Skip to main content
Erschienen in: Experimental Hematology & Oncology 1/2021

Open Access 01.12.2021 | Review

Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC

verfasst von: Mengke Niu, Ming Yi, Ning Li, Suxia Luo, Kongming Wu

Erschienen in: Experimental Hematology & Oncology | Ausgabe 1/2021

Abstract

Immunotherapy, especially anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) treatment has significantly improved the survival of non-small cell lung cancer (NSCLC) patients. However, the overall response rate remains unsatisfactory. Many factors affect the outcome of anti-PD-1/PD-L1 treatment, such as PD-L1 expression level, tumor-infiltrating lymphocytes (TILs), tumor mutation burden (TMB), neoantigens, and driver gene mutations. Further exploration of biomarkers would be favorable for the best selection of patients and precisely predict the efficacy of anti-PD-1/PD-L1 treatment. In this review, we summarized the latest advances in this field, and discussed the potential applications of these laboratory findings in the clinic.
Hinweise
Mengke Niu and Ming Yi Equal contribution

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PD-1
Programmed cell death protein 1
PD-L1
Programmed cell death ligand 1
NSCLC
Non-small cell lung cancer
TILs
Tumor-infiltrating lymphocytes
TMB
Tumor mutational burden
TPS
Tumor proportion score
OS
Overall survival
PFS
Progression-free survival
KRAS
Kirsten rat sarcoma 2 viral oncogene homolog
EGFR
Epidermal growth factor receptor
ALK
Anaplastic lymphoma kinase
MET
Mesenchymal epithelial transition
KEAP1
Kelch-like ECH-associated protein 1
NFE2L2
Nuclear factor erythroid-2-related factor-2
EMT
Epithelial-mesenchymal transition
TCR
T cell receptor
cCRT
Concurrent chemo-radiotherapy
MDSCs
Myeloid-derived suppressor cells
EVs
Extracellular vesicles
DCs
Dendritic cells
CAMLs
Circulating cancer-associated macrophage-like cells
TAM
Tumor associated macrophage
CTECs
Circulating tumor endothelial cells
NLR
Neutrophil to lymphocyte ratio
ATB
Antibiotics

Background

Lung cancer has a high incidence rate worldwide and is the main cause of cancer deaths [1]. The 5-year survival rate varies in different regions [2]. Non-small cell lung cancer (NSCLC) accounts for approximately 80–85% of all lung cancers [3, 4]. Recently, the anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) treatment has substantially changed the treatment patterns of NSCLC. The anti-PD-1/PD-L1 treatment with or without platinum-based chemotherapy has become the first-line strategy for NSCLC without driver gene mutations [5].
The immune system can specifically recognize the expression of tumor-specific antigens and eliminate tumor cells [6]. Alterations in effector cell signal transduction molecule (T cell receptor/CD3), the levels of tumor antigens, the maturation of antigen-presenting cells (APC), tumor-derived soluble factors such as vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and IL-10 propel tumor immune escape [711]. PD-1 and PD-L1 are type I transmembrane proteins[12]. The interaction of PD-1 and PD-L1 leads to the phosphorylation of the cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) and the immunoreceptor tyrosine-based switch motif (ITSM) and recruits Src homology 2 domain containing phosphatases 1/2 (SHP1/2) [13]. The recruitment of SHP1/2 inhibits the activation of T cells [14]. SHP1/2 and their downstream inhibitory signaling pathways suppress the activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) [15, 16].
The anti-PD-1/PD-L1 treatment blocks the interaction of PD-1 and its ligands, interferes with inhibitory signal transduction, restores the vitality of T cells, and thereby restarts the anti-tumor immune effect [17, 18]. NSCLC has high level of heterogeneity. The heterogeneity of molecular immune subtypes and immune microenvironment results in the differences in the efficacy of PD-1/PD-L1 inhibitors [19]. The low response rate to PD-1/PD-L1 inhibitors hinders the clinical application [20]. Therefore, it is urgent to find reliable biomarkers to effectively predict the efficacy of PD-1/PD-L1 inhibitors. In this review, we summarized the latest advances in the predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC.

PD-L1 expression level

A known mechanism for PD-1/PD-L1 to promote tumor immune escape is adaptive immune resistance [21]. Multiple clinical trials have been performed to evaluate the relationship between the expression of PD-L1 on tumor cells and the response rate to PD-1/PD-L1 inhibitors (Fig. 1). The high level of PD-L1 expression heralds the potential benefit of anti-PD-1/PD-L1 treatment [22, 23]. In the phase I KEYNOTE-001 study, among patients who had previously treated with anti-PD-1 therapy, patients with PD-L1 tumor proportion score (TPS) ≥ 50% had a median overall survival (OS) of 15.4 months (95% CI: 10.6–18.8 months) (Table 1) and the 5-year OS rate was 25.0%; while in the PD-L1 TPS 1%-49% group and PD-L1 TPS ≤ 1% group, the median OS were 8.5 months (95% CI: 6.0–12.6 months) and 8.6 months (95% CI: 5.5–10.6 months), and the 5-year OS rates were 12.6% and 3.5%, respectively [22]. In the multicenter, single-arm, open-label phase II clinical trial (PePS2), the incidence of durable clinical benefit (DCB) in the PD-L1 TPS ≥ 50% group was 53% (95% CI: 30–75%) (Table 1), while the PD-L1 TPS 1–49% group and PD-L1 TPS ≤ 1% group were 47% (95% CI: 25–70%) and 22% (95% CI: 11–41%) [23]. In KEYNOTE-024 study, pembrolizumab treatment lengthened the survival time of NSCLC patients with PD-L1 TPS ≥ 50%, relative to platinum-based chemotherapy (HR = 0.63, 95% CI: 0.47–0.86, p = 0.002) [24] (Table 1). However, only evaluating PD-L1 level can’t accurately select patients. Other studies showed that regardless of the level of PD-L1 expression, renal cell cancer (RCC) or NSCLC patients with anti-PD-1/PD-L1 treatment had survival benefits [25, 26]. The outcome of PD-1/PD-L1 blockade therapy was also determined by other characteristics including the immune status, the activity of the tumor-infiltrating T cells and the sensitivity of cancer cells to T cells [27]. Therefore, clinical decisions should be made carefully based on the results of PD-L1 expression.
Table 1
Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC
 
Biomarkers
The predictive effect of biomarkers
Reference
Tumor feature
PD-L1 expression level
15.4 months, 95%CI: 10.6–18.8 months
(median OS)
53%, 95%CI: 30–75%
(DCB)
HR: 0.63, 95%CI: 0.47–0.86
(OS)
[2224]
TMB
tTMB
29 vs. 6%
(ORR)
HR: 0.62, 95%CI: 0.38–1.00
(PFS)
HR: 0.58, 97.5%CI: 0.41–0.81
(PFS)
bTMB
HR: 0.39, 95%CI: 0.18–0.84
(PFS)
[28, 3032]
Neoantigens
HR: 0.23, 95%CI: 0.09–0.58
(median PFS)
92 vs. 11%
(DCB)
[34, 42]
Driver gene mutations
KRAS
OR: 1.51; 95%CI: 1.17–1.96
(ORR)
TP53
HR: 0.32, 95%CI: 0.16–0.63
(PFS)
EGFR
5.3 months, 95%CI: 1.3–12.4 months
(median PFS)
ALK
0.6 months, 95% CI: 0.2–2.1 months
(PFS)
MET
17%, 95%CI: 6%-36%
(ORR)
NFE2L2/KEAP1
22.52 months vs. 12.89 months
(median OS)
[46, 47, 51, 53, 55, 61]
miRNA
HR: 0.45, 95%CI: 0.25–0.76
(median PFS)
HR: 0.39, 95%CI: 0.15–0.68
(median OS)
[71]
Tumor microenvironment
TIL
HR: 0.954, 95%CI: 0.965–0.983
(DFS)
HR: 0.965, 95%CI: 0.931–1.001
(OS)
[78]
Biomarkers in peripheral blood
CAMLs
HR: 2.5, 95%CI: 1.1–5.8
(PFS)
HR: 3.5, 95%CI: 1.3–9.6
(OS)
[109]
CTECs
5 months, 95%CI: 3.9–6.1 months
(median PFS)
[116]
Other peripheral blood cells
NLR
HR: 1.44, 95%CI: 1.26–1.65
(median PFS)
HR: 2.86, 95%CI: 2.11–3.87
(median OS)
[119]
Other
Gut microbiota
HR: 4.2, 95%CI: 1.42–12.3
(PFS)
[130]
Patients clinical characteristics
Gender
male: HR: 0.76, 95%CI: 0.64–0.91
female: HR: 0.44, 95%CI: 0.25–0.76
(OS)
Smoking
36 vs. 26 vs. 14%
(current smokers vs. former smokers vs. non-smokers)
PIOS
HR: 0.469, 95%CI: 0.295–0.747
(median PFS)
HR: 0.539, 95%CI: 0.317–0.918
(median OS)
[141, 142, 144]
PD-L1 programmed cell death ligand 1, CI confidence interval, OS overall survival, DCB durable clinical benefit, TMB tumor mutational burden, ORR objective response rate, HR hazard ratio, PFS progression-free survival, KRAS kirsten rat sarcoma 2 viral oncogene homolog, OR odds ratio, TP53 tumor protein p53, EGFR epidermal growth factor receptor, ALK anaplastic lymphoma kinase, MET mesenchymal epithelial transition, KEAP1 kelch-like ECH-associated protein 1, NFE2L2 nuclear factor erythroid-2-related factor-2, TIL tumor-infiltrating lymphocyte, DFS disease-free survival, CAMLs circulating cancer-associated macrophage-like cells, CTECs circulating tumor endothelial cells, NLR neutrophil to lymphocyte ratio, PIOS patras immunotherapy score

Tumor mutation burden (TMB)

