24]. Our results also demonstrated that the maximum diameters of tumors in medium-grade HCC were larger than those in low-grade HCC. A total of 79% of the HCCs with maximum diameter less than 53 mm were low-grade HCCs, while 51% of HCCs with diameters more than 53 mm were medium-grade. Similarly, Pawlik et al. also found that the HCCs with diameter greater than 50 mm had higher histological grades [29].
The univariate analysis showed that imaging features including tumor margin, intratumoral vessels, and peritumoral hypointensity were related to HCC histological grading. However, the multivariate analysis found that these characteristics are not independent risk factors for HCC. This outcome may be a result of interaction among these features in the multivariate analysis. According to the classification method of the Japanese liver cancer research team, the edge of the tumor can be categorized into five forms [30]. As did Chou’s study [31], our study included three of these categories, the single nodule, focal protruding nodule, and multinodular fusion types. We found that multinodular fusion HCC tends to have higher histological grade compared with focal protruding nodular and single-nodular HCC. Another study found that most HCCs with irregular margins were moderately or poorly differentiated, and that the sensitivity and specificity were 82.4 and 47.6%, respectively [24]. On the other hand, a different study reported that there was no association between the tumor margin and the histological grade of HCC [22]. However, in that study, tumor margin evaluation was performed on conventional gadoxetic acid-enhanced images. Therefore, the results may have been biased by factors such as peritumoral enhancement. In comparison, gadoxetic acid is a hepatobiliary-specific MRI contrast agent. After intravenous injection, most HCCs is characterized as an area of relatively low signal without gadoxetic acid uptake during hepatobiliary phase, while the surrounding normal liver parenchyma present high signal because of their high uptake ability for gadoxetic acid. Hence, the difference in signal between HCC and surrounding liver parenchyma becomes more significantly during the hepatobiliary phase of gadoxetic acid enhanced MRI than conventional contrast agents. This makes the boundaries of tumors clearer to delineate where a more acurate evaluation of tumor margin becomes possible [32].
Presence of intratumoral vessels are an important feature for the diagnosis of HCC. The positive predictive value for HCC is 90% when a liver lesion demonstrates visible intratumoral vessels, with a specificity of 98% [33]. According to Lee et al. [24], about 65% of high-grade HCCs were found to contain intratumoral vessels, and about 64% of medium-grade HCCs were associated with intratumoral vessels; however, intratumoral vessels were absent in 71% of low-grade HCCs [24]. Consistent with the results of Lee’s [24] study, our results showed that HCCs with intratumoral vessels tended to have higher histological grades than those without intratumoral vessels. In our study, 70% of medium-grade HCCs were found to contain intratumoral vessels, but only 38% of low-grade HCCs.
Peritumoral hypointensity refers to an area around the tumor, which is hyperintense to the tumor tissue but hypointense to the normal hepatic parenchyma during the hepatobiliary phase [34]. In this study, we found that 48% of medium-grade HCCs showed hypointensity around the tumor, but only 18% of low-grade HCCs. According to previous reports, occlusion of micro-portal veins caused by microvascular tumor thrombus and insufficiency of the arterial blood supply result in the dysfunction of local liver cells, which subsequently leads to decreases in the uptake of gadoxetic acid, resulting hypointensity around the tumor during the hepatobiliary phase [3537]. Therefore, we speculate that the peritumoral hypointensity of HCC with high histological grade is associated with microvascular invasion.
Many studies have shown that vascular invasion occurs often in high-grade HCC [3841]. Vascular invasion can be divided into microvascular invasion and macrovascular invasion [42]. Currently, microvascular invasion cannot be directly visualized on imaging [43]. The venous tumor thrombus in this study only involved large veins, including large branches of the portal vein and hepatic vein. Although many previous studies have shown that vascular invasion is closely related to the level of tumor tissue differentiation [3841], this study did not find a relationship between venous tumor thrombi visible on MRI and the histological grade of HCC. This may be a result of selection bias in the study sample, and a larger sample size is required for further validation.
