Skip to main content
Erschienen in: Molecular Pain 1/2007

Open Access 01.12.2007 | Review

Neuroimaging revolutionizes therapeutic approaches to chronic pain

verfasst von: David Borsook, Eric A Moulton, Karl F Schmidt, Lino R Becerra

Erschienen in: Molecular Pain | Ausgabe 1/2007

Abstract

An understanding of how the brain changes in chronic pain or responds to pharmacological or other therapeutic interventions has been significantly changed as a result of developments in neuroimaging of the CNS. These developments have occurred in 3 domains : (1) Anatomical Imaging which has demonstrated changes in brain volume in chronic pain; (2) Functional Imaging (fMRI) that has demonstrated an altered state in the brain in chronic pain conditions including back pain, neuropathic pain, and complex regional pain syndromes. In addition the response of the brain to drugs has provided new insights into how these may modify normal and abnormal circuits (phMRI or pharmacological MRI); (3) Chemical Imaging (Magnetic Resonance Spectroscopy or MRS) has helped our understanding of measures of chemical changes in chronic pain. Taken together these three domains have already changed the way in which we think of pain – it should now be considered an altered brain state in which there may be altered functional connections or systems and a state that has components of degenerative aspects of the CNS.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1744-8069-3-25) contains supplementary material, which is available to authorized users.

Background

Various technologies have been used in drug discovery and evaluation including combinatorial chemistry, high throughput screening, pharmacogenomics, and proteomics. More recently, brain imaging has provided novel insights into functional, anatomical, and chemical changes in the human condition that allow us to define new approaches that may assist current drug development efforts [1, 2].
A number of findings suggest that our approach to the treatment of chronic pain (e.g., neuropathic pain, fibromyalgia) has been hampered by a lack of understanding of changes that occur subsequent to the onset of the condition at the level of the central nervous system (Figure 1). Amongst these are:
(i)
A 'ceiling effect' of current analgesics for chronic pain, rarely exceeding a 30% efficacy level in controlled trials [3] or as defined by numbers needed to treat (NNT) or need to harm (NNH) [4].
 
(ii)
Chronic pain may express itself as a consequence of other conditions. For example, chronic pain may arise after the onset of depression, even in patients without a prior pain history of depression [5].
 
(iii)
Chronic pain patients are defined as 'difficult patients' in that they often have neuropsychological changes that include changes in affect and motivation or changes in cognition, all of which rarely predate their pain condition.
 
(iv)
In some conditions such as complex regional pain syndrome (CRPS), manifestations of dysautonomia, movement disorders, and spreading pain (ipsilateral and contralateral) are all indicative of complex secondary changes in the CNS that follow a relatively trivial peripheral nerve injury [6].
 
(v)
Chronic opioid therapy (e.g., methadone maintenance) results in a hyperalgesic state in both experimental and clinical pain scenarios [7] implying changes in central processing (e.g., alterations in modulatory systems).
 
(vi)
Opioids, arguably the closest approximation to an ideal analgesic, fail to produce pain relief in all individuals, even at high doses. This implies the development of 'analgesic resistance', a consequence of complex changes in neural systems in chronic pain that complicates the utility of opioids for long term therapy [8].
 
Taken together, these clinical insights suggest a few important points related to pharmacological treatment for chronic pain. First, that pain therapy clearly still requires further research to define a basic understanding of the nature of the disease (particularly regarding CNS processing) that will allow improved analgesic agents in the human condition. Second, that single targets are probably not 'ideal' analgesics given the complexity of the disease affecting the peripheral and central nervous system. Third, a strategy for treating pain is required, given that it is a chronic disease with a dynamic process (e.g., evolution of co-morbid phenotypes such as anxiety or depression) that is not easily reversed in most patients, and alterations in brain anatomy (e.g., cortical thickness) can arise as a consequence of the disease. Recent insights gained from structural and functional imaging the central nervous system (CNS) have provided the groundwork for a novel approach to developing therapies for chronic pain.
Chronic pain is a multidimensional process that now must be considered as a chronic degenerative disease not only affecting sensory and emotional processing, but also producing an altered brain state. Therapeutic interventions should be reconsidered in this context. Several functional (Figure 2), neurochemical, and structural changes have now been defined in the CNS of humans using functional, chemical, and structural (Figure 2, 3, 4) neuroimaging techniques. These changes not only provide novel insights into the pathology of the disease but also opportunities for objective indices for therapeutic efficacy.

Functional changes

Imaging patients with chronic pain is challenging. Nevertheless, a number of research groups have reported significant changes in pain processing at a functional level including allodynia, functional plasticity, and alterations in basic processes in the brain and brainstem [913]. Many of these functional changes have been defined in the context of evoked pain. More recently, basal pain levels have been measured using other approaches, including functional connectivity of how networks are coupled together [14]. Measures of resting state networks have significant implications in terms of understanding and defining the brain state in different chronic pain conditions and the have potential to measure therapeutic efficacy. Such resting state networks have been reported to be consistent across healthy subjects [15] and altered with drug use [16] or disease state [17].