Whole-exome sequencing (WES) and sequencing of cancer gene panels (CGPs) are used to measure deoxyribonucleic acid (DNA) mutations in tumor tissue [28]. The tumor tissue TMB (tTMB) is positively correlated with tumor neoantigen load (Fig. 1) [29]. Multiple retrospective studies showed that tTMB was closely associated with the efficacy of PD-1/PD-L1 inhibitors and patient’s prognosis. In KEYNOTE-158, for patients treated with pembrolizumab, the tTMB-High group had a higher objective response rate than the non-tTMB-High group (29 vs. 6%) (Table 1) [30]. In CHECKMATE-026, patients with high tTMB receiving nivolumab treatment had a longer progression-free survival (PFS) (9.7 vs. 5.8 months; HR = 0.62, 95% CI: 0.38–1.00) (Table 1) and higher response rate (47 vs. 28%) than patients receiving chemotherapy [31]. Similarly, the results of CHECKMATE-227 showed that in patients with high tTMB, nivolumab plus ipilimumab group had a longer PFS than chemotherapy group (7.2 vs. 5.5 months; HR = 0.58, 97.5% CI: 0.41–0.81, p < 0.001) [32] (Table 1).
Blood TMB (bTMB) is discovered as a new and less invasive alternative, which is measured by detecting plasma cell-free DNA (Fig. 1) [28]. bTMB is positively correlated to tTMB [28]. Compared with bTMB < 6 subgroup, the bTMB ≥ 6 subgroup had higher objective response rate (39.3 vs. 9.1%) and longer PFS (HR = 0.39, 95% CI: 0.18–0.84, p = 0.01) (Table 1) [28]. However, the relationship between bTMB and patient’s survival showed a non-linear correlation [33]. For patients treated with PD-L1 inhibitors, the bTMB-High (≥ 14 mutations/Mb) and bTMB-Low (≤ 7 mutations/Mb) subgroups had longer PFS and OS than bTMB-Medium (8–13 mutations/Mb) subgroup [33]. The positive correlation between baseline circulating tumor DNA (ctDNA) and bTMB score explained the better prognosis of the bTMB-low patients [33]. In addition, compared with patients of bTMB-Medium, bTMB-low patients had longer response duration and higher stable disease rate [33]. In general, hypermutation promoted the production of tumor neoantigens, enhanced tumor immunogenicity and improved the response rate to PD-L1 inhibitors [34].

Neoantigens

Neoantigens are derived from somatic mutation [35], which bind to major histocompatibility class I (MHCI) and are expressed on the surface of cancer cells. Neoantigens endow the tumor with high immunogenicity and induce anti-tumor immune response (Fig. 1) [36]. Neoantigens are released by tumor cells and captured by professional APC, and then the effector T cells targeting cancer specific antigens are activated [37]. Activated T cells migrate and infiltrate into tumor bed, specifically recognize the antigens on tumor cells and kill cancer cells [37]. The tumor clones with potent immunogenicity are eliminated, and the cancer cells with weak immunogenicity escape immune surveillance [38]. Many studies proved that anti-PD-1/PD-L1 therapy combined with radiotherapy or oncolytic virus increased the release of neoantigens and amplified the specific immune response [3941]. Compared with no durable clinical benefit (NDB) patients, DCB patients had higher burden of candidate neoantigens. High candidate neoantigen burden was associated with improvement in PFS (HR = 0.23, 95%CI: 0.09–0.58, p = 0.002) [42] (Table 1). The efficacy of immunotherapy was not only related to the quantity of neoantigens, but also related to the quality of neoantigens [43]. High-quality neoantigens especially clonal neoantigens, could bind to multiple HLA alleles [43]. The clonal neoantigens promoted the activation and infiltration of neoantigen reactive T cells expressing high level of PD-1, and tumors enriched clonal neoantigens were more sensitive to PD-1 blockers [34]. The incidence rate of DCB in patients with high mutation burden and low neoantigen subclonal fraction was higher than patients with high subclonal neoantigen fraction or low clonal neoantigen burden (92 vs. 11%) [34] (Table 1). Immune elimination of neoantigen-containing tumor cell subpopulations and genetic events such as chromosomal deletions or loss of heterozygosity in tumor cells lead to the loss of neoantigens, which contribute to the emergence of acquired resistance to anti-PD-1/PD-L1 treatment [44].

Driver gene mutations

Next-generation sequencing (NGS) is widely used for tumor genome analysis [45]. The gene alterations detected by targeting NGS may herald the response rate to PD-1/PD-L1 inhibitors (Fig. 1) [45]. Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) mutation status was positively correlated with PD-L1 expression [46]. In addition, KRAS mutant-type tumors had more TILs and higher TMB, which presented the inflammatory phenotype of adaptive immune resistance and increased immunogenicity [46]. Compared with KRAS wild subgroup, KRAS mutated subgroup had a higher objective response rate (odds ratio = 1.51, 95% CI: 1.17–1.96, p = 0.002) (Table 1) [46]. TP53-mutated tumors had high PD-L1 expression and CD8+ T cell density [47]. Patients with TP53 mutations and no serine/threonine kinase 11 (STK11) or epidermal growth factor receptor (EGFR) co-mutations had higher response rate and longer PFS to anti-PD-1 therapy (HR = 0.32, 95%CI: 0.16–0.63, p < 0.001). Pathways related to immune cell cytotoxicity, T cell chemotaxis, antigen processing were upregulated in this tumor subtype [47]. EGFR with exon 19 deletion, L858R mutation and T790M mutation upregulated the expression of PD-L1, which attenuated cytotoxicity of lymphocytes and induced T-cell exhaustion through PD-1/PD-L1 axis [4850]. Among patients who treated with anti-PD-1 therapy, patients with EGFR mutations had worse prognosis (median PFS: 5.3 months, 95% CI: 1.3–12.4 months) [51]. The anaplastic lymphoma kinase (ALK)-rearranged upregulated PD-L1 expression and promoted tumor immune escape [52]. However, ALK-mutated patients who treated with anti-PD-1 therapy presented worse PFS than patients with EGFR mutations (ALK: 0.6 (95% CI: 0.2–2.1) months, EGFR: 1.8 (95% CI: 1.2–2.1) months), suggesting that PD-L1 expression was not a reliable biomarker for immunotherapy for patients with ALK rearrangement [53]. The mesenchymal epithelial transition (MET) exon 14 skipping alterations occur in 3%-4% of lung cancers [54]. A large proportion of lung cancer cells with MET exon 14 alterations expressed PD-L1 [55]. Lung cancer patients with MET exon 14 mutations responded modestly to single-agent or combination immune checkpoint inhibitors (objective response rate: 17%, 95% CI: 6%-36%) [55], and didn’t seem to benefit from immunotherapy [56]. Kelch-like ECH-associated protein 1 (KEAP1) somatic mutations promoted tumorigenesis and reduced therapeutic sensitivity by activating the KEAP1/nuclear factor erythroid-2-related factor-2 (NFE2L2) stress response pathway [5760]. NFE2L2/KEAP1 mutations were associated with high TMB and PD-L1 expression, and the efficacy of immunotherapy was better in patients with NFE2L2/KEAP1 mutations than other treatments (median OS: 22.52 months vs. 12.89 months, p = 0.0034) [61]. The mutation status of other rare driver genes such as ROS1, HER2, RET may also affect the response to PD-1/PD-L1 inhibitors [62, 63].
Some expression signatures reflect the inflammatory state of tumors, such as genes related to T cell activation, chemokine expression, and adaptive immune resistance (Fig. 1) [64, 65]. Patients with significantly elevated inflammatory profile scores tended to be sensitive to PD-1/PD-L1 inhibitors. Compared with non-responders, responders had significantly higher inflammation signature scores [65]. In addition, inflammation scores was correlated with epithelial-mesenchymal transition (EMT) scores. Thompson’s study showed that the combination of EMT phenotypic feature scores and inflammation gene scores increased the accuracy of prediction [65]. Therefore, it is predicted that reversal of EMT may improve the resistance to anti-PD-1/PD-L1 therapy [65]. Further study found that in the same NSCLC cohort, the eight genes associated with antigen processing machinery (APM) scores could more effectively predict the efficacy than inflammation scores [66]. Also, our previous study indicated that some immune response-related signatures related to the efficacy of immune checkpoint inhibitor in lung adenocarcinoma [4].

microRNA(miRNA)

MiRNA modifies the expression of target genes by regulating protein translation [67]. miRNA dysregulation is closely associated with carcinogenesis and can promote or suppress cancer by targeting a group of genes (Fig. 1) [68]. In addition, miRNA regulates anti-tumor immunity. Some miRNAs interfere with antigen processing and presentation, upregulate human leukocyte antigen (HLA)-G expression and downregulate natural killer group 2, member D (NKG2D) ligand to form immune escape [69]. Circular RNA circ-CPA4 upregulated PD-L1 expression in NSCLC cells by downregulating let-7 miRNA [70]. 10-high expressed miRNAs (miR-93, miR-138-5p, miR-200, miR-27a, miR-424, miR-34a, miR-28, miR-106b, miR-193a-3p, miR-181a) were found in responders treated with anti-PD-1 treatment, and associated with significantly improved PFS and OS (median PFS: 6.25 months vs. 3.21 months, HR = 0.45, 95% CI: 0.25–0.76; median OS: 7.65 months vs. 3.2 months, HR = 0.39, 95% CI: 0.15–0.68) (Table 1) [71].