Witjes et al. [22] reported no differences in the incidence of heterogeneity on T2WI among different levels of HCC differentiation. Our study also found no correlation. However, Lee et al. [24] found that HCC with heterogeneity tended to have poor differentiation and high histological grade, and that medium- or high-grade HCCs were more susceptible to necrosis, resulting in heterogenous density on CT images.
In this study, equilibrium phase images were used to evaluate the existence and integrity of a tumor capsule, which is defined as a hyperintense ring around the lesion in delayed or equilibrium phase contrast enhanced MRI [44]. The delayed enhancement of the tumor capsule is associated with slower blood flow in micro-vessels [44, 45]. However, not all HCCs demonstrate tumor capsules: previous studies suggest 24–90% of Asian HCC patients, and 12–42% of non-Asian HCC patients demonstrates tumor capsules [4650]. Some researchers have suggested that a tumor capsule is one of the characteristics of high-grade HCC [48, 49]. In this study, there was no correlation between the tumor capsule status on contrast-enhanced MRI and the histological grade, which is consistent with the results of Lee’s [24] study. Possible explanations are that the degree of HCC differentiation has relatively little effect on the tumor capsule, or that the tumor capsule of some lesions is very thin and may not be observed on MRI.
Although the mechanisms of peritumoral enhancement are not fully understood, most researchers believe that it may be caused by microvascular invasion, which causes occlusion of the microportal veins and a compensatory increase in hepatic arterial blood supply [51]. Studies have shown that high-grade HCC is prone to microvascular invasion [52, 53]. In this study, however, no correlation was found between peritumoral enhancement and HCC histological grade. This may be related to the limited sensitivity of MRI to peritumoral enhancement.
ADC value had been use to assess grade of HCC in previous studies have. Heo et al. [21] found that the ADC value and the degree of HCC differentiation were negatively correlated. Nakanishi et al. [54] reported that the ADC value in high-grade HCC was significantly lower than in medium- and low-grade HCC [55]. However, the results of our study demonstrated no statistical relationship between HCC grade and ADC values. The difference may be due to the relative larger lesions in our research which represent higher degree of degeneration and necrosis. At the same time, not all the patients in the study were received DWI. Therefore, selective bias could not be fully avoided. On the other hand, the instability of ADC value might be another limitating factor. The determination of the ADC value is easily influenced by many factors, such as differences in the heartbeat and respiratory control of patients, due to the intrinsical sensitivity of echo echoplanar imaging (EPI) sequence to motion artifacts [55].
Peng et al. [56] showed that the percentage of T1 reduction was different before and after gadoxetic acid-enhancement in HCCs with different pathological grades. However, our results showed no correlation between the percentage of T1 reduction and the histological grade of HCC. This difference may be a result of selection bias in the samples. The study of Peng included 53 HCC lesions, all of which included T1 mapping images, and among which 13 lesions were pathologically diagnosed as grade I. In this study, only 97 cases included T1 mapping images, and only 8 cases were diagnosed as grade I HCC. In this study, we combined grade I and grade II HCC together as low-grade group, and grade III as medium grade group, to evaluate the difference of T1D% between low and medium grade group. Because there were only 8 cases of grade I HCC, the result of this study is also equivalent to a finding that the T1D% of grades II and III showed no statistically significant difference, which is similar to the results of Peng’s study. However, the study sample was relatively small and further study is needed to confirm the role of T1 mapping for prediction of HCC grading.
In this study, there were several imaging features (tumor margin, intratumoral vessels, peritumoral hypointensity, and maximum tumor diameter) which demonstrated statistically significant correlation with the histological grade of HCC during univariate logistic analysis. This will be due to the failure of adjustment the interaction effect of the factors for univariate logistic analysis. When many factors were excluded from each other in multivariate logistic regression analysis, only the maximum tumor diameter was an independent risk factor for high grade HCC. Tumor diameter has been included in liver cancer staging systems, such as the TNM staging system and Milan liver transplantation criteria [57, 58]. Consequently, tumor diameter has been showed as the most significant influence on the biological behaviors, such as grading, microvascular invasion, recurrence or prognosis in HCC.