Neurochemical Changes

Alterations in neurotransmitters have also been reported in chronic pain patients using magnetic resonance spectroscopy (MRS) [18]. Such approaches have been applied to migraine [19], back pain [20, 21], and to spinal cord injury [22]. The approach can be used to define neuronal and axonal markers [23], including specific metabolites such as glutamate, aspartate, glycine, and GABA. Furthermore, the use of 19F-NMR as a non-invasive probe allows for measurements of pharmacokinetics of drugs at target sites as well as changes in patient disease state [24]. Neurochemical changes can define biomarkers that precede structural changes.

Structural Changes

At a macroscopic level, a number of papers have indicated changes in volume in brain regions in patients with chronic neuropathic pain [25], CRPS [26], and fibromyalgia [27]. These last two papers have been seminal in transforming our approach and thinking on chronic pain, since these changes indicate the potential of chronic pain being a neurodegenerative disease. At a microscopic level, changes in dendritic spine density or alterations in neuronal count have been observed in pain and stress [28]. Such changes also have implications for the development of co-morbid disease such as depression [29].
In chronic pain conditions, there is an altered internal milieu as a result of external inputs, altered endogenous processing, or both. Chronic pain resulting from physical (e.g., surgery, trauma) or emotional (abuse, torture, depression) events produce changes in gene function that result in alterations in neural circuits, neural integrity, and receptor function in the CNS. The result is the phenotypic expression of spontaneous pain and increased sensitivity to painful and normally non-painful stimuli (e.g., brush, pressure, thermal). In addition, the condition is sensitive to less obvious perturbations such as changes in barometric pressure, or exacerbated in generalized inflammatory conditions such as the flu.

Current therapies – What they may tell us

In the past, many drug treatments have focused on the peripheral nerve and dorsal horn. However, most drugs used in chronic pain have CNS effects. These drugs fall into three main categories: opioids, antidepressants, and anticonvulsants. Though not developed for treating pain using a rational mechanistic approach, nearly all of these drugs have been applied to chronic pain treatment. Even in the case of the opioids, subtle effects occur as a result of multiple subtypes of specific receptors (e.g., μ1, μ2 and μ3) or as a result of actions at multiple opioids receptor sites. In the case of antidepressants, the initial mechanism of action on monoamine oxidase (MAO) inhibition has been extended to possible inhibition of sodium channels [30]. For the anticonvulsants, there has always been an association with probable efficacy in chronic pain, dating back to the use of carbamazepine in trigeminal neuralgia [31]. Indeed, the cross domain therapeutic flow has been very fruitful in many cases, of which gabapentin is probably the most well known. Most anticonvulsants have or are also being tried as treatments for neuropathic pain states. While mechanistic approaches (that require careful evaluation of specific responses e.g., cold, heat, von Frey etc) to novel therapies have significant appeal, in practice these may be difficult to implement in busy clinical practice.
In nearly all cases, drugs used in neuropathic pain have actions on the CNS. These actions are not well defined in terms of specificity at the receptor/gene level or at specific regions within the brain. In addition, in most, if not all controlled trials drugs for chronic pain have a ceiling effect in their efficacy of approximately 30%.

A new focus for therapy

What can we learn from our past? Few analgesics have been designer drugs (e.g., triptans for migraine), and most agents that have come into clinical use by serendipity, or 'parallelism' (e.g., many if not all anticonvulsants have a role in neuropathic pain). Either we are targeting only a small fraction of CNS processes in chronic pain dysfunction or we are not stopping a progressive underlying degenerative process with the current therapies. With respect to the first this may be considered in terms of systems function (e.g., emotional circuitry may be more important than sensory systems), non-neuronal systems involved in CNS function, or neural plasticity that continues to change over time. The latter feeds into the second issue. If chronic pain produces brain matter loss in regions of the brain (e.g., for example the dorsolateral prefrontal cortex) with associated consequences in altered neural function (e.g., cognitive, emotional), then our focus is very different or should be enlarged. In this context, we should now also be evaluating drugs that have better 'neuroprotective effects". The limited information from the use of NMDA inhibitors that are currently available (e.g., ketamine, memantine, methadone – seems to have a combined opioids/NMDA antagonist action) suggests that this may be the issue at hand.
Unusual drugs (i.e., outside of the purview of opioids, anticonvulsants, or antidepressants) provide novel insights into the chronic pain condition. There are a number of drugs candidates for chronic pain therapy that are examples pharmacological agents outside of the 'standard' trio of medications. These include, amongst others, toxins [32], antibiotics. ([33, 34], neuroprotective agents [35], glial-modulating agents [36, 37], and centrally acting cannabinoids [38]. Many of these have multiple known actions – for example, neurotoxins have anti-convulsant effects [39]; cannabinoid type drugs may have an effect on cytokine modulation ([40], on reward pathways [41], or they may be neuroprotective [42].
Two pharmacological models provide significant insights into the treatment of chronic pain: (i) drug induced changes in central sensitization in an experimental model of pain and (ii) the use of a novel therapy based on neurochemical and neurodegenerative changes in chronic pain.