Tumor-infiltrating lymphocyte (TIL)

Previous reports shown that PD-L1 expression was significantly associated with intratumoral T cells infiltration in NSCLC [72]. The transcription factor thymocyte selection-associated high mobility group box gene (TOX) in tumor-infiltrating CD8+ T cells promotes T cell exhaustion by upregulating the expression of immune checkpoint proteins PD-1, T cell immunoglobulin and mucin-domain containing-3 (TIM-3) [73], T cell immunoglobulin and ITIM domain (TIGIT) [74], and cytotoxic T lymphocyte antigen 4 (CTLA-4), thereby attenuates the outcome of anti-PD-1 therapy (Fig. 1) [75]. Based on PD-L1/TIL status, NSCLC tumor immune microenvironments were divided into type I (PD-L1+, TIL+), type II (PD-L1, TIL), type III (PD-L1+, TIL) and type IV (PD-L1, TIL+) [76]. The difference in clinical factors related to different tumor immune microenvironment types determines the patient selection for combination immunotherapies [76]. Type I tumors benefit greatly from anti-PD-1/PD-L1 therapy. However, Type III tumors are resistant to anti-PD-1/PD-L1 monotherapy, which could be reversed by the combining adjuvant therapy to recruit T cells into tumor bed [77]. The proportion of CD8+ cells among the overall population of CD3+ TILs has a close relationship with anti-PD-1/PD-L1 treatment outcomes. It has been shown that High CD8-to-CD3 ratio was positively correlated with disease-free survival (DFS) and OS (DFS: HR = 0.954, 95%CI: 0.965–0.983, p = 0.002; OS: HR = 0.965, 95%CI: 0.931–1.001, p = 0.057) (Table 1) [78]. The early proliferation of CD8+ T cells after anti-PD-1 therapy heralded a good clinical response to anti-PD-1 therapy [79]. T cell receptor (TCR) is expressed on the surface of T cells and composed of α chains and β chains, which form diversity and specificity through somatic DNA rearrangement [80]. TCR binds to MHC/antigen short peptide complex and triggers immune response (Fig. 1) [81]. The TCR β chain complementarity determining region 3 of PD-1+ CD8+ T cells was sequenced by multiplex PCR. The diversity of TCR before anti-PD-1/PD-L1 treatment heralded a better survival outcome (6.4 vs. 2.5 months, HR = 0.39, 95% CI: 0.17–0.94, p = 0.021), and the clonality of TCR after treatment also heralded clinical benefit (7.3 vs. 2.6 months, HR = 0.26, 95% CI: 0.08–0.86, p = 0.002) [82].
Consolidation therapy with durvalumab after concurrent chemo-radiotherapy (cCRT) could significantly improve the overall survival and median progression-free survival of patients as compared with placebo group [83]. Radiotherapy stimulated anti-tumor immunity by promoting the release of tumor neoantigens and driving the immune attack of CD8 + TILs [84]. Post-cCRT PD-L1 upregulation might be in response to radiotherapy-related immune attack, which provided theoretical basis for the application of PD-L1 blockers following cCRT [85]. In addition, increased CD8 + TIL density after cCRT was associated with favorable survival [85].

Suppressive immune cell

Tumor-infiltrating regulatory T lymphocytes (Tregs) express PD-L1, PD-L2 on the surface, which highly inhibit the activity of tumor-specific effector T cells [86]. Indoleamine 2,3-dioxygenase 1 (IDO1) induces T cells immune suppression and Treg hyperactivation by l-tryptophan (Trp) depletion and kynurenine (Kyn) accumulation in the tumor microenvironment (Fig. 1) [87]. Serum kyn/trp ratio may reflect the anti-PD-1 immune resistance mechanism [88]. Myeloid-derived suppressor cells (MDSCs) mainly play an immunosuppressive role in the tumor microenvironment [89]. Some inflammatory factors such as TGF-β, IFN-γ, and IL-6 drive the activation of MDSCs [90]. Chemokines such as C–C motif chemokine ligand 2 (CCL2) [91] and C-X-C motif chemokine ligand 12 (CXCL12) [92] recruit MDSCs to tumor sites. MDSCs inhibit the immune response of tumor-specific T cells by upregulated PD-L1 expression (Fig. 1) [93].

Extracellular vesicles (EVs)

EVs are a collection of membrane-bound carriers, which carry lipids, proteins, and nucleic acids [94]. Budding inward through endosomal pathways to form exosomes and sprouting out of the plasma membrane to form microvesicles [95]. EVs bind to target cells and initiate signal transduction through receptor-ligand interactions or internalize through endocytosis [96]. EVs mediate cancer cell sensitivity to chemotherapy and radiotherapy, and are promising strategy in liquid biopsy for cancer diagnosis and predictive markers [97, 98]. The exchange of EVs between immune cells affects innate immunity and adaptive immunity [99]. Local dendritic cells (DCs) secreted-EVs could induce T cell activation [95]. EVs are key components in the microenvironment that bridge the communication between tumor cells and stromal cells [100]. By extracting EVs miRNAs from advanced NSCLC patients receiving anti-PD-1/PD-L1 therapy for sequencing analysis, a remarkable difference in the concentration of specific miRNAs between responders and non-responders was found [101]. As a non-invasive liquid biopsy, early detection of tumor-derived EVs may help to predict the efficacy of anti-PD-1/PD-L1 therapy [102104].

Biomarkers in peripheral blood

Circulating cancer-associated macrophage-like cells (CAMLs)

Tumor associated macrophage (TAM) promotes the invasion characteristics of malignant cells by secreting growth factors and cytokines such as VEGF, MMP, TNF-α [105]. TAM and circulating tumor cells (CTC) migrate to the blood circulation through lymphatic or capillary barrier, which enhance tumor invasion and distant metastasis [106]. As a diffuse TAM (Fig. 1), the isolation of CAMLs from peripheral blood of various cancer patients may be evidence of tumor metastasis and neovascularization [107]. CAMLs were quantified by the CellSieve system using multiplex immunostaining [108]. CAMLs ≥ 50 μm was defined as giant CAMLs. The size of CAMLs after completion of CRT was related to disease progression and patient’s survival [109]. The presence of giant CAMLs before anti-PD-L1 maintenance therapy indicated a poor prognosis (median PFS: 8 months, HR = 2.5, 95% CI: 1.1–5.8, p = 0.025; median OS: 25 months, HR = 3.5, 95% CI: 1.3–9.6, p = 0.034) (Table 1). The tumor-stimulating effect of CAMLs may limit the efficacy of anti- PD-L1 therapy [109].

PD-L1+ aneuploid circulating tumor endothelial cells (CTECs)

The aneuploidy of chromosome influences gene expression and determines tumor heterogeneity, which is closely related to the evolution of tumor [110112]. CTECs, aneuploid CD31+ circulating tumor endothelial cells [113], are derived from aneuploid CD31+ tumor endothelial cells in tumor tissue and promote tumor angiogenesis [114, 115]. The PD-L1+ CTECs had morphological and karyotype changes after immunotherapy [116]. Anti-PD-1 could effectively eliminate haploid small CTECs, while relatively increase polyploid large PD-L1+ CTECs [116]. Patients with PD-L1+ CTECs subtype were resistant to anti-PD-1 treatment. The median PFS of patients with PD-L1+ CTECs was 5 months (95% CI: 3.9–6.1 months) (Table 1), which was shorter than that of patients without PD-L1+ CTECs (8 months, 95% CI: 4.9–11 months). It was speculated that the interaction of PD-L1 on CTECs with PD-1 on T cells inhibited the tumor-specific immune attack of CD8+ T cells and affected the efficacy of immunotherapy (Fig. 1) [116].

Other peripheral blood cells

Among many indicators that reflect inflammation, the high neutrophil to lymphocyte ratio (NLR) heralded a poor prognosis in many malignant tumors [117, 118]. Multiple studies found that NSCLC patients with high NLR had low response rate to immune checkpoint inhibitors (ICIs) [119, 120]. A meta-analysis showed that patients with high NLR before ICIs therapy had poor prognosis (PFS: HR = 1.44, 95%CI: 1.26–1.65, p < 0.001; OS: HR = 2.86, 95%CI: 2.11–3.87, p < 0.001) (Table 1) [119]. Similarly, another retrospective study also verified the predictive value of NLR for anti-PD-1 treatment [120]. Lactate dehydrogenase (LDH) is an indicator of cancer-related inflammation [121]. According to the values of LDH and NLR, lung cancer patients were divided into 3 groups (good, 0 factors; intermediate, 1 factor; poor, 2 factors). Compared with the good group, the intermediate group and poor group were more easily resist to anti-PD-1/PD-L1 treatment [121]. In addition, NLR and LDH might be useful indicators for predicting irAEs [122]. Neutrophils were highly correlated with myeloid phenotype, which promoted lymphocyte depletion [123]. Tumor-infiltrating CD8+ T cells to neutrophils (CD8/PMN) ratio could distinguish responders treated with anti-PD-1 therapy [123]. Combining neutrophil antagonists improved immunotherapy outcomes [123]. Besides, the amount and activity of NK cells in responders were highly elevated [124].

Gut microbiota

Gut microbiota has a symbiotic relationship with the host [125]. In addition to playing a barrier role in the gastrointestinal tract, microorganisms are related to the immune function of the plora [126]. Immune cells are activated through cross-reactivity between microbial proteins and tumor antigens [127]. DCs induce activated T cells outside the intestine, recognize tumor antigens and exert anti-tumor effect [127]. In addition, the microbial proteins translocate from the intestine to the blood circulation, trigger initial immunity in secondary lymphoid organs and induce the activation of T cells. T cells migrate to the tumor site and participate in immune surveillance (Fig. 1) [127]. The composition of microorganisms may affect the efficacy of PD-1 inhibitors [128]. A study showed that the fecal Akkermansia muciniphila could be detected in 69% (11/16) and 58% (23/40) of patients exhibiting partial response or stable disease, whereas it was detectable in 34% (15/44) of patients who progressed or died [129]. Gut microbiota profiles of fecal specimens could be assessed by 16S ribosome RNA gene sequencing. Alipis putredinis, Prevotella copri and Bifidobacterium longum were enriched in the responders, and Ruminococcus_unclassified was enriched in non-responders. Patients with higher microbiota diversity had significantly longer PFS (HR = 4.2, 95%CI: 1.42–12.3, p = 0.009) (Table 1) [130]. The microbiota associated with clinical benefit varies in different studies, which implied that the difference between diet, host genetics, lifestyle factors, and human species may contribute to the diversity of gut microbiome and further affect the efficacy of ICIs [131, 132].
The application of cumulative antibiotics (ATB) could reduce the diversity of gut microbiota and disrupt the microbial balance [133, 134], which significantly weakened the efficacy of PD-L1 inhibitors and affected survival outcomes (median PFS: 1.9 months, HR = 1.5, 95%CI: 1.0–2.2, p = 0.03; median OS: 7.9 months, HR = 4.4, 95%CI: 2.6–7.7, p < 0.01) [135]. A study indicated that proton pump inhibitor (PPI) affected the diversity of gut microbiota through gastric acid [136]. The data of the phase II POPLAR and phase III OAK trial showed that in the population of anti-PD-L1 therapy, patients treated with ATB or PPI had shorter OS (HR = 1.20, 95%CI: 1.04–1.39) (Table 1), and the application of PPI was significantly related to shorter PFS (HR = 1.26, 95%CI: 1.10–1.44) [137]. As a promising treatment method, fecal microbiome transplantation (FMT) could improve the diversity of gut microbiota and the efficacy of immunotherapy [138, 139].