There are some limitations in this study. First, most of the HCC lesions in this study were large nodules or masses, the results of this study may not be applicable for small HCCs. Second, the cohort in this study is heterogeneous because mostly consisted of grade 2 and grade 3 HCCs, with only a few grade 1 HCCs and no grade 4 HCC.. Third, some of the patients in the study had not the quantitative MRI features (ADC value, T1 D%). Thus, the selective bias could not be fully avoided.

Conclusion

In conclusion, greater size, a more irregular margin, presence of intratumoral vessels, and peritumoral hypointensity during HBP indicate a higher histological grade of HCC. The maximum tumor diameter is an independent risk factor for high grade HCC. Our study has demonstrated that the radiological prediction of HCC grades is possible before treatment is practicable which can help determine the most appropriate surgical strategies for patients based on more accurate risk-benefit assessment. .

Acknowledgements

Not applicable.
Not applicable.

Funding

This work was funded by National Natural Science Foundation of China (81771908, 81571750, 81770654). The Grants-in-Aid supported this study just financially, and had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

Original data and material can be available from the corresponding author if necessary.
This study conforms to the ethical guidelines for human research and the Health Insurance Portability and Accountability Act. The experimental protocol was approved by the First Affiliated Hospital of Sun Yat-Sen University. Written informed consent of each participant was obtained and there is no publication of identifying information or images of study participants in the manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRefPubMed Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRefPubMed
2.
Zurück zum Zitat Colecchia A, Schiumerini R, Cucchetti A, et al. Prognostic factors for hepatocellular carcinoma recurrence. World J Gastroenterol. 2014;20:5935–50.CrossRefPubMedPubMedCentral Colecchia A, Schiumerini R, Cucchetti A, et al. Prognostic factors for hepatocellular carcinoma recurrence. World J Gastroenterol. 2014;20:5935–50.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Llovet JM, Schwartz M, Mazzaferro V. Resection and liver transplantation for hepatocellular carcinoma. Seminars Liver Dis. 2005;25:181–200.CrossRef Llovet JM, Schwartz M, Mazzaferro V. Resection and liver transplantation for hepatocellular carcinoma. Seminars Liver Dis. 2005;25:181–200.CrossRef
4.
Zurück zum Zitat Imamura H, Matsuyama Y, Tanaka E, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003;38:200–7.CrossRefPubMed Imamura H, Matsuyama Y, Tanaka E, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003;38:200–7.CrossRefPubMed
5.
Zurück zum Zitat Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Inter Rad. 2010;33:41–52.CrossRef Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Inter Rad. 2010;33:41–52.CrossRef
6.
Zurück zum Zitat Kamiyama T, Nakanishi K, Yokoo H, et al. Analysis of the risk factors for early death due to disease recurrence or progression within 1 year after hepatectomy in patients with hepatocellular carcinoma. World J Surg Oncol. 2012;10:107.CrossRefPubMedPubMedCentral Kamiyama T, Nakanishi K, Yokoo H, et al. Analysis of the risk factors for early death due to disease recurrence or progression within 1 year after hepatectomy in patients with hepatocellular carcinoma. World J Surg Oncol. 2012;10:107.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Cucchetti A, Piscaglia F, Caturelli E, et al. Comparison of recurrence of hepatocellular carcinoma after resection in patients with cirrhosis to its occurrence in a surveilled cirrhotic population. Ann Surg Oncol. 2009;16:413–22.CrossRefPubMed Cucchetti A, Piscaglia F, Caturelli E, et al. Comparison of recurrence of hepatocellular carcinoma after resection in patients with cirrhosis to its occurrence in a surveilled cirrhotic population. Ann Surg Oncol. 2009;16:413–22.CrossRefPubMed
8.
Zurück zum Zitat Furuse J, Maru Y, Yoshino M, et al. Assessment of arterial tumor vascularity in small hepatocellular carcinoma. Comparison between color doppler ultrasonography and radiographic imagings with contrast medium: dynamic CT, angiography, and CT hepatic arteriography. Eur J Radiol. 2000;36:20–7.CrossRefPubMed Furuse J, Maru Y, Yoshino M, et al. Assessment of arterial tumor vascularity in small hepatocellular carcinoma. Comparison between color doppler ultrasonography and radiographic imagings with contrast medium: dynamic CT, angiography, and CT hepatic arteriography. Eur J Radiol. 2000;36:20–7.CrossRefPubMed
9.