Modulation of central sensitization

Central sensitization is observed following experimental tissue injury and in clinical conditions such as inflammation, neuropathic pain, migraine, and perhaps other chronic pain conditions. One fMRI study evaluated the effects of gabapentin on CNS activity evoked during nociceptive mechanical stimulation of a zone of secondary hyperalgesia induced by capsaicin, a model of central sensitization that may parallel some aspects of neuropathic pain [43]. The results indicated that the drug decreased activation in the brainstem during central sensitization, and also suppressed stimulus-induced deactivations with central sensitization. Extrapolations of this type of approach may provide standards for evaluating and comparing drugs in surrogate models of pain.

Neurochemical protectant

Neuroprotective qualities of a drug can be based on two observations: (i) changes in grey matter volume in the prefrontal cortex and (ii) changes in NMDA concentrations in the frontal regions. The N-methyl d-aspartate (NMDA) antagonist d-cycloserine (also known as the FDA-approved antibiotic, Seromycin) was found to produce a long term decrease in neuropathic pain behavior in rats [34]. The authors argue that the drug may remove memory traces of pain, based on changes in the prefrontal cortex. This type of approach highlights some of the specific insights garnered from neuroimaging.

The 'perfect' chronic pain drug – Targeting sensory, emotional, and neurodegenerative processes

Current evidence suggests that the perfect pharmacological therapeutic approach would be to: (a) provide early and prolonged pain relief; (b) have peripheral and central effects; (c) have neuroprotective effects; (d) protect against neurodegenerative effects; (d) enhance endogenous analgesic systems though receptor mediated or other mechanisms; and (e) modulate cytokine/immune responses. Such information may now be garnered from neuroimaging approaches potentially helping clinical development programs by enabling the objective evaluation of candidate therapeutics in clinical trials.
Some drugs may actually have a number of these effects in a single agent. Examination of cannabinoid action provides a useful example since it has a number of attributes that make it a useful model as a 'pain drug', as it is: (a) an endogenous mediator (e.g., endogenous receptors); (b) analgesic [44]; (c) a neuroprotectant [45]; and (d) an immune modulator [46, 47].
The human condition is not a controlled experimental condition. Unfortunately, many patients seek treatment for pain many months or years after its onset. There are two groups of patients that could benefit from early intervention – diabetics and postoperative patients – who together comprise a significant number of neuropathic pain patients. Treating early with drugs that inhibit or slow down a degenerative process associated with pain may provide long-term effects. While there are patient compliance issues since there may not be an immediate benefit, current evidence suggests that the longer the pain persists, the greater the level of alterations in chronic pain patients.

Future considerations – Approaches based on new insights

While neuroimaging clearly is not a stand-alone answer to improved pharmacotherapies for chronic pain, recent developments have provided novel insights through studies of the human brain in vivo in health and disease. We believe that the application of these insights will help focus therapeutic approaches in clinical trials. Some of these are discussed below.

Treatment Approaches

Drugs should target three basic processes (a) sensory circuits; (b) emotional circuits; and (c) neural degeneration. Outcome measures would probably be temporally different, with cumulative effects over time. In many ways, the 'Antidepressant Model' may be a useful example, in that the therapeutic effect may only be observed after some time. This may be particularly so with respect to modulation of processes resulting in decreased gray matter volume. For example, the 'Alzheimer Model' has a number of parallels; chronic low dose therapy over months would need to be implemented to achieve stabilization or possible reversal of the condition. The three processes of decreasing pain, enhancing the motivational/emotional status of an individual with chronic pain, and the amelioration of neurodegenerative effects are clearly closely interlinked and benefits in one domain could theoretically affect another. Overall, the ideal intervention would rekindle functional circuits that are directly affected, or would recruit circuits that can take on new functions.

Multiple Drugs over Time

The notion that one drug may be useful as a single therapy may need to be reconsidered in the light of changes in the nervous system that take place in the chronic pain condition. The rationale for this may relate to considerations beyond 'tachyphylaxis' (i.e., a decreased response with the same repeated doses). including the modulation of genes to induce receptor changes causing them respond differently to a particular drug. This effect has been observed with opioid switching, where the potency of the replacement opioid is greater than if started initially in the patient [48]. These changes can now be evaluated in terms of alterations in specific neural systems using either functional imaging or spectroscopy, and clearly can be applied to different drug interventions including combination therapies.

Monitoring Progress with Functional, Anatomical or Chemical Scans

Currently there are no objective measures for pain, though recent advances allow for the adoption of specific MRI scans in the clinical domain that may help measure changes in patients. Specifically and perhaps most importantly, such changes may preempt clinical change (e.g., the onset of neuropathic pain following injury). Having said this, there is some evidence in the Alzheimer domain that there may be improvement without any obvious measurable changes using these approaches. Therapies may slow progression or reverse processes that produce anatomical changes. Functional scans may be able to define some objective outcomes such as continued central sensitization, responses to specific analgesia (e.g., drug infusion), responses to experimental pain (e.g., thermal or mechanical), or disease process and progress. Anatomical Scans may provide information on anisotropy [49] or cortical thickness [50]. Chemical Scans can define changes in a number of neurotransmitters as a result of treatment [51].

