Skip to main content
Erschienen in: BMC Cancer 1/2016

Open Access 01.12.2016 | Research article

Type 2 diabetes mellitus and risk of colorectal adenoma: a meta-analysis of observational studies

verfasst von: Feifei Yu, Yibin Guo, Hao Wang, Jian Feng, Zhichao Jin, Qi Chen, Yu Liu, Jia He

Erschienen in: BMC Cancer | Ausgabe 1/2016

Abstract

Background

To summarize the relationship between type 2 diabetes mellitus (T2DM) and risk of colorectal adenomas (CRA), we performed a meta-analysis of observational studies.

Methods

To find studies, we searched PubMed, Embase, the Cochrane Library, Web of Science and conference abstracts and related publications for American Society of Clinical Oncology and the European Society of Medical Oncology. Studies that reported relative risks (RRs) or odds ratios (ORs) with 95 % confidence intervals (CIs) for the association between T2DM and risk of CRA were included. The meta-analysis assessed the relationships between T2DM and risk of CRA. Sensitivity analyses were performed in two ways: (1) by omitting each study iteratively and (2) by keeping high-quality studies only. Publication bias was detected by Egger’s and Begg’s tests and corrected using the trim and fill method.

Results

This meta-analysis included 17 studies with 28,999 participants and 6798 CRA cases. We found that T2DM was a risk factor for CRA (RR: 1.52; 95 % CI: 1.29–1.80), and also for the advanced adenoma (RR: 1.41; 95 % CI: 1.06–1.87). Patients with existing T2DM (RR: 1.56; 95 % CI: 1.16–2.08) or newly diagnosed T2DM (RR: 1.51; 95 % CI: 1.16–1.97) have a risk of CRA. Similar significant results were found in retrospective studies (RR: 1.57; 95 % CI: 1.30–1.89) and population based cross-sectional studies (RR: 1.46; 95 % CI: 1.21–1.89), but not in prospective studies (RR: 1.27; 95 % CI: 0.77–2.10).

Conclusions

Our results suggested that T2DM plays a risk role in the risk of developing CRA. Consequently, medical workers should increase the rate of CRA screening for T2DM patients so that they can benefit from behavioural interventions that can help prevent the development of colorectal cancer. Additional, large prospective cohort studies are needed to make a more convincing case for these associations.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12885-016-2685-3) contains supplementary material, which is available to authorized users.

Background

Diabetes mellitus (DM) is the fourth or fifth leading cause of death in developed countries and one of the biggest threats to human health worldwide [1]. More than 90 % of all DM is type 2 diabetes mellitus (T2DM) [2, 3]. Colorectal cancer (CRC) is the third most common cancer in the world. Colorectal adenoma (CRA) (also known as adenomatous polyp and always found by colonoscopy screen [4]) is a prevalent precancerous lesion that can lead to CRC through the adenoma–carcinoma sequence [5].
Research on risk factors for CRA has focused on several epidemiological factors, including smoking [6], alcohol consumption [5], body mass index [7], physical activity [8], and calcium intake [9]. Recent research on patients with diabetes suggested that insulin therapy and diabetes itself may increase the risk of CRC [1012]. However, the association between T2DM and the risk of CRA risk has not yet been fully established. Some researchers asserted that there were no overall associations between T2DM and CRA risk [1316], while others reported a higher risk [1720]. To further examine these findings and provide evidence of association between T2DM and risk of CRA risk, we performed a meta-analysis about T2DM on the risk of CRA.

Methods

Two investigators (FY and YG) independently conducted a systematic literature searches on January 10, 2016 in PubMed, Embase, the Cochrane Library and Web of Science without limiting the publication date range. The following search terms were used: (diabetes mellitus OR diabetes OR diabetic OR glucose) AND (colorectal OR colon OR rectal) AND (adenomas OR adenoma OR adenomatous OR polyp). No language restrictions and any other limitations were imposed. Conference abstracts on the websites of American Society of Clinical Oncology’s (ASCO) and the European Society for Medical Oncology’s (ESMO) annual meetings were also searched, along with the reference lists of the identified publications. Additional file 1 includes the complete searching process.
The titles and abstracts of all of the studies from the searches were screened independently by three reviewers (FY, YG and JF). To be included in this meta-analysis, studies had to be at least one of the following criteria: (1) retrospective or perspective observational study of the association between diabetes mellitus and CRA, or (2) a study reporting the relative risks (RRs) or odds ratios (ORs) for T2DM on CRA with 95 % confidence intervals (95 % CIs) adjusted for gender, age, or other factors. Studies reporting on the CRA recurrence were excluded.