Patient's clinical characteristics

Factors such as genes, hormones contribute to the differences in immune response between males and females [140]. The differences may affect the efficacy of immunotherapy for male and female malignant tumors [140]. In a meta-analysis, by comparing the effects of anti-PD-1/PD-L1 plus chemotherapy and chemotherapy alone in men and women, it was found that the pooled OS-HRs were 0.76 (95% CI: 0.66–0.87) for men and 0.48 (95% CI: 0.35–0.67) for women [141]. Another meta-analysis showed that the pooled OS-HRs were 0.78 (95% CI: 0.60–1.00) in men and 0.97 (95% CI: 0.79–1.19) in women for anti-PD-1 alone, compared with 0.76 (95% CI: 0.64–0.91) in men and 0.44 (95% CI: 0.25–0.76) in women for anti-PD-1/PD-L1 plus chemotherapy [141] (Table 1). This implied that anti-PD-1 monotherapy may have a greater impact on men, and women may obtain greater survival benefits from the combination of anti-PD-1/PD-L1 and chemotherapy [141]. Nearly 80% of lung cancers are related to smoking. Exploratory analysis showed that among patients treated with anti-PD-1 treatment, current and former smokers had significantly higher overall response rate than non-smokers (36 vs. 26 vs. 14%) (Table 1) [142]. In addition, the increase of smoking years was associated with positive anti-PD-1 therapy response [143]. The patras immunotherapy score (PIOS) including the patient’s performance status (PS), body mass index (BMI), lines of treatment (LOT) and age was calculated through the formula (PS × BMI/LOT × age). Patients with high PIOS score had the best response to anti-PD-1 treatment (median PFS: 15 months vs. 5 months, HR = 0.469, 95% CI: 0.295–0.747; median OS: 32 months vs. 14 months, HR = 0.539, 95% CI: 0.317–0.918) (Table 1) [144].

Conclusion

Anti-PD-1/PD-L1 treatment is a promising treatment strategy for NSCLC. However, there are still numerous patients who are difficult to benefit from anti-PD-1/PD-L1 treatment. Various biomarkers for predicting efficacy are being explored. In the present stage, PD-L1 expression is the most widely adopted biomarker in clinical practice. TMB, TIL and neoantigen are significantly correlated with the efficacy of anti-PD-1/PD-L1 therapy. Gut microbiota, inflammatory genes, and dysregulated miRNA play an important role in anti-tumor immune regulation. Combining of multiple biomarkers may increase the predictive robustness and guide the implementation of cancer precision medicine.