Duration of Trials

Most current pain trials last a relatively short time to determine the efficacy of a particular drug. Imaging has changed our understanding that chronic pain is most likely a disease that, if not treated appropriately, progressively alters brain function. Given the nature of chronic pain, data acquired during post-marketing would be useful for assessing the long-term effects of drugs used for chronic pain. The FDA has already implemented some guidelines for post-marketing as a consequence of recent side effect profiles of a number of agents, including some used in pain.

Conclusion

The ability to evaluate functional, anatomical, and chemical changes in the human brain has provided new insights into the CNS processing of pain in the human condition and also how drugs such as analgesics may work [1]. With respect to the latter, the fact that many analgesics do not provide excellent levels of pain relief indicates that multiple processes are at play in the chronic condition that need to be targeted by new pharmaoctherapies. Some of these targets are unexpected, based on insights garnered from neuroimaging and will almost certainly mould some of our thinking in defining new approaches to discovering analgesics for chronic pain.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Borsook D, Becerra L, Hargreaves R: A role for fMRI in optimizing CNS drug development. Nature reviews 2006,5(5):411–424. 10.1038/nrd2027PubMed Borsook D, Becerra L, Hargreaves R: A role for fMRI in optimizing CNS drug development. Nature reviews 2006,5(5):411–424. 10.1038/nrd2027PubMed
2.
Zurück zum Zitat Matthews PM, Honey GD, Bullmore ET: Applications of fMRI in translational medicine and clinical practice. Nature reviews 2006,7(9):732–744. 10.1038/nrn1929PubMed Matthews PM, Honey GD, Bullmore ET: Applications of fMRI in translational medicine and clinical practice. Nature reviews 2006,7(9):732–744. 10.1038/nrn1929PubMed
3.
Zurück zum Zitat Attal N, Cruccu G, Haanpaa M, Hansson P, Jensen TS, Nurmikko T, Sampaio C, Sindrup S, Wiffen P: EFNS guidelines on pharmacological treatment of neuropathic pain. Eur J Neurol 2006,13(11):1153–1169. 10.1111/j.1468-1331.2006.01511.xPubMed Attal N, Cruccu G, Haanpaa M, Hansson P, Jensen TS, Nurmikko T, Sampaio C, Sindrup S, Wiffen P: EFNS guidelines on pharmacological treatment of neuropathic pain. Eur J Neurol 2006,13(11):1153–1169. 10.1111/j.1468-1331.2006.01511.xPubMed
4.
Zurück zum Zitat Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH: Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 2005,118(3):289–305. 10.1016/j.pain.2005.08.013PubMed Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH: Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 2005,118(3):289–305. 10.1016/j.pain.2005.08.013PubMed
5.
Zurück zum Zitat Fava M: The role of the serotonergic and noradrenergic neurotransmitter systems in the treatment of psychological and physical symptoms of depression. J Clin Psychiatry 2003, 64 Suppl 13: 26–29.PubMed Fava M: The role of the serotonergic and noradrenergic neurotransmitter systems in the treatment of psychological and physical symptoms of depression. J Clin Psychiatry 2003, 64 Suppl 13: 26–29.PubMed
6.
Zurück zum Zitat Janig W, Baron R: Complex regional pain syndrome is a disease of the central nervous system. Clin Auton Res 2002,12(3):150–164. 10.1007/s10286-002-0022-1PubMed Janig W, Baron R: Complex regional pain syndrome is a disease of the central nervous system. Clin Auton Res 2002,12(3):150–164. 10.1007/s10286-002-0022-1PubMed
7.
Zurück zum Zitat Mao J: Opioid-induced abnormal pain sensitivity. Curr Pain Headache Rep 2006,10(1):67–70. 10.1007/s11916-006-0011-5PubMed Mao J: Opioid-induced abnormal pain sensitivity. Curr Pain Headache Rep 2006,10(1):67–70. 10.1007/s11916-006-0011-5PubMed
8.
Zurück zum Zitat Martell BA, O'Connor PG, Kerns RD, Becker WC, Morales KH, Kosten TR, Fiellin DA: Systematic review: opioid treatment for chronic back pain: prevalence, efficacy, and association with addiction. Ann Intern Med 2007,146(2):116–127.PubMed Martell BA, O'Connor PG, Kerns RD, Becker WC, Morales KH, Kosten TR, Fiellin DA: Systematic review: opioid treatment for chronic back pain: prevalence, efficacy, and association with addiction. Ann Intern Med 2007,146(2):116–127.PubMed
9.