Zurück zum Zitat Poon RTP, Ng IOL, Lau C, et al. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma: a prospective study. J Clin Oncol. 2002;20:1775–85.CrossRefPubMed Poon RTP, Ng IOL, Lau C, et al. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma: a prospective study. J Clin Oncol. 2002;20:1775–85.CrossRefPubMed
10.
Zurück zum Zitat Lai EC, You KT, Ng IO, et al. The pathological basis of resection margin for hepatocellular carcinoma. World J Surg. 1993;17:786–90.CrossRefPubMed Lai EC, You KT, Ng IO, et al. The pathological basis of resection margin for hepatocellular carcinoma. World J Surg. 1993;17:786–90.CrossRefPubMed
11.
Zurück zum Zitat Shi M, Guo RP, Lin XJ, et al. Partial hepatectomy with wide versus narrow resection margin for solitary hepatocellular carcinoma: a prospective randomized trial. Ann Surg. 2007;245:36–43.CrossRefPubMedPubMedCentral Shi M, Guo RP, Lin XJ, et al. Partial hepatectomy with wide versus narrow resection margin for solitary hepatocellular carcinoma: a prospective randomized trial. Ann Surg. 2007;245:36–43.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Friemel J, Rechsteiner M, Frick L, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21:1951–61.CrossRefPubMed Friemel J, Rechsteiner M, Frick L, et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res. 2015;21:1951–61.CrossRefPubMed
13.
Zurück zum Zitat Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:339–46.CrossRefPubMed Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31:339–46.CrossRefPubMed
14.
Zurück zum Zitat Frenette C, Gish RG. Hepatocellular carcinoma: molecular and genomic guideline for the clinician. Clin Liver Dis. 2011;15:307–21.CrossRefPubMed Frenette C, Gish RG. Hepatocellular carcinoma: molecular and genomic guideline for the clinician. Clin Liver Dis. 2011;15:307–21.CrossRefPubMed
15.
Zurück zum Zitat Stigliano R, Marelli L, Yu D, et al. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev. 2007;33:437–47.CrossRefPubMed Stigliano R, Marelli L, Yu D, et al. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev. 2007;33:437–47.CrossRefPubMed
16.
Zurück zum Zitat Silva MA, Hegab B, Hyde C, et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut. 2008;57:1592–6.CrossRefPubMed Silva MA, Hegab B, Hyde C, et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut. 2008;57:1592–6.CrossRefPubMed
17.
Zurück zum Zitat Ahn SS, Kim MJ, Lim JS, et al. Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology. 2010;255:459–66.CrossRefPubMed Ahn SS, Kim MJ, Lim JS, et al. Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology. 2010;255:459–66.CrossRefPubMed
18.
Zurück zum Zitat Kogita S, Imai Y, Okada M, et al. Gd–EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol. 2010;20:2405–13.CrossRefPubMed Kogita S, Imai Y, Okada M, et al. Gd–EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol. 2010;20:2405–13.CrossRefPubMed
19.
Zurück zum Zitat Jang HJ, Kim TK, Burns PN, et al. Enhancement patterns of hepatocellular carcinoma at contrast-enhanced US: comparison with histologic differentiation. Radiology. 2007;244:898–906.CrossRefPubMed Jang HJ, Kim TK, Burns PN, et al. Enhancement patterns of hepatocellular carcinoma at contrast-enhanced US: comparison with histologic differentiation. Radiology. 2007;244:898–906.CrossRefPubMed
20.
Zurück zum Zitat Nishie A, Yoshimitsu K, Okamoto D, et al. CT prediction of histological grade of hypervascular hepatocellular carcinoma: utility of the portal phase. Jpn J Radiol. 2013;31:89–98.CrossRefPubMed Nishie A, Yoshimitsu K, Okamoto D, et al. CT prediction of histological grade of hypervascular hepatocellular carcinoma: utility of the portal phase. Jpn J Radiol. 2013;31:89–98.CrossRefPubMed
21.