Acknowledgements

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Deng Y, Zhao P, Zhou L, Xiang D, Hu J, Liu Y, Ruan J, Ye X, Zheng Y, Yao J, et al. Epidemiological trends of tracheal, bronchus, and lung cancer at the global, regional, and national levels: a population-based study. J Hematol Oncol. 2020;13:98.PubMedPubMedCentralCrossRef Deng Y, Zhao P, Zhou L, Xiang D, Hu J, Liu Y, Ruan J, Ye X, Zheng Y, Yao J, et al. Epidemiological trends of tracheal, bronchus, and lung cancer at the global, regional, and national levels: a population-based study. J Hematol Oncol. 2020;13:98.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu YL, Paz-Ares L. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.PubMedCrossRef Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu YL, Paz-Ares L. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389:299–311.PubMedCrossRef
3.
5.
Zurück zum Zitat Hanna NH, Schneider BJ, Temin S, Baker S, Brahmer J, Ellis PM, Gaspar LE, Haddad RY, Hesketh PJ, Jain D, et al. Therapy for stage IV non-small-cell lung cancer without driver alterations: ASCO and OH (CCO) joint guideline update. J Clin Oncol. 2020;38:1608–32.PubMedCrossRef Hanna NH, Schneider BJ, Temin S, Baker S, Brahmer J, Ellis PM, Gaspar LE, Haddad RY, Hesketh PJ, Jain D, et al. Therapy for stage IV non-small-cell lung cancer without driver alterations: ASCO and OH (CCO) joint guideline update. J Clin Oncol. 2020;38:1608–32.PubMedCrossRef
7.
Zurück zum Zitat Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007; 1211–1214. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007; 1211–1214.
8.
Zurück zum Zitat Bai X, Yi M, Jiao Y, Chu Q, Wu K. Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther. 2019;12:9527–38.PubMedPubMedCentralCrossRef Bai X, Yi M, Jiao Y, Chu Q, Wu K. Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. Onco Targets Ther. 2019;12:9527–38.PubMedPubMedCentralCrossRef
10.
11.
Zurück zum Zitat Qin S, Li A, Yi M, Yu S, Zhang M, Wu K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J Hematol Oncol. 2019;12:27.PubMedPubMedCentralCrossRef Qin S, Li A, Yi M, Yu S, Zhang M, Wu K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J Hematol Oncol. 2019;12:27.PubMedPubMedCentralCrossRef
12.
14.
Zurück zum Zitat Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173:945–54.PubMedCrossRef Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173:945–54.PubMedCrossRef
15.
Zurück zum Zitat Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA. PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol. 2013;33:3091–8.PubMedPubMedCentralCrossRef Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA. PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol. 2013;33:3091–8.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Karachaliou N, Cardona AF, Bracht JWP, Aldeguer E, Drozdowskyj A, Fernandez-Bruno M, Chaib I, Berenguer J, Santarpia M, Ito M, et al. Integrin-linked kinase (ILK) and src homology 2 domain-containing phosphatase 2 (SHP2): Novel targets in EGFR-mutation positive non-small cell lung cancer (NSCLC). EBioMedicine. 2019;39:207–14.PubMedCrossRef Karachaliou N, Cardona AF, Bracht JWP, Aldeguer E, Drozdowskyj A, Fernandez-Bruno M, Chaib I, Berenguer J, Santarpia M, Ito M, et al. Integrin-linked kinase (ILK) and src homology 2 domain-containing phosphatase 2 (SHP2): Novel targets in EGFR-mutation positive non-small cell lung cancer (NSCLC). EBioMedicine. 2019;39:207–14.PubMedCrossRef
19.
Zurück zum Zitat Seo J-S, Kim A, Shin JY, Kim YT. Comprehensive analysis of the tumor immune micro-environment in non-small cell lung cancer for efficacy of checkpoint inhibitor. Sci Rep. 2018;8:14576.PubMedPubMedCentralCrossRef Seo J-S, Kim A, Shin JY, Kim YT. Comprehensive analysis of the tumor immune micro-environment in non-small cell lung cancer for efficacy of checkpoint inhibitor. Sci Rep. 2018;8:14576.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Xu-Monette ZY, Zhang M, Li J, Young KH. PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response? Front Immunol. 2017;8:1597.PubMedPubMedCentralCrossRef Xu-Monette ZY, Zhang M, Li J, Young KH. PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response? Front Immunol. 2017;8:1597.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.PubMedPubMedCentralCrossRef Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, Ahn MJ, Eder JP, Balmanoukian AS, Aggarwal C, Horn L, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J Clin Oncol. 2019;37:2518–27.PubMedPubMedCentralCrossRef Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, Ahn MJ, Eder JP, Balmanoukian AS, Aggarwal C, Horn L, et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J Clin Oncol. 2019;37:2518–27.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Middleton G, Brock K, Savage J, Mant R, Summers Y, Connibear J, Shah R, Ottensmeier C, Shaw P, Lee SM, et al. Pembrolizumab in patients with non-small-cell lung cancer of performance status 2 (PePS2): a single arm, phase 2 trial. Lancet Respir Med. 2020;8:895–904.PubMedCrossRef Middleton G, Brock K, Savage J, Mant R, Summers Y, Connibear J, Shah R, Ottensmeier C, Shaw P, Lee SM, et al. Pembrolizumab in patients with non-small-cell lung cancer of performance status 2 (PePS2): a single arm, phase 2 trial. Lancet Respir Med. 2020;8:895–904.PubMedCrossRef
24.
Zurück zum Zitat Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37:537–46.PubMedCrossRef Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J Clin Oncol. 2019;37:537–46.PubMedCrossRef
25.
Zurück zum Zitat Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.PubMedPubMedCentralCrossRef Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65.PubMedCrossRef Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389:255–65.PubMedCrossRef
28.
29.
Zurück zum Zitat Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, Peters S. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30:44–56.PubMedCrossRef Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, Peters S. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30:44–56.PubMedCrossRef
30.
Zurück zum Zitat Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21:1353–65.PubMedCrossRef Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21:1353–65.PubMedCrossRef
31.
Zurück zum Zitat Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–26.PubMedPubMedCentralCrossRef Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–26.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–104.PubMedPubMedCentralCrossRef Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378:2093–104.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Nie W, Qian J, Xu MD, Gu K, Qian FF, Hu MJ, Lu J, Gan L, Zhang XY, Cao SH, et al. A non-linear association between blood tumor mutation burden and prognosis in NSCLC patients receiving atezolizumab. Oncoimmunology. 2020;9:1731072.PubMedPubMedCentralCrossRef Nie W, Qian J, Xu MD, Gu K, Qian FF, Hu MJ, Lu J, Gan L, Zhang XY, Cao SH, et al. A non-linear association between blood tumor mutation burden and prognosis in NSCLC patients receiving atezolizumab. Oncoimmunology. 2020;9:1731072.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.PubMedPubMedCentralCrossRef McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.PubMedPubMedCentralCrossRef
36.
37.
Zurück zum Zitat Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.PubMedCrossRef Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.PubMedCrossRef
38.
Zurück zum Zitat Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, Ren S, Zhou C. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol. 2019;12:93.PubMedPubMedCentralCrossRef Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, Ren S, Zhou C. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol. 2019;12:93.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 2015;1:1325–32.PubMedCrossRef Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol. 2015;1:1325–32.PubMedCrossRef
42.
Zurück zum Zitat Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.PubMedPubMedCentralCrossRef Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.PubMedPubMedCentralCrossRef
43.
44.
Zurück zum Zitat Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7:264–76.PubMedCrossRef Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N, et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 2017;7:264–76.PubMedCrossRef
45.
Zurück zum Zitat Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36:633–41.PubMedPubMedCentralCrossRef Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36:633–41.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Liu C, Zheng S, Jin R, Wang X, Wang F, Zang R, Xu H, Lu Z, Huang J, Lei Y, et al. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett. 2020;470:95–105.PubMedCrossRef Liu C, Zheng S, Jin R, Wang X, Wang F, Zang R, Xu H, Lu Z, Huang J, Lei Y, et al. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity. Cancer Lett. 2020;470:95–105.PubMedCrossRef
47.
Zurück zum Zitat Biton J, Mansuet-Lupo A, Pécuchet N, Alifano M, Ouakrim H, Arrondeau J, Boudou-Rouquette P, Goldwasser F, Leroy K, Goc J, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma. Clin Cancer Res. 2018;24:5710–23.PubMedCrossRef Biton J, Mansuet-Lupo A, Pécuchet N, Alifano M, Ouakrim H, Arrondeau J, Boudou-Rouquette P, Goldwasser F, Leroy K, Goc J, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma. Clin Cancer Res. 2018;24:5710–23.PubMedCrossRef
48.
Zurück zum Zitat Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, Zhang Y, He X, Zhou T, Qin T, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015;10:910–23.PubMedCrossRef Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, Zhang Y, He X, Zhou T, Qin T, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015;10:910–23.PubMedCrossRef
49.
Zurück zum Zitat Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li K, Nishiyama A, Arai S, Yano S, Wang W. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer. 2019;18:165.PubMedPubMedCentralCrossRef Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li K, Nishiyama A, Arai S, Yano S, Wang W. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression. Mol Cancer. 2019;18:165.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3:1355–63.PubMedCrossRef Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3:1355–63.PubMedCrossRef
51.
Zurück zum Zitat Masuda K, Horinouchi H, Tanaka M, Higashiyama R, Shinno Y, Sato J, Matsumoto Y, Okuma Y, Yoshida T, Goto Y, et al. Efficacy of anti-PD-1 antibodies in NSCLC patients with an EGFR mutation and high PD-L1 expression. J Cancer Res Clin Oncol. 2020;147:245–51.PubMedPubMedCentralCrossRef Masuda K, Horinouchi H, Tanaka M, Higashiyama R, Shinno Y, Sato J, Matsumoto Y, Okuma Y, Yoshida T, Goto Y, et al. Efficacy of anti-PD-1 antibodies in NSCLC patients with an EGFR mutation and high PD-L1 expression. J Cancer Res Clin Oncol. 2020;147:245–51.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Hong S, Chen N, Fang W, Zhan J, Liu Q, Kang S, He X, Liu L, Zhou T, Huang J, et al. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: Implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients. Oncoimmunology. 2016;5:e1094598.PubMedCrossRef Hong S, Chen N, Fang W, Zhan J, Liu Q, Kang S, He X, Liu L, Zhou T, Huang J, et al. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: Implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients. Oncoimmunology. 2016;5:e1094598.PubMedCrossRef
53.