Zurück zum Zitat Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV: Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 2006,26(47):12165–12173. 10.1523/JNEUROSCI.3576-06.2006PubMedCentralPubMed Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV: Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 2006,26(47):12165–12173. 10.1523/JNEUROSCI.3576-06.2006PubMedCentralPubMed
10.
Zurück zum Zitat Becerra L, Morris S, Bazes S, Gostic R, Sherman S, Gostic J, Pendse G, Moulton E, Scrivani S, Keith D, Chizh B, Borsook D: Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 2006,26(42):10646–10657. 10.1523/JNEUROSCI.2305-06.2006PubMed Becerra L, Morris S, Bazes S, Gostic R, Sherman S, Gostic J, Pendse G, Moulton E, Scrivani S, Keith D, Chizh B, Borsook D: Trigeminal neuropathic pain alters responses in CNS circuits to mechanical (brush) and thermal (cold and heat) stimuli. J Neurosci 2006,26(42):10646–10657. 10.1523/JNEUROSCI.2305-06.2006PubMed
11.
Zurück zum Zitat Maihofner C, Handwerker HO, Neundorfer B, Birklein F: Cortical reorganization during recovery from complex regional pain syndrome. Neurology 2004,63(4):693–701.PubMed Maihofner C, Handwerker HO, Neundorfer B, Birklein F: Cortical reorganization during recovery from complex regional pain syndrome. Neurology 2004,63(4):693–701.PubMed
12.
Zurück zum Zitat Moulton EA, Pendse G, Morris S, Strassman A, Aiello-Lammens M, Becerra L, Borsook D: Capsaicin-induced thermal hyperalgesia and sensitization in the human trigeminal nociceptive pathway: an fMRI study. Neuroimage 2007,35(4):1586–1600. 10.1016/j.neuroimage.2007.02.001PubMedCentralPubMed Moulton EA, Pendse G, Morris S, Strassman A, Aiello-Lammens M, Becerra L, Borsook D: Capsaicin-induced thermal hyperalgesia and sensitization in the human trigeminal nociceptive pathway: an fMRI study. Neuroimage 2007,35(4):1586–1600. 10.1016/j.neuroimage.2007.02.001PubMedCentralPubMed
13.
Zurück zum Zitat Schweinhardt P, Glynn C, Brooks J, McQuay H, Jack T, Chessell I, Bountra C, Tracey I: An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 2006,32(1):256–265. 10.1016/j.neuroimage.2006.03.024PubMed Schweinhardt P, Glynn C, Brooks J, McQuay H, Jack T, Chessell I, Bountra C, Tracey I: An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 2006,32(1):256–265. 10.1016/j.neuroimage.2006.03.024PubMed
14.
Zurück zum Zitat Rogers BP, Morgan VL, Newton AT, Gore JC: Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging 2007. Rogers BP, Morgan VL, Newton AT, Gore JC: Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging 2007.
15.
Zurück zum Zitat Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF: Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 2006,103(37):13848–13853. 10.1073/pnas.0601417103PubMedCentralPubMed Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF: Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 2006,103(37):13848–13853. 10.1073/pnas.0601417103PubMedCentralPubMed
16.
Zurück zum Zitat Chang L, Yakupov R, Cloak C, Ernst T: Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain 2006,129(Pt 5):1096–1112. 10.1093/brain/awl064PubMed Chang L, Yakupov R, Cloak C, Ernst T: Marijuana use is associated with a reorganized visual-attention network and cerebellar hypoactivation. Brain 2006,129(Pt 5):1096–1112. 10.1093/brain/awl064PubMed
17.
Zurück zum Zitat Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD: Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol 2006,59(2):335–343. 10.1002/ana.20733PubMed Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD: Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol 2006,59(2):335–343. 10.1002/ana.20733PubMed
18.
Zurück zum Zitat Mullins PG, Rowland LM, Jung RE, Sibbitt WL Jr.: A novel technique to study the brain's response to pain: proton magnetic resonance spectroscopy. Neuroimage 2005,26(2):642–646. 10.1016/j.neuroimage.2005.02.001PubMed Mullins PG, Rowland LM, Jung RE, Sibbitt WL Jr.: A novel technique to study the brain's response to pain: proton magnetic resonance spectroscopy. Neuroimage 2005,26(2):642–646. 10.1016/j.neuroimage.2005.02.001PubMed
19.
Zurück zum Zitat Dichgans M, Herzog J, Freilinger T, Wilke M, Auer DP: 1H-MRS alterations in the cerebellum of patients with familial hemiplegic migraine type 1. Neurology 2005,64(4):608–613.PubMed Dichgans M, Herzog J, Freilinger T, Wilke M, Auer DP: 1H-MRS alterations in the cerebellum of patients with familial hemiplegic migraine type 1. Neurology 2005,64(4):608–613.PubMed
20.