Zurück zum Zitat Heo SH, Jeong YY, Shin SS, et al. Apparent diffusion coefficient value of diffusion-weighted imaging for hepatocellular carcinoma: correlation with the histologic differentiation and the expression of vascular endothelial growth factor. Korean J Radiol. 2010;11:295–303.CrossRefPubMedPubMedCentral Heo SH, Jeong YY, Shin SS, et al. Apparent diffusion coefficient value of diffusion-weighted imaging for hepatocellular carcinoma: correlation with the histologic differentiation and the expression of vascular endothelial growth factor. Korean J Radiol. 2010;11:295–303.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Witjes CD, Willemssen FE, Verheij J, et al. Histological differentiation grade and microvascular invasion of hepatocellular carcinoma predicted by dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2012;36:641–7.CrossRefPubMed Witjes CD, Willemssen FE, Verheij J, et al. Histological differentiation grade and microvascular invasion of hepatocellular carcinoma predicted by dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2012;36:641–7.CrossRefPubMed
23.
Zurück zum Zitat Choi JW, Lee JM, Kim SJ, et al. Hepatocellular carcinoma: imaging patterns on gadoxetic acid-enhanced MR images and their value as an imaging biomarker. Radiology. 2013;267:776–86.CrossRefPubMed Choi JW, Lee JM, Kim SJ, et al. Hepatocellular carcinoma: imaging patterns on gadoxetic acid-enhanced MR images and their value as an imaging biomarker. Radiology. 2013;267:776–86.CrossRefPubMed
24.
Zurück zum Zitat Lee JH, Lee JM, Kim SJ, et al. Enhancement patterns of hepatocellular carcinomas on multiphasic multidetector row CT: comparison with pathological differentiation. Brit J Radiol. 2012;85:E573–83.CrossRefPubMedPubMedCentral Lee JH, Lee JM, Kim SJ, et al. Enhancement patterns of hepatocellular carcinomas on multiphasic multidetector row CT: comparison with pathological differentiation. Brit J Radiol. 2012;85:E573–83.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Martins A, Cortez-Pinto H, Marques-Vidal P, et al. Treatment and prognostic factors in patients with hepatocellular carcinoma. Liver Int. 2006;26:680–7.CrossRefPubMed Martins A, Cortez-Pinto H, Marques-Vidal P, et al. Treatment and prognostic factors in patients with hepatocellular carcinoma. Liver Int. 2006;26:680–7.CrossRefPubMed
28.
Zurück zum Zitat Chen WT, Chau GY, Lui WY, et al. Recurrent hepatocellular carcinoma after hepatic resection: prognostic factors and long-term outcome. Eur J Surg Oncol. 2004;30:414–20.CrossRefPubMed Chen WT, Chau GY, Lui WY, et al. Recurrent hepatocellular carcinoma after hepatic resection: prognostic factors and long-term outcome. Eur J Surg Oncol. 2004;30:414–20.CrossRefPubMed
29.
Zurück zum Zitat Pawlik TM, Delman KA, Vauthey JN, et al. Tumor size predicts vascular invasion and histologic grade: implications for selection of surgical treatment for hepatocellular carcinoma. Liver Transpl. 2005;11:1086–92.CrossRefPubMed Pawlik TM, Delman KA, Vauthey JN, et al. Tumor size predicts vascular invasion and histologic grade: implications for selection of surgical treatment for hepatocellular carcinoma. Liver Transpl. 2005;11:1086–92.CrossRefPubMed
30.
Zurück zum Zitat Liver Cancer Study Group Of Japan. The general rules for the clinical and pathological study of primary liver cancer. Jpn J Surg. 1989;19:98–129.CrossRef Liver Cancer Study Group Of Japan. The general rules for the clinical and pathological study of primary liver cancer. Jpn J Surg. 1989;19:98–129.CrossRef
31.