Zurück zum Zitat Oya Y, Kuroda H, Nakada T, Takahashi Y, Sakakura N, Hida T. Efficacy of immune checkpoint inhibitor monotherapy for advanced non-small-cell lung cancer with ALK rearrangement. Int J Mol Sci. 2020;21:2623.PubMedCentralCrossRef Oya Y, Kuroda H, Nakada T, Takahashi Y, Sakakura N, Hida T. Efficacy of immune checkpoint inhibitor monotherapy for advanced non-small-cell lung cancer with ALK rearrangement. Int J Mol Sci. 2020;21:2623.PubMedCentralCrossRef
54.
Zurück zum Zitat Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, Akimov M, Bufill JA, Lee C, Jentz D, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.PubMedCrossRef Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, Akimov M, Bufill JA, Lee C, Jentz D, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.PubMedCrossRef
55.
Zurück zum Zitat Sabari JK, Leonardi GC, Shu CA, Umeton R, Montecalvo J, Ni A, Chen R, Dienstag J, Mrad C, Bergagnini I, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29:2085–91.PubMedPubMedCentralCrossRef Sabari JK, Leonardi GC, Shu CA, Umeton R, Montecalvo J, Ni A, Chen R, Dienstag J, Mrad C, Bergagnini I, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29:2085–91.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Gong M, Li Y, Ye X, Zhang L, Wang Z, Xu X, Shen Y, Zheng C. Loss-of-function mutations in KEAP1 drive lung cancer progression via KEAP1/NRF2 pathway activation. Cell Commun Signal. 2020;18:98.PubMedPubMedCentralCrossRef Gong M, Li Y, Ye X, Zhang L, Wang Z, Xu X, Shen Y, Zheng C. Loss-of-function mutations in KEAP1 drive lung cancer progression via KEAP1/NRF2 pathway activation. Cell Commun Signal. 2020;18:98.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Singh A, Daemen A, Nickles D, Jeon SM, Foreman O, Sudini K, Gnad F, Lajoie S, Gour N, Mitzner W, et al. NRF2 activation promotes aggressive lung cancer and associates with poor clinical outcomes. Clin Cancer Res. 2021;27:877–88.PubMedCrossRef Singh A, Daemen A, Nickles D, Jeon SM, Foreman O, Sudini K, Gnad F, Lajoie S, Gour N, Mitzner W, et al. NRF2 activation promotes aggressive lung cancer and associates with poor clinical outcomes. Clin Cancer Res. 2021;27:877–88.PubMedCrossRef
59.
Zurück zum Zitat Tian Y, Liu Q, Yu S, Chu Q, Chen Y, Wu K, Wang L. NRF2-driven KEAP1 transcription in human lung cancer. Mol Cancer Res. 2020;18:1465–76.PubMedCrossRef Tian Y, Liu Q, Yu S, Chu Q, Chen Y, Wu K, Wang L. NRF2-driven KEAP1 transcription in human lung cancer. Mol Cancer Res. 2020;18:1465–76.PubMedCrossRef
60.
Zurück zum Zitat Tian Y, Wu K, Liu Q, Han N, Zhang L, Chu Q, Chen Y. Modification of platinum sensitivity by KEAP1/NRF2 signals in non-small cell lung cancer. J Hematol Oncol. 2016;9:83.PubMedPubMedCentralCrossRef Tian Y, Wu K, Liu Q, Han N, Zhang L, Chu Q, Chen Y. Modification of platinum sensitivity by KEAP1/NRF2 signals in non-small cell lung cancer. J Hematol Oncol. 2016;9:83.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Xu X, Yang Y, Liu X, Cao N, Zhang P, Zhao S, Chen D, Li L, He Y, Dong X, et al. NFE2L2/KEAP1 mutations correlate with higher tumor mutational burden value/PD-L1 expression and potentiate improved clinical outcome with immunotherapy. Oncologist. 2020;25:e955–63.PubMedPubMedCentralCrossRef Xu X, Yang Y, Liu X, Cao N, Zhang P, Zhao S, Chen D, Li L, He Y, Dong X, et al. NFE2L2/KEAP1 mutations correlate with higher tumor mutational burden value/PD-L1 expression and potentiate improved clinical outcome with immunotherapy. Oncologist. 2020;25:e955–63.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Guisier F, Dubos-Arvis C, Viñas F, Doubre H, Ricordel C, Ropert S, Janicot H, Bernardi M, Fournel P, Lamy R, et al. Efficacy and safety of anti-PD-1 immunotherapy in patients with advanced NSCLC With BRAF, HER2, or MET mutations or RET translocation: GFPC 01–2018. J Thorac Oncol. 2020;15:628–36.PubMedCrossRef Guisier F, Dubos-Arvis C, Viñas F, Doubre H, Ricordel C, Ropert S, Janicot H, Bernardi M, Fournel P, Lamy R, et al. Efficacy and safety of anti-PD-1 immunotherapy in patients with advanced NSCLC With BRAF, HER2, or MET mutations or RET translocation: GFPC 01–2018. J Thorac Oncol. 2020;15:628–36.PubMedCrossRef
63.
Zurück zum Zitat Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, Thai AA, Mascaux C, Couraud S, Veillon R, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30:1321–8.PubMedPubMedCentralCrossRef Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, Thai AA, Mascaux C, Couraud S, Veillon R, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30:1321–8.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–40.PubMedPubMedCentralCrossRef Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–40.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Thompson JC, Hwang W-T, Davis C, Deshpande C, Jeffries S, Rajpurohit Y, Krishna V, Smirnov D, Verona R, Lorenzi MV, et al. Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer. 2020;139:1–8.PubMedCrossRef Thompson JC, Hwang W-T, Davis C, Deshpande C, Jeffries S, Rajpurohit Y, Krishna V, Smirnov D, Verona R, Lorenzi MV, et al. Gene signatures of tumor inflammation and epithelial-to-mesenchymal transition (EMT) predict responses to immune checkpoint blockade in lung cancer with high accuracy. Lung Cancer. 2020;139:1–8.PubMedCrossRef
66.
Zurück zum Zitat Thompson JC, Davis C, Deshpande C, Hwang W-T, Jeffries S, Huang A, Mitchell TC, Langer CJ, Albelda SM. Gene signature of antigen processing and presentation machinery predicts response to checkpoint blockade in non-small cell lung cancer (NSCLC) and melanoma. J Immunother Cancer. 2020;8:e000974.PubMedPubMedCentralCrossRef Thompson JC, Davis C, Deshpande C, Hwang W-T, Jeffries S, Huang A, Mitchell TC, Langer CJ, Albelda SM. Gene signature of antigen processing and presentation machinery predicts response to checkpoint blockade in non-small cell lung cancer (NSCLC) and melanoma. J Immunother Cancer. 2020;8:e000974.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.PubMedCrossRef Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.PubMedCrossRef
68.
Zurück zum Zitat Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22.PubMedCrossRef Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22.PubMedCrossRef
70.
Zurück zum Zitat Hong W, Xue M, Jiang J, Zhang Y, Gao X. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2020;39:149.PubMedPubMedCentralCrossRef Hong W, Xue M, Jiang J, Zhang Y, Gao X. Circular RNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2020;39:149.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Fan J, Yin Z, Xu J, Wu F, Huang Q, Yang L, Jin Y, Yang G. Circulating microRNAs predict the response to anti-PD-1 therapy in non-small cell lung cancer. Genomics. 2020;112:2063–71.PubMedCrossRef Fan J, Yin Z, Xu J, Wu F, Huang Q, Yang L, Jin Y, Yang G. Circulating microRNAs predict the response to anti-PD-1 therapy in non-small cell lung cancer. Genomics. 2020;112:2063–71.PubMedCrossRef
72.
Zurück zum Zitat Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, Herbst RS, Gettinger SN, Chen L, Rimm DL. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest. 2014;94:107–16.PubMedCrossRef Velcheti V, Schalper KA, Carvajal DE, Anagnostou VK, Syrigos KN, Sznol M, Herbst RS, Gettinger SN, Chen L, Rimm DL. Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest. 2014;94:107–16.PubMedCrossRef
73.
Zurück zum Zitat Qin S, Dong B, Yi M, Chu Q, Wu K. Prognostic Values of TIM-3 expression in patients with solid tumors: a meta-analysis and database evaluation. Front Oncol. 2020;10:1288.PubMedPubMedCentralCrossRef Qin S, Dong B, Yi M, Chu Q, Wu K. Prognostic Values of TIM-3 expression in patients with solid tumors: a meta-analysis and database evaluation. Front Oncol. 2020;10:1288.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Kim K, Park S, Park SY, Kim G, Park SM, Cho JW, Kim DH, Park YM, Koh YW, Kim HR, et al. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Genome Med. 2020;12:22.PubMedPubMedCentralCrossRef Kim K, Park S, Park SY, Kim G, Park SM, Cho JW, Kim DH, Park YM, Koh YW, Kim HR, et al. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Genome Med. 2020;12:22.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Cui S, Dong L, Qian J, Ye L, Jiang L. Classifying non-small cell lung cancer by status of programmed cell death ligand 1 and tumor-infiltrating lymphocytes on tumor cells. J Cancer. 2018;9:129–34.PubMedPubMedCentralCrossRef Cui S, Dong L, Qian J, Ye L, Jiang L. Classifying non-small cell lung cancer by status of programmed cell death ligand 1 and tumor-infiltrating lymphocytes on tumor cells. J Cancer. 2018;9:129–34.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F, Armani G, Lagrasta CA, Lorusso B, Mangiaracina C, et al. Low PD-1 expression in cytotoxic CD8+ tumor-infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value. Clin Cancer Res. 2018;24:407–19.PubMedCrossRef Mazzaschi G, Madeddu D, Falco A, Bocchialini G, Goldoni M, Sogni F, Armani G, Lagrasta CA, Lorusso B, Mangiaracina C, et al. Low PD-1 expression in cytotoxic CD8+ tumor-infiltrating lymphocytes confers an immune-privileged tissue microenvironment in NSCLC with a prognostic and predictive value. Clin Cancer Res. 2018;24:407–19.PubMedCrossRef
79.
Zurück zum Zitat Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, Sica GL, Yu K, Koenig L, Patel NT, et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A. 2017;114:4993–8.PubMedPubMedCentralCrossRef Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, Sica GL, Yu K, Koenig L, Patel NT, et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A. 2017;114:4993–8.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Howie B, Sherwood AM, Berkebile AD, Berka J, Emerson RO, Williamson DW, Kirsch I, Vignali M, Rieder MJ, Carlson CS, et al. High-throughput pairing of T cell receptor α and β sequences. Sci Transl Med. 2015;7:301ra131.PubMedCrossRef Howie B, Sherwood AM, Berkebile AD, Berka J, Emerson RO, Williamson DW, Kirsch I, Vignali M, Rieder MJ, Carlson CS, et al. High-throughput pairing of T cell receptor α and β sequences. Sci Transl Med. 2015;7:301ra131.PubMedCrossRef
81.
82.
Zurück zum Zitat Han J, Duan J, Bai H, Wang Y, Wan R, Wang X, Chen S, Tian Y, Wang D, Fei K, et al. TCR repertoire diversity of peripheral PD-1+CD8+ T cells predicts clinical outcomes after immunotherapy in patients with non-small cell lung cancer. Cancer Immunol Res. 2020;8:146–54.PubMedCrossRef Han J, Duan J, Bai H, Wang Y, Wan R, Wang X, Chen S, Tian Y, Wang D, Fei K, et al. TCR repertoire diversity of peripheral PD-1+CD8+ T cells predicts clinical outcomes after immunotherapy in patients with non-small cell lung cancer. Cancer Immunol Res. 2020;8:146–54.PubMedCrossRef
83.
Zurück zum Zitat Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379:2342–50.PubMedCrossRef Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379:2342–50.PubMedCrossRef
84.
Zurück zum Zitat Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H, Nishimura T. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res. 2010;70:2697–706.PubMedCrossRef Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H, Nishimura T. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res. 2010;70:2697–706.PubMedCrossRef
85.