Zurück zum Zitat Grachev ID, Fredrickson BE, Apkarian AV: Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 2000,89(1):7–18. 10.1016/S0304-3959(00)00340-7PubMed Grachev ID, Fredrickson BE, Apkarian AV: Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 2000,89(1):7–18. 10.1016/S0304-3959(00)00340-7PubMed
21.
Zurück zum Zitat Siddall PJ, Stanwell P, Woodhouse A, Somorjai RL, Dolenko B, Nikulin A, Bourne R, Himmelreich U, Lean C, Cousins MJ, Mountford CE: Magnetic resonance spectroscopy detects biochemical changes in the brain associated with chronic low back pain: a preliminary report. Anesth Analg 2006,102(4):1164–1168. 10.1213/01.ane.0000198333.22687.a6PubMed Siddall PJ, Stanwell P, Woodhouse A, Somorjai RL, Dolenko B, Nikulin A, Bourne R, Himmelreich U, Lean C, Cousins MJ, Mountford CE: Magnetic resonance spectroscopy detects biochemical changes in the brain associated with chronic low back pain: a preliminary report. Anesth Analg 2006,102(4):1164–1168. 10.1213/01.ane.0000198333.22687.a6PubMed
22.
Zurück zum Zitat Pattany PM, Yezierski RP, Widerstrom-Noga EG, Bowen BC, Martinez-Arizala A, Garcia BR, Quencer RM: Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. Ajnr 2002,23(6):901–905.PubMed Pattany PM, Yezierski RP, Widerstrom-Noga EG, Bowen BC, Martinez-Arizala A, Garcia BR, Quencer RM: Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. Ajnr 2002,23(6):901–905.PubMed
23.
Zurück zum Zitat Ross B, Bluml S: Magnetic resonance spectroscopy of the human brain. Anat Rec 2001,265(2):54–84. 10.1002/ar.1058PubMed Ross B, Bluml S: Magnetic resonance spectroscopy of the human brain. Anat Rec 2001,265(2):54–84. 10.1002/ar.1058PubMed
24.
Zurück zum Zitat Wolf W, Presant CA, Waluch V: 19F-MRS studies of fluorinated drugs in humans. Adv Drug Deliv Rev 2000,41(1):55–74. 10.1016/S0169-409X(99)00056-3PubMed Wolf W, Presant CA, Waluch V: 19F-MRS studies of fluorinated drugs in humans. Adv Drug Deliv Rev 2000,41(1):55–74. 10.1016/S0169-409X(99)00056-3PubMed
25.
Zurück zum Zitat Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR: Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004,24(46):10410–10415. 10.1523/JNEUROSCI.2541-04.2004PubMed Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR: Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004,24(46):10410–10415. 10.1523/JNEUROSCI.2541-04.2004PubMed
26.
Zurück zum Zitat Grachev ID, Thomas PS, Ramachandran TS: Decreased levels of N-acetylaspartate in dorsolateral prefrontal cortex in a case of intractable severe sympathetically mediated chronic pain (complex regional pain syndrome, type I). Brain Cogn 2002,49(1):102–113. 10.1006/brcg.2001.1489PubMed Grachev ID, Thomas PS, Ramachandran TS: Decreased levels of N-acetylaspartate in dorsolateral prefrontal cortex in a case of intractable severe sympathetically mediated chronic pain (complex regional pain syndrome, type I). Brain Cogn 2002,49(1):102–113. 10.1006/brcg.2001.1489PubMed
27.
Zurück zum Zitat Kuchinad A, Schweinhardt P, Seminowicz DA, Wood PB, Chizh BA, Bushnell MC: Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 2007,27(15):4004–4007. 10.1523/JNEUROSCI.0098-07.2007PubMed Kuchinad A, Schweinhardt P, Seminowicz DA, Wood PB, Chizh BA, Bushnell MC: Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 2007,27(15):4004–4007. 10.1523/JNEUROSCI.0098-07.2007PubMed
28.
Zurück zum Zitat Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S: Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002,22(15):6810–6818.PubMed Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S: Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002,22(15):6810–6818.PubMed
29.
Zurück zum Zitat Borsook D, Becerra L, Carlezon WA Jr., Shaw M, Renshaw P, Elman I, Levine J: Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur J Pain 2007,11(1):7–20. 10.1016/j.ejpain.2005.12.005PubMed Borsook D, Becerra L, Carlezon WA Jr., Shaw M, Renshaw P, Elman I, Levine J: Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur J Pain 2007,11(1):7–20. 10.1016/j.ejpain.2005.12.005PubMed
30.
Zurück zum Zitat Gerner P, Mujtaba M, Sinnott CJ, Wang GK: Amitriptyline versus bupivacaine in rat sciatic nerve blockade. Anesthesiology 2001,94(4):661–667. 10.1097/00000542-200104000-00021PubMed Gerner P, Mujtaba M, Sinnott CJ, Wang GK: Amitriptyline versus bupivacaine in rat sciatic nerve blockade. Anesthesiology 2001,94(4):661–667. 10.1097/00000542-200104000-00021PubMed
31.