Zurück zum Zitat Chou CT, Chen RC, Lin WC, et al. Prediction of microvascular invasion of hepatocellular carcinoma: preoperative CT and histopathologic correlation. Am J Roentgenol. 2014;203(3):W253–9.CrossRef Chou CT, Chen RC, Lin WC, et al. Prediction of microvascular invasion of hepatocellular carcinoma: preoperative CT and histopathologic correlation. Am J Roentgenol. 2014;203(3):W253–9.CrossRef
32.
Zurück zum Zitat Ariizumi S, Kitagawa K, Kotera Y, et al. A non-smooth tumor margin in the hepatobiliary phase of gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging predicts microscopic portal vein invasion, intrahepatic metastasis, and early recurrence after hepatectomy in patients with hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. 2011;18:575–85.CrossRefPubMed Ariizumi S, Kitagawa K, Kotera Y, et al. A non-smooth tumor margin in the hepatobiliary phase of gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging predicts microscopic portal vein invasion, intrahepatic metastasis, and early recurrence after hepatectomy in patients with hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. 2011;18:575–85.CrossRefPubMed
33.
Zurück zum Zitat Nino-Murcia M, Olcott EW, Jeffrey RB, et al. Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT. Radiology. 2000;215:746–51.CrossRefPubMed Nino-Murcia M, Olcott EW, Jeffrey RB, et al. Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT. Radiology. 2000;215:746–51.CrossRefPubMed
34.
Zurück zum Zitat Nishie A, Asayama Y, Ishigami K, et al. Clinicopathological significance of the peritumoral decreased uptake area of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid in hepatocellular carcinoma. J Gastroenterol Hepatol. 2014;29:561–7.CrossRefPubMed Nishie A, Asayama Y, Ishigami K, et al. Clinicopathological significance of the peritumoral decreased uptake area of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid in hepatocellular carcinoma. J Gastroenterol Hepatol. 2014;29:561–7.CrossRefPubMed
35.
Zurück zum Zitat Choi BI, Lee KH, Han JK, et al. Hepatic arterioportal shunts: dynamic CT and MR features. Korean J Radiol. 2002;3(1):15. Choi BI, Lee KH, Han JK, et al. Hepatic arterioportal shunts: dynamic CT and MR features. Korean J Radiol. 2002;3(1):15.
36.
Zurück zum Zitat Tsuda N, Matsui O. Cirrhotic rat liver: reference to transporter activity and morphologic changes in bile canaliculi—gadoxetic acid-enhanced MR imaging. Radiology. 2010;256:767–73.CrossRefPubMed Tsuda N, Matsui O. Cirrhotic rat liver: reference to transporter activity and morphologic changes in bile canaliculi—gadoxetic acid-enhanced MR imaging. Radiology. 2010;256:767–73.CrossRefPubMed
37.
Zurück zum Zitat Tsuboyama T, Onishi H, Kim T, et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging—correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology. 2010;255:824–33.CrossRefPubMed Tsuboyama T, Onishi H, Kim T, et al. Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging—correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology. 2010;255:824–33.CrossRefPubMed
38.
Zurück zum Zitat Nakashima Y, Nakashima O, Tanaka M, et al. Portal vein invasion and intrahepatic micrometastasis in small hepatocellular carcinoma by gross type. Hepatol Res. 2003;26:142–7.CrossRefPubMed Nakashima Y, Nakashima O, Tanaka M, et al. Portal vein invasion and intrahepatic micrometastasis in small hepatocellular carcinoma by gross type. Hepatol Res. 2003;26:142–7.CrossRefPubMed
39.
Zurück zum Zitat Kanai T, Hirohashi S, Upton MP, et al. Pathology of small hepatocellular carcinoma. A proposal for a new gross classification. Cancer. 1987;60:810–9.CrossRefPubMed Kanai T, Hirohashi S, Upton MP, et al. Pathology of small hepatocellular carcinoma. A proposal for a new gross classification. Cancer. 1987;60:810–9.CrossRefPubMed
40.