Zurück zum Zitat Yoneda K, Kuwata T, Kanayama M, Mori M, Kawanami T, Yatera K, Ohguri T, Hisaoka M, Nakayama T, Tanaka F. Alteration in tumoural PD-L1 expression and stromal CD8-positive tumour-infiltrating lymphocytes after concurrent chemo-radiotherapy for non-small cell lung cancer. Br J Cancer. 2019;121:490–6.PubMedPubMedCentralCrossRef Yoneda K, Kuwata T, Kanayama M, Mori M, Kawanami T, Yatera K, Ohguri T, Hisaoka M, Nakayama T, Tanaka F. Alteration in tumoural PD-L1 expression and stromal CD8-positive tumour-infiltrating lymphocytes after concurrent chemo-radiotherapy for non-small cell lung cancer. Br J Cancer. 2019;121:490–6.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, Chiang H, Sodré AL, Olson P, Weber JS, et al. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother. 2018;67:381–92.PubMedCrossRef Briere D, Sudhakar N, Woods DM, Hallin J, Engstrom LD, Aranda R, Chiang H, Sodré AL, Olson P, Weber JS, et al. The class I/IV HDAC inhibitor mocetinostat increases tumor antigen presentation, decreases immune suppressive cell types and augments checkpoint inhibitor therapy. Cancer Immunol Immunother. 2018;67:381–92.PubMedCrossRef
87.
Zurück zum Zitat Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–43.CrossRefPubMed Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013;34:137–43.CrossRefPubMed
88.
Zurück zum Zitat Botticelli A, Mezi S, Pomati G, Cerbelli B, Cerbelli E, Roberto M, Giusti R, Cortellini A, Lionetto L, Scagnoli S, et al. Tryptophan catabolism as immune mechanism of primary resistance to Anti-PD-1. Front Immunol. 2020;11:1243.PubMedPubMedCentralCrossRef Botticelli A, Mezi S, Pomati G, Cerbelli B, Cerbelli E, Roberto M, Giusti R, Cortellini A, Lionetto L, Scagnoli S, et al. Tryptophan catabolism as immune mechanism of primary resistance to Anti-PD-1. Front Immunol. 2020;11:1243.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Umansky V, Blattner C, Gebhardt C, Utikal J. The Role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel). 2016;4:36.CrossRef Umansky V, Blattner C, Gebhardt C, Utikal J. The Role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel). 2016;4:36.CrossRef
90.
Zurück zum Zitat Condamine T, Ramachandran I, Youn JI, Gabrilovich DI. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 2015;66:97–110.PubMedCrossRef Condamine T, Ramachandran I, Youn JI, Gabrilovich DI. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 2015;66:97–110.PubMedCrossRef
91.
Zurück zum Zitat Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F, Rizzuto GA, Lazarus JJ, Pamer EG, Houghton AN, et al. Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res. 2012;72:876–86.PubMedCrossRef Lesokhin AM, Hohl TM, Kitano S, Cortez C, Hirschhorn-Cymerman D, Avogadri F, Rizzuto GA, Lazarus JJ, Pamer EG, Houghton AN, et al. Monocytic CCR2(+) myeloid-derived suppressor cells promote immune escape by limiting activated CD8 T-cell infiltration into the tumor microenvironment. Cancer Res. 2012;72:876–86.PubMedCrossRef
92.
Zurück zum Zitat Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P. PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res. 2011;71:7463–70.PubMedPubMedCentralCrossRef Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P. PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res. 2011;71:7463–70.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Yamauchi Y, Safi S, Blattner C, Rathinasamy A, Umansky L, Juenger S, Warth A, Eichhorn M, Muley T, Herth FJF, et al. Circulating and tumor myeloid-derived suppressor cells in resectable non-small cell lung cancer. Am J Respir Crit Care Med. 2018;198:777–87.PubMedCrossRef Yamauchi Y, Safi S, Blattner C, Rathinasamy A, Umansky L, Juenger S, Warth A, Eichhorn M, Muley T, Herth FJF, et al. Circulating and tumor myeloid-derived suppressor cells in resectable non-small cell lung cancer. Am J Respir Crit Care Med. 2018;198:777–87.PubMedCrossRef
94.
Zurück zum Zitat Robbins PD, Dorronsoro A, Booker CN. Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest. 2016;126:1173–80.PubMedPubMedCentralCrossRef Robbins PD, Dorronsoro A, Booker CN. Regulation of chronic inflammatory and immune processes by extracellular vesicles. J Clin Invest. 2016;126:1173–80.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27:172–88.CrossRefPubMed Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27:172–88.CrossRefPubMed
96.
Zurück zum Zitat Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.PubMedCrossRef Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.PubMedCrossRef
97.
Zurück zum Zitat Li S, Yi M, Dong B, Jiao Y, Luo S, Wu K. The roles of exosomes in cancer drug resistance and its therapeutic application. Clin Transl Med. 2020;10:e257.PubMedPubMedCentralCrossRef Li S, Yi M, Dong B, Jiao Y, Luo S, Wu K. The roles of exosomes in cancer drug resistance and its therapeutic application. Clin Transl Med. 2020;10:e257.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Lindenbergh MFS, Stoorvogel W. Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu Rev Immunol. 2018;36:435–59.PubMedCrossRef Lindenbergh MFS, Stoorvogel W. Antigen presentation by extracellular vesicles from professional antigen-presenting cells. Annu Rev Immunol. 2018;36:435–59.PubMedCrossRef
100.
Zurück zum Zitat Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30:836–48.PubMedPubMedCentralCrossRef Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30:836–48.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Shukuya T, Ghai V, Amann JM, Okimoto T, Shilo K, Kim TK, Wang K, Carbone DP. Circulating MicroRNAs and extracellular vesicle-containing MicroRNAs as response biomarkers of anti-programmed cell death protein 1 or programmed death-ligand 1 therapy in NSCLC. J Thorac Oncol. 2020;15:1773–81.PubMedCrossRefPubMedCentral Shukuya T, Ghai V, Amann JM, Okimoto T, Shilo K, Kim TK, Wang K, Carbone DP. Circulating MicroRNAs and extracellular vesicle-containing MicroRNAs as response biomarkers of anti-programmed cell death protein 1 or programmed death-ligand 1 therapy in NSCLC. J Thorac Oncol. 2020;15:1773–81.PubMedCrossRefPubMedCentral
102.
Zurück zum Zitat Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, Zhang L, Zhou F. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci (Weinh). 2019;6:1901779.CrossRef Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, Zhang L, Zhou F. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci (Weinh). 2019;6:1901779.CrossRef
103.
Zurück zum Zitat Mathew M, Zade M, Mezghani N, Patel R, Wang Y, Momen-Heravi F. Extracellular vesicles as biomarkers in cancer immunotherapy. Cancers (Basel). 2020;12:2825.CrossRef Mathew M, Zade M, Mezghani N, Patel R, Wang Y, Momen-Heravi F. Extracellular vesicles as biomarkers in cancer immunotherapy. Cancers (Basel). 2020;12:2825.CrossRef
104.
Zurück zum Zitat Vasconcelos MH, Caires HR, Ābols A, Xavier CPR, Linē A. Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat. 2019;47:100647.PubMedCrossRef Vasconcelos MH, Caires HR, Ābols A, Xavier CPR, Linē A. Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat. 2019;47:100647.PubMedCrossRef
105.
Zurück zum Zitat Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.PubMedCrossRef Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.PubMedCrossRef
106.
Zurück zum Zitat Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.PubMedCrossRef Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124:263–6.PubMedCrossRef
107.
Zurück zum Zitat Adams DL, Martin SS, Alpaugh RK, Charpentier M, Tsai S, Bergan RC, Ogden IM, Catalona W, Chumsri S, Tang CM, et al. Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci USA. 2014;111:3514–9.PubMedCrossRefPubMedCentral Adams DL, Martin SS, Alpaugh RK, Charpentier M, Tsai S, Bergan RC, Ogden IM, Catalona W, Chumsri S, Tang CM, et al. Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci USA. 2014;111:3514–9.PubMedCrossRefPubMedCentral
108.
Zurück zum Zitat Tang CM, Zhu P, Li S, Makarova OV, Amstutz PT, Adams DL. Filtration and analysis of circulating cancer associated cells from the blood of cancer patients. Methods Mol Biol. 2017;1572:511–24.PubMedCrossRef Tang CM, Zhu P, Li S, Makarova OV, Amstutz PT, Adams DL. Filtration and analysis of circulating cancer associated cells from the blood of cancer patients. Methods Mol Biol. 2017;1572:511–24.PubMedCrossRef
109.
Zurück zum Zitat Augustyn A, Adams DL, He J, Qiao Y, Verma V, Liao Z, Tang CM, Heymach JV, Tsao AS, Lin SH. Giant circulating cancer-associated macrophage-like cells are associated with disease recurrence and survival in non-small-cell lung cancer treated with chemoradiation and atezolizumab. Clin Lung Cancer. 2020;S1525–7304:30210–2. Augustyn A, Adams DL, He J, Qiao Y, Verma V, Liao Z, Tang CM, Heymach JV, Tsao AS, Lin SH. Giant circulating cancer-associated macrophage-like cells are associated with disease recurrence and survival in non-small-cell lung cancer treated with chemoradiation and atezolizumab. Clin Lung Cancer. 2020;S1525–7304:30210–2.
110.
Zurück zum Zitat Kronenwett U, Huwendiek S, Ostring C, Portwood N, Roblick UJ, Pawitan Y, Alaiya A, Sennerstam R, Zetterberg A, Auer G. Improved grading of breast adenocarcinomas based on genomic instability. Cancer Res. 2004;64:904–9.PubMedCrossRef Kronenwett U, Huwendiek S, Ostring C, Portwood N, Roblick UJ, Pawitan Y, Alaiya A, Sennerstam R, Zetterberg A, Auer G. Improved grading of breast adenocarcinomas based on genomic instability. Cancer Res. 2004;64:904–9.PubMedCrossRef
111.
Zurück zum Zitat Dürrbaum M, Storchová Z. Effects of aneuploidy on gene expression: implications for cancer. FEBS J. 2016;283:791–802.PubMedCrossRef Dürrbaum M, Storchová Z. Effects of aneuploidy on gene expression: implications for cancer. FEBS J. 2016;283:791–802.PubMedCrossRef
113.
114.
Zurück zum Zitat Akino T, Hida K, Hida Y, Tsuchiya K, Freedman D, Muraki C, Ohga N, Matsuda K, Akiyama K, Harabayashi T, et al. Cytogenetic abnormalities of tumor-associated endothelial cells in human malignant tumors. Am J Pathol. 2009;175:2657–67.PubMedPubMedCentralCrossRef Akino T, Hida K, Hida Y, Tsuchiya K, Freedman D, Muraki C, Ohga N, Matsuda K, Akiyama K, Harabayashi T, et al. Cytogenetic abnormalities of tumor-associated endothelial cells in human malignant tumors. Am J Pathol. 2009;175:2657–67.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Cima I, Kong SL, Sengupta D, Tan IB, Phyo WM, Lee D, Hu M, Iliescu C, Alexander I, Goh WL, et al. Tumor-derived circulating endothelial cell clusters in colorectal cancer. Sci Transl Med. 2016;8:345ra389.CrossRef Cima I, Kong SL, Sengupta D, Tan IB, Phyo WM, Lee D, Hu M, Iliescu C, Alexander I, Goh WL, et al. Tumor-derived circulating endothelial cell clusters in colorectal cancer. Sci Transl Med. 2016;8:345ra389.CrossRef
116.
Zurück zum Zitat Zhang L, Zhang X, Liu Y, Zhang T, Wang Z, Gu M, Li Y, Wang DD, Li W, Lin PP. PD-L1 aneuploid circulating tumor endothelial cells (CTECs) exhibit resistance to the checkpoint blockade immunotherapy in advanced NSCLC patients. Cancer Lett. 2020; 469:355–366. Zhang L, Zhang X, Liu Y, Zhang T, Wang Z, Gu M, Li Y, Wang DD, Li W, Lin PP. PD-L1 aneuploid circulating tumor endothelial cells (CTECs) exhibit resistance to the checkpoint blockade immunotherapy in advanced NSCLC patients. Cancer Lett. 2020; 469:355–366.
117.
Zurück zum Zitat Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106:dju124.PubMedCrossRef Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106:dju124.PubMedCrossRef
118.