Zurück zum Zitat Tremont-Lukats IW, Megeff C, Backonja MM: Anticonvulsants for neuropathic pain syndromes: mechanisms of action and place in therapy. Drugs 2000,60(5):1029–1052. 10.2165/00003495-200060050-00005PubMed Tremont-Lukats IW, Megeff C, Backonja MM: Anticonvulsants for neuropathic pain syndromes: mechanisms of action and place in therapy. Drugs 2000,60(5):1029–1052. 10.2165/00003495-200060050-00005PubMed
32.
Zurück zum Zitat Estrada G, Villegas E, Corzo G: Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep 2007,24(1):145–161. 10.1039/b603083cPubMed Estrada G, Villegas E, Corzo G: Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep 2007,24(1):145–161. 10.1039/b603083cPubMed
33.
Zurück zum Zitat Borsook D, Edwards AD: Antineuropathic effects of the antibiotic derivative spicamycin KRN5500. Pain Med 2004,5(1):104–108. 10.1111/j.1526-4637.2004.04004.xPubMed Borsook D, Edwards AD: Antineuropathic effects of the antibiotic derivative spicamycin KRN5500. Pain Med 2004,5(1):104–108. 10.1111/j.1526-4637.2004.04004.xPubMed
34.
Zurück zum Zitat Millecamps M, Centeno MV, Berra HH, Rudick CN, Lavarello S, Tkatch T, Apkarian AV: d-Cycloserine reduces neuropathic pain behavior through limbic NMDA-mediated circuitry. Pain 2007. Millecamps M, Centeno MV, Berra HH, Rudick CN, Lavarello S, Tkatch T, Apkarian AV: d-Cycloserine reduces neuropathic pain behavior through limbic NMDA-mediated circuitry. Pain 2007.
35.
Zurück zum Zitat Leonelli E, Bianchi R, Cavaletti G, Caruso D, Crippa D, Garcia-Segura LM, Lauria G, Magnaghi V, Roglio I, Melcangi RC: Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis. Neuroscience 2007,144(4):1293–1304. 10.1016/j.neuroscience.2006.11.014PubMed Leonelli E, Bianchi R, Cavaletti G, Caruso D, Crippa D, Garcia-Segura LM, Lauria G, Magnaghi V, Roglio I, Melcangi RC: Progesterone and its derivatives are neuroprotective agents in experimental diabetic neuropathy: a multimodal analysis. Neuroscience 2007,144(4):1293–1304. 10.1016/j.neuroscience.2006.11.014PubMed
36.
Zurück zum Zitat Kuzumaki N, Narita M, Narita M, Hareyama N, Niikura K, Nagumo Y, Nozaki H, Amano T, Suzuki T: Chronic pain-induced astrocyte activation in the cingulate cortex with no change in neural or glial differentiation from neural stem cells in mice. Neurosci Lett 2007,415(1):22–27. 10.1016/j.neulet.2006.12.057PubMed Kuzumaki N, Narita M, Narita M, Hareyama N, Niikura K, Nagumo Y, Nozaki H, Amano T, Suzuki T: Chronic pain-induced astrocyte activation in the cingulate cortex with no change in neural or glial differentiation from neural stem cells in mice. Neurosci Lett 2007,415(1):22–27. 10.1016/j.neulet.2006.12.057PubMed
37.
Zurück zum Zitat Sweitzer SM, Schubert P, DeLeo JA: Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther 2001,297(3):1210–1217.PubMed Sweitzer SM, Schubert P, DeLeo JA: Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther 2001,297(3):1210–1217.PubMed
38.
Zurück zum Zitat Costa B, Siniscalco D, Trovato AE, Comelli F, Sotgiu ML, Colleoni M, Maione S, Rossi F, Giagnoni G: AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. Br J Pharmacol 2006,148(7):1022–1032. 10.1038/sj.bjp.0706798PubMedCentralPubMed Costa B, Siniscalco D, Trovato AE, Comelli F, Sotgiu ML, Colleoni M, Maione S, Rossi F, Giagnoni G: AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. Br J Pharmacol 2006,148(7):1022–1032. 10.1038/sj.bjp.0706798PubMedCentralPubMed
39.
Zurück zum Zitat Mortari MR, Cunha AO, Ferreira LB, dos Santos WF: Neurotoxins from invertebrates as anticonvulsants: from basic research to therapeutic application. Pharmacol Ther 2007,114(2):171–183. 10.1016/j.pharmthera.2007.01.009PubMed Mortari MR, Cunha AO, Ferreira LB, dos Santos WF: Neurotoxins from invertebrates as anticonvulsants: from basic research to therapeutic application. Pharmacol Ther 2007,114(2):171–183. 10.1016/j.pharmthera.2007.01.009PubMed
40.
Zurück zum Zitat Klein TW, Lane B, Newton CA, Friedman H: The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 2000,225(1):1–8. 10.1046/j.1525-1373.2000.22501.xPubMed Klein TW, Lane B, Newton CA, Friedman H: The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 2000,225(1):1–8. 10.1046/j.1525-1373.2000.22501.xPubMed
41.
Zurück zum Zitat Gardner EL: Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 2005,81(2):263–284. 10.1016/j.pbb.2005.01.032PubMed Gardner EL: Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 2005,81(2):263–284. 10.1016/j.pbb.2005.01.032PubMed
42.