Zurück zum Zitat Hui AM, Takayama T, Sano K, et al. Predictive value of gross classification of hepatocellular carcinoma on recurrence and survival after hepatectomy. J Hepatol. 2000;33:975–9.CrossRefPubMed Hui AM, Takayama T, Sano K, et al. Predictive value of gross classification of hepatocellular carcinoma on recurrence and survival after hepatectomy. J Hepatol. 2000;33:975–9.CrossRefPubMed
41.
Zurück zum Zitat Freeny PC. Portal vein tumor thrombus: demonstration by computed tomographic ateriography. J Comput Assist Tomogr. 1980;4:263–4.CrossRefPubMed Freeny PC. Portal vein tumor thrombus: demonstration by computed tomographic ateriography. J Comput Assist Tomogr. 1980;4:263–4.CrossRefPubMed
42.
Zurück zum Zitat Pomfret EA, Washburn K, Wald C, et al. Report of a national conference on liver allocation in patients with hepatocellular carcinoma in the United States. Liver Transpl. 2010;16:262–78.CrossRefPubMed Pomfret EA, Washburn K, Wald C, et al. Report of a national conference on liver allocation in patients with hepatocellular carcinoma in the United States. Liver Transpl. 2010;16:262–78.CrossRefPubMed
43.
Zurück zum Zitat Suh YJ, Kim MJ, Choi JY, et al. Preoperative prediction of the microvascular invasion of hepatocellular carcinoma with diffusion-weighted imaging. Liver Transpl. 2012;18:1171–8.CrossRefPubMed Suh YJ, Kim MJ, Choi JY, et al. Preoperative prediction of the microvascular invasion of hepatocellular carcinoma with diffusion-weighted imaging. Liver Transpl. 2012;18:1171–8.CrossRefPubMed
44.
Zurück zum Zitat Grazioli L, Olivetti L, Fugazzola C, et al. The pseudocapsule in hepatocellular carcinoma: correlation between dynamic MR imaging and pathology. Eur Radiol. 1999;9:62–7.CrossRefPubMed Grazioli L, Olivetti L, Fugazzola C, et al. The pseudocapsule in hepatocellular carcinoma: correlation between dynamic MR imaging and pathology. Eur Radiol. 1999;9:62–7.CrossRefPubMed
45.
Zurück zum Zitat Lim JH, Choi D, Park CK, et al. Encapsulated hepatocellular carcinoma: CT-pathologic correlations. Eur Radiol. 2006;16:2326–33.CrossRefPubMed Lim JH, Choi D, Park CK, et al. Encapsulated hepatocellular carcinoma: CT-pathologic correlations. Eur Radiol. 2006;16:2326–33.CrossRefPubMed
46.
Zurück zum Zitat Khatri G, Merrick L, Miller FH. MR imaging of hepatocellular carcinoma. Magn Reson Imaging Clin N Am. 2010;18:421–50.CrossRefPubMed Khatri G, Merrick L, Miller FH. MR imaging of hepatocellular carcinoma. Magn Reson Imaging Clin N Am. 2010;18:421–50.CrossRefPubMed
47.
Zurück zum Zitat Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. development, growth, and spread: key pathologic and imaging aspects. Radiology. 2014;272:635–54.CrossRefPubMed Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. development, growth, and spread: key pathologic and imaging aspects. Radiology. 2014;272:635–54.CrossRefPubMed
48.
Zurück zum Zitat Kojiro M. Histopathology of liver cancers. Best Pract Res Clin Gastroenterol. 2005;19:39–62.CrossRefPubMed Kojiro M. Histopathology of liver cancers. Best Pract Res Clin Gastroenterol. 2005;19:39–62.CrossRefPubMed
49.
Zurück zum Zitat Ishigami K, Yoshimitsu K, Nishihara Y, et al. Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images: correlation with histopathologic findings. Radiology. 2009;250:435–43.CrossRefPubMed Ishigami K, Yoshimitsu K, Nishihara Y, et al. Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images: correlation with histopathologic findings. Radiology. 2009;250:435–43.CrossRefPubMed
50.