Zurück zum Zitat Mandaliya H, Jones M, Oldmeadow C, Nordman II. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl Lung Cancer Res. 2019;8:886–94.PubMedPubMedCentralCrossRef Mandaliya H, Jones M, Oldmeadow C, Nordman II. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl Lung Cancer Res. 2019;8:886–94.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Li Y, Zhang Z, Hu Y, Yan X, Song Q, Wang G, Chen R, Jiao S, Wang J. Pretreatment neutrophil-to-lymphocyte ratio (NLR) may predict the outcomes of advanced non-small-cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs). Front Oncol. 2020;10:654.PubMedPubMedCentralCrossRef Li Y, Zhang Z, Hu Y, Yan X, Song Q, Wang G, Chen R, Jiao S, Wang J. Pretreatment neutrophil-to-lymphocyte ratio (NLR) may predict the outcomes of advanced non-small-cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs). Front Oncol. 2020;10:654.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Simonaggio A, Elaidi R, Fournier L, Fabre E, Ferrari V, Borchiellini D, Thouvenin J, Barthelemy P, Thibault C, Tartour E, et al. Variation in neutrophil to lymphocyte ratio (NLR) as predictor of outcomes in metastatic renal cell carcinoma (mRCC) and non-small cell lung cancer (mNSCLC) patients treated with nivolumab. Cancer Immunol Immunother. 2020;69:2513–22.PubMedCrossRef Simonaggio A, Elaidi R, Fournier L, Fabre E, Ferrari V, Borchiellini D, Thouvenin J, Barthelemy P, Thibault C, Tartour E, et al. Variation in neutrophil to lymphocyte ratio (NLR) as predictor of outcomes in metastatic renal cell carcinoma (mRCC) and non-small cell lung cancer (mNSCLC) patients treated with nivolumab. Cancer Immunol Immunother. 2020;69:2513–22.PubMedCrossRef
121.
Zurück zum Zitat Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, Ponce S, Ares LP, Leroy L, Audigier-Valette C, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 2018;4:351–7.PubMedPubMedCentralCrossRef Mezquita L, Auclin E, Ferrara R, Charrier M, Remon J, Planchard D, Ponce S, Ares LP, Leroy L, Audigier-Valette C, et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 2018;4:351–7.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Peng L, Wang Y, Liu F, Qiu X, Zhang X, Fang C, Qian X, Li Y. Peripheral blood markers predictive of outcome and immune-related adverse events in advanced non-small cell lung cancer treated with PD-1 inhibitors. Cancer Immunol Immunother. 2020;69:1813–22.PubMedPubMedCentralCrossRef Peng L, Wang Y, Liu F, Qiu X, Zhang X, Fang C, Qian X, Li Y. Peripheral blood markers predictive of outcome and immune-related adverse events in advanced non-small cell lung cancer treated with PD-1 inhibitors. Cancer Immunol Immunother. 2020;69:1813–22.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Kargl J, Zhu X, Zhang H, Yang GHY, Friesen TJ, Shipley M, Maeda DY, Zebala JA, McKay-Fleisch J, Meredith G, et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight. 2019;4:e1308.CrossRef Kargl J, Zhu X, Zhang H, Yang GHY, Friesen TJ, Shipley M, Maeda DY, Zebala JA, McKay-Fleisch J, Meredith G, et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight. 2019;4:e1308.CrossRef
124.
Zurück zum Zitat Cho Y-H, Choi MG, Kim DH, Choi YJ, Kim SY, Sung KJ, Lee JC, Kim SY, Rho JK, Choi CM. Natural killer cells as a potential biomarker for predicting immunotherapy efficacy in patients with non-small cell lung cancer. Target Oncol. 2020;15:241–7.PubMedCrossRef Cho Y-H, Choi MG, Kim DH, Choi YJ, Kim SY, Sung KJ, Lee JC, Kim SY, Rho JK, Choi CM. Natural killer cells as a potential biomarker for predicting immunotherapy efficacy in patients with non-small cell lung cancer. Target Oncol. 2020;15:241–7.PubMedCrossRef
125.
Zurück zum Zitat Yi M, Yu S, Qin S, Liu Q, Xu H, Zhao W, Chu Q, Wu K. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J Hematol Oncol. 2018;11:47.PubMedPubMedCentralCrossRef Yi M, Yu S, Qin S, Liu Q, Xu H, Zhao W, Chu Q, Wu K. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J Hematol Oncol. 2018;11:47.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Nagasaka M, Sexton R, Alhasan R, Rahman S, Azmi AS, Sukari A. Gut microbiome and response to checkpoint inhibitors in non-small cell lung cancer-a review. Crit Rev Oncol Hematol. 2020;145:102841.PubMedCrossRef Nagasaka M, Sexton R, Alhasan R, Rahman S, Azmi AS, Sukari A. Gut microbiome and response to checkpoint inhibitors in non-small cell lung cancer-a review. Crit Rev Oncol Hematol. 2020;145:102841.PubMedCrossRef
127.
Zurück zum Zitat Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and Anticancer Immunosurveillance. Cell. 2016;165:276–87.PubMedCrossRef Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and Anticancer Immunosurveillance. Cell. 2016;165:276–87.PubMedCrossRef
128.
Zurück zum Zitat Yi M, Jiao D, Qin S, Chu Q, Li A, Wu K. Manipulating gut microbiota composition to enhance the therapeutic effect of cancer immunotherapy. Integr Cancer Ther. 2019;18:1534735419876351.PubMedPubMedCentralCrossRef Yi M, Jiao D, Qin S, Chu Q, Li A, Wu K. Manipulating gut microbiota composition to enhance the therapeutic effect of cancer immunotherapy. Integr Cancer Ther. 2019;18:1534735419876351.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.PubMedCrossRef Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.PubMedCrossRef
130.
Zurück zum Zitat Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen Y, Zheng H, Yao C, Wang Y, Lu S. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in chinese patients with NSCLC. J Thorac Oncol. 2019;14:1378–89.PubMedCrossRef Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen Y, Zheng H, Yao C, Wang Y, Lu S. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in chinese patients with NSCLC. J Thorac Oncol. 2019;14:1378–89.PubMedCrossRef
131.
Zurück zum Zitat Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, Spector TD, Keinan A, Ley RE, Gevers D, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.PubMedPubMedCentralCrossRef Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, Spector TD, Keinan A, Ley RE, Gevers D, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16:191.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol. 2017;8:1162.PubMedPubMedCentralCrossRef Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol. 2017;8:1162.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Tinsley N, Zhou C, Tan G, Rack S, Lorigan P, Blackhall F, Krebs M, Carter L, Thistlethwaite F, Graham D, et al. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist. 2020;25:55–63.PubMedCrossRef Tinsley N, Zhou C, Tan G, Rack S, Lorigan P, Blackhall F, Krebs M, Carter L, Thistlethwaite F, Graham D, et al. Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist. 2020;25:55–63.PubMedCrossRef
134.
135.
Zurück zum Zitat Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018;29:1437–44.PubMedPubMedCentralCrossRef Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 2018;29:1437–44.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, Vork L, Tigchelaar EF, Jankipersadsing SA, Cenit MC, Harmsen HJM, et al. Proton pump inhibitors affect the gut microbiome. Gut. 2016;65:740–8.PubMedCrossRef Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, Vork L, Tigchelaar EF, Jankipersadsing SA, Cenit MC, Harmsen HJM, et al. Proton pump inhibitors affect the gut microbiome. Gut. 2016;65:740–8.PubMedCrossRef
137.
Zurück zum Zitat Chalabi M, Cardona A, Nagarkar DR, Dhawahir Scala A, Gandara DR, Rittmeyer A, Albert ML, Powles T, Kok M, Herrera FG. Efficacy of chemotherapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: pooled post hoc analyses of the OAK and POPLAR trials. Ann Oncol. 2020;31:525–31.PubMedCrossRef Chalabi M, Cardona A, Nagarkar DR, Dhawahir Scala A, Gandara DR, Rittmeyer A, Albert ML, Powles T, Kok M, Herrera FG. Efficacy of chemotherapy and atezolizumab in patients with non-small-cell lung cancer receiving antibiotics and proton pump inhibitors: pooled post hoc analyses of the OAK and POPLAR trials. Ann Oncol. 2020;31:525–31.PubMedCrossRef
138.
Zurück zum Zitat McQuade JL, Ologun GO, Arora R, Wargo JA. Gut microbiome modulation via fecal microbiota transplant to augment immunotherapy in patients with melanoma or other cancers. Curr Oncol Rep. 2020;22:74.PubMedPubMedCentralCrossRef McQuade JL, Ologun GO, Arora R, Wargo JA. Gut microbiome modulation via fecal microbiota transplant to augment immunotherapy in patients with melanoma or other cancers. Curr Oncol Rep. 2020;22:74.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M, Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management—fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes. 2020;11:1518–30.PubMedPubMedCentralCrossRef Kaźmierczak-Siedlecka K, Daca A, Fic M, van de Wetering T, Folwarski M, Makarewicz W. Therapeutic methods of gut microbiota modification in colorectal cancer management—fecal microbiota transplantation, prebiotics, probiotics, and synbiotics. Gut Microbes. 2020;11:1518–30.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38.PubMedCrossRef Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16:626–38.PubMedCrossRef
141.
Zurück zum Zitat Conforti F, Pala L, Bagnardi V, Viale G, De Pas T, Pagan E, Pennacchioli E, Cocorocchio E, Ferrucci PF, De Marinis F, et al. Sex-based heterogeneity in response to lung cancer immunotherapy: a systematic review and meta-analysis. J Natl Cancer Inst. 2019;111:772–81.PubMedPubMedCentralCrossRef Conforti F, Pala L, Bagnardi V, Viale G, De Pas T, Pagan E, Pennacchioli E, Cocorocchio E, Ferrucci PF, De Marinis F, et al. Sex-based heterogeneity in response to lung cancer immunotherapy: a systematic review and meta-analysis. J Natl Cancer Inst. 2019;111:772–81.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Li JJN, Karim K, Sung M, Le LW, Lau SCM, Sacher A, Leighl NB. Tobacco exposure and immunotherapy response in PD-L1 positive lung cancer patients. Lung Cancer. 2020;150:159–63.PubMedCrossRef Li JJN, Karim K, Sung M, Le LW, Lau SCM, Sacher A, Leighl NB. Tobacco exposure and immunotherapy response in PD-L1 positive lung cancer patients. Lung Cancer. 2020;150:159–63.PubMedCrossRef
143.
Zurück zum Zitat Chiu M, Lipka MB, Bhateja P, Fu P, Dowlati A. A detailed smoking history and determination of status predict response to checkpoint inhibitors in advanced non-small cell lung cancer. Transl Lung Cancer Res. 2020;9:55–60.PubMedPubMedCentralCrossRef Chiu M, Lipka MB, Bhateja P, Fu P, Dowlati A. A detailed smoking history and determination of status predict response to checkpoint inhibitors in advanced non-small cell lung cancer. Transl Lung Cancer Res. 2020;9:55–60.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Dimitrakopoulos FI, Nikolakopoulos A, Kottorou A, Kalofonou F, Liolis E, Frantzi T, Pyrousis I, Koutras A, Makatsoris T, Kalofonos H. PIOS (patras immunotherapy score) score is associated with best overall response, progression-free survival, and post-immunotherapy overall survival in patients with advanced non-small-cell lung cancer (NSCLC) treated with anti-program cell death-1 (PD-1) inhibitors. Cancers (Basel). 2020;12:1257.CrossRef Dimitrakopoulos FI, Nikolakopoulos A, Kottorou A, Kalofonou F, Liolis E, Frantzi T, Pyrousis I, Koutras A, Makatsoris T, Kalofonos H. PIOS (patras immunotherapy score) score is associated with best overall response, progression-free survival, and post-immunotherapy overall survival in patients with advanced non-small-cell lung cancer (NSCLC) treated with anti-program cell death-1 (PD-1) inhibitors. Cancers (Basel). 2020;12:1257.CrossRef
Metadaten
Titel
Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC
verfasst von
Mengke Niu
Ming Yi
Ning Li
Suxia Luo
Kongming Wu
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Experimental Hematology & Oncology / Ausgabe 1/2021
Elektronische ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-021-00211-8

Weitere Artikel der Ausgabe 1/2021

Experimental Hematology & Oncology 1/2021 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.