Zurück zum Zitat Galve-Roperh I, Aguado T, Palazuelos J, Guzman M: The endocannabinoid system and neurogenesis in health and disease. Neuroscientist 2007,13(2):109–114. 10.1177/1073858406296407PubMed Galve-Roperh I, Aguado T, Palazuelos J, Guzman M: The endocannabinoid system and neurogenesis in health and disease. Neuroscientist 2007,13(2):109–114. 10.1177/1073858406296407PubMed
43.
Zurück zum Zitat Iannetti GD, Zambreanu L, Wise RG, Buchanan TJ, Huggins JP, Smart TS, Vennart W, Tracey I: Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A 2005,102(50):18195–18200. 10.1073/pnas.0506624102PubMedCentralPubMed Iannetti GD, Zambreanu L, Wise RG, Buchanan TJ, Huggins JP, Smart TS, Vennart W, Tracey I: Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc Natl Acad Sci U S A 2005,102(50):18195–18200. 10.1073/pnas.0506624102PubMedCentralPubMed
44.
Zurück zum Zitat Lever IJ, Rice AS: Cannabinoids and pain. Handb Exp Pharmacol 2007, 265–306. Lever IJ, Rice AS: Cannabinoids and pain. Handb Exp Pharmacol 2007, 265–306.
45.
Zurück zum Zitat Sarne Y, Mechoulam R: Cannabinoids: between neuroprotection and neurotoxicity. Current drug targets 2005,4(6):677–684.PubMed Sarne Y, Mechoulam R: Cannabinoids: between neuroprotection and neurotoxicity. Current drug targets 2005,4(6):677–684.PubMed
46.
Zurück zum Zitat Cabral GA, Marciano-Cabral F: Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol 2005,78(6):1192–1197. 10.1189/jlb.0405216PubMed Cabral GA, Marciano-Cabral F: Cannabinoid receptors in microglia of the central nervous system: immune functional relevance. J Leukoc Biol 2005,78(6):1192–1197. 10.1189/jlb.0405216PubMed
47.
Zurück zum Zitat Klein TW, Newton C, Larsen K, Lu L, Perkins I, Nong L, Friedman H: The cannabinoid system and immune modulation. J Leukoc Biol 2003,74(4):486–496. 10.1189/jlb.0303101PubMed Klein TW, Newton C, Larsen K, Lu L, Perkins I, Nong L, Friedman H: The cannabinoid system and immune modulation. J Leukoc Biol 2003,74(4):486–496. 10.1189/jlb.0303101PubMed
48.
Zurück zum Zitat Lawlor PG, Turner KS, Hanson J, Bruera ED: Dose ratio between morphine and methadone in patients with cancer pain: a retrospective study. Cancer 1998,82(6):1167–1173. 10.1002/(SICI)1097-0142(19980315)82:6<1167::AID-CNCR23>3.0.CO;2-3PubMed Lawlor PG, Turner KS, Hanson J, Bruera ED: Dose ratio between morphine and methadone in patients with cancer pain: a retrospective study. Cancer 1998,82(6):1167–1173. 10.1002/(SICI)1097-0142(19980315)82:6<1167::AID-CNCR23>3.0.CO;2-3PubMed
49.
Zurück zum Zitat DaSilva AF, Granziera C, Tuch DS, Snyder J, Vincent M, Hadjikhani N: Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. Neuroreport 2007,18(4):301–305. 10.1097/WNR.0b013e32801776bbPubMedCentralPubMed DaSilva AF, Granziera C, Tuch DS, Snyder J, Vincent M, Hadjikhani N: Interictal alterations of the trigeminal somatosensory pathway and periaqueductal gray matter in migraine. Neuroreport 2007,18(4):301–305. 10.1097/WNR.0b013e32801776bbPubMedCentralPubMed
50.
Zurück zum Zitat Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, Weiner MW: Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain 2007,130(Pt 4):1159–1166.PubMedCentralPubMed Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, Weiner MW: Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain 2007,130(Pt 4):1159–1166.PubMedCentralPubMed
51.
Zurück zum Zitat Simister RJ, McLean MA, Barker GJ, Duncan JS: The effect of sodium valproate on proton MRS visible neurochemical concentrations. Epilepsy Res 2007,74(2–3):215–219. 10.1016/j.eplepsyres.2007.03.001PubMed Simister RJ, McLean MA, Barker GJ, Duncan JS: The effect of sodium valproate on proton MRS visible neurochemical concentrations. Epilepsy Res 2007,74(2–3):215–219. 10.1016/j.eplepsyres.2007.03.001PubMed
52.
Zurück zum Zitat Tracey I, Iannetti GD: Brainstem functional imaging in humans. Suppl Clin Neurophysiol 2006, 58: 52–67.PubMed Tracey I, Iannetti GD: Brainstem functional imaging in humans. Suppl Clin Neurophysiol 2006, 58: 52–67.PubMed
Metadaten
Titel
Neuroimaging revolutionizes therapeutic approaches to chronic pain
verfasst von
David Borsook
Eric A Moulton
Karl F Schmidt
Lino R Becerra
Publikationsdatum
01.12.2007
Verlag
BioMed Central
Erschienen in
Molecular Pain / Ausgabe 1/2007
Elektronische ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-3-25

Weitere Artikel der Ausgabe 1/2007

Molecular Pain 1/2007 Zur Ausgabe

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.