Zurück zum Zitat Iguchi T, Aishima S, Sanefuji K, et al. Both fibrous capsule formation and extracapsular penetration are powerful predictors of poor survival in human hepatocellular carcinoma: a histological assessment of 365 patients in Japan. Ann Surg Oncol. 2009;16:2539–46.CrossRefPubMed Iguchi T, Aishima S, Sanefuji K, et al. Both fibrous capsule formation and extracapsular penetration are powerful predictors of poor survival in human hepatocellular carcinoma: a histological assessment of 365 patients in Japan. Ann Surg Oncol. 2009;16:2539–46.CrossRefPubMed
51.
Zurück zum Zitat Tsai TJ, Chau GY, Lui WY, et al. Clinical significance of microscopic tumor venous invasion in patients with resectable hepatocellular carcinoma. Surgery. 2000;127:603–8.CrossRefPubMed Tsai TJ, Chau GY, Lui WY, et al. Clinical significance of microscopic tumor venous invasion in patients with resectable hepatocellular carcinoma. Surgery. 2000;127:603–8.CrossRefPubMed
52.
Zurück zum Zitat Colecchia A, Scaioli E, Montrone L, et al. Pre-operative liver biopsy in cirrhotic patients with early hepatocellular carcinoma represents a safe and accurate diagnostic tool for tumour grading assessment. J Hepatol. 2011;54:300–5.CrossRefPubMed Colecchia A, Scaioli E, Montrone L, et al. Pre-operative liver biopsy in cirrhotic patients with early hepatocellular carcinoma represents a safe and accurate diagnostic tool for tumour grading assessment. J Hepatol. 2011;54:300–5.CrossRefPubMed
53.
Zurück zum Zitat Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiav M, Mariani L, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol. 2009;10:35–43.CrossRefPubMed Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiav M, Mariani L, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol. 2009;10:35–43.CrossRefPubMed
54.
Zurück zum Zitat Nakanishi M, Chuma M, Hige S, et al. Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma. Ann Surg Oncol. 2012;19:1302–9.CrossRefPubMed Nakanishi M, Chuma M, Hige S, et al. Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma. Ann Surg Oncol. 2012;19:1302–9.CrossRefPubMed
55.
Zurück zum Zitat Galea N, Cantisani V, Taouli B. Liver lesion detection and characterization: role of diffusion-weighted imaging. J Magn Reson Imaging. 2013;37:1260–76.CrossRefPubMed Galea N, Cantisani V, Taouli B. Liver lesion detection and characterization: role of diffusion-weighted imaging. J Magn Reson Imaging. 2013;37:1260–76.CrossRefPubMed
56.
Zurück zum Zitat Peng Z, Jiang M, Cai H, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging combined with T1 mapping predicts the degree of differentiation in hepatocellular carcinoma. BMC Cancer. 2016;16:625.CrossRefPubMedPubMedCentral Peng Z, Jiang M, Cai H, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging combined with T1 mapping predicts the degree of differentiation in hepatocellular carcinoma. BMC Cancer. 2016;16:625.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. The Lancet Oncology. 2009;10:35–43.CrossRefPubMed Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. The Lancet Oncology. 2009;10:35–43.CrossRefPubMed
58.
Zurück zum Zitat Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–9.CrossRefPubMed Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–9.CrossRefPubMed
Metadaten
Titel
Imaging biomarkers for well and moderate hepatocellular carcinoma: preoperative magnetic resonance image and histopathological correlation
verfasst von
Kun Huang
Zhi Dong
Huasong Cai
Mengqi Huang
Zhenpeng Peng
Ling Xu
Yingmei Jia
Chenyu Song
Zi-Ping Li
Shi-Ting Feng
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2019
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5574-8

Weitere Artikel der Ausgabe 1/2019

BMC Cancer 1/2019 Zur Ausgabe

Mehr Brustkrebs, aber weniger andere gynäkologische Tumoren mit Levonorgestrel-IUS

04.06.2024 Levonorgestrel Nachrichten

Unter Frauen, die ein Levonorgestrel-freisetzendes intrauterines System (IUS) verwenden, ist die Brustkrebsrate um 13% erhöht. Dafür kommt es deutlich seltener zu Endometrium-, Zervix- und Ovarialkarzinomen.

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.