Data extraction

Data extraction was performed by three reviewers (FY, YG and WH), and verified independently for accuracy by a forth reviewer (JH). The following information was collected for each study: title and author, publication year, population, location, sample size, proportion of males and covariates controlled for by matching or multivariate analysis. For studies that reported several multivariate adjusted ORs, the effect estimate that adjusted for the maximum potential confounders was selected. Two investigators (FY and ZJ) conducted a quality assessment using the 9-star Newcastle-Ottawa Scale (NOS) [21], which was verified by a third investigator (YG). We considered studies with a NOS score of seven or more to be high-quality studies. The study selection process was based on the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines [22] and is described in Additional file 2.

Statistical analysis

We examined the relationship between T2DM and CRA risk on the basis of the adjusted RRs and ORs and corresponding 95 % CI published in each study. A fixed effects model was used to estimate the pooled RR and OR with 95 % CIs if there was no evidence of heterogeneity; otherwise, a random effect model was used [23, 24]. Because the incidence of CRA is low, the ORs in retrospective studies approximate the RRs [25, 26]. Heterogeneity between the studies was evaluated by the chi-square test and I-squared (I2) statistic [23]. Statistical heterogeneity was considered significant when p < 0.10 [27].
Several methods were used to test and adjust for potential publication bias. Visual inspection of funnel plots was performed, and the Egger’s regression test [28] and Begg’s test [29] were used. Where publication bias existed, we used the trim and fill method to correct it [30]. Subgroups analyses by gender, adenoma subsite, and study type were performed to explore the potential heterogeneity among the included studies. Sensitivity analyses were performed in two ways: (1) by excluding each study iteratively from the meta-analysis and (2) by keeping high-quality studies only.
All statistical tests were two-sided and regarded as statistically significant at p < 0.05 Stata (Version 11.0; Stata Corp, College Station, TX) was used for all analyses.

Results

Study characteristics

Until January 10, 2016, 2522 records were retrieved by using our search strategy. After reviewing the titles and abstracts, 113 articles were further evaluated by reviewing the full texts. Of those remaining articles, we excluded studies that : (1) reported the data of adenoma recurrence were excluded [31, 32], (2) did not reported the RRs of getting CRA separately but mixed CRC and CRA patients [31], and (3) discussed the relationship between metformin [33] or insulin use [34] and CRA. We identified 17 studies that met all of our criteria [1320, 3544], including four conference abstracts [36, 37, 43, 44]. Figure 1 provides a flow chart of study selection. The final studies included 28,999 participants and 6798 CRA cases and 11 were rated as high-quality. Four of the conference abstracts rated less than seven stars due to insufficient information about their research. Table 1 includes the general characteristics of the included studies.
Table 1
Characteristic of studies included in the meta-analysis
Author
Year
Country
Study type
Mean age
Male (%)
Sample size
Category of exposure (N)
Outcome
Adjusted variable
NOS score
Chiranjeev Dash [13]
2014
US
retrospective
54.6 (8.5)
0 (0)
3668
T2DM (804)
CRA (917)
age, educational status, body mass index (weight (kg)/height (m)2), physical activity, family history of colorectal cancer in a first-degree relative, menopausal status, smoking status, alcohol intake, total energy intake, red meat intake, fruit and vegetable intake, and regular aspirin use
8
Heike Ursula [14]
2012
German
prospective
61.5
670 (62)
1554
T2DM (166)
Colorectal neoplasia (389)
age and sex
8
Tomomi Marugame [15]
2002
Japan
retrospective
52.4
1389 (100)
1389
Newly diagnosed T2DM (41)
CRA (560), Proximal adenomas(254), Distal adenomas (306)
hospital, rank in the Self Defense Forces, alcohol use, and cigarette smoking
7
Hongha T Vu [20]
2014
USA
retrospective
46
92 (36.8)
250
T2DM (125)
CRA (56)
ethnicity, body mass index, smoking, and alcohol use
7
Rodney Eddi [18]
2012
USA
retrospective
71
442 (56.4)
783
T2DM (89)
Adenomatous polyps (261)
Age, Sex, TG, LDL, HDL, Smoking, Family history of CRC, Aspirin, NSAID, Statins
7
Mehulkumar K. Kanadiya [19]
2013
American
retrospective
60.63(9.20)
1697 (49)
3465
T2DM (405)
CRA (852)
NA
3
Joseph Carl Anderson [35]
2011
USA
retrospective
NA
76 (38.0)
290
T2DM (46)
Any Sessile Serrated Adenomas (90)
NA
7
Bouwens, M [36]
2011
NA
retrospective
60
863
1836
T2DM
Combined adenoma-serrated phenotype (139)
NA
5a
de Kort, S [37]
2013
Netherlands
retrospective
NA
NA
3335
T2DM (326)
CRA (1112)
age, gender, BMI and other relevant risk factors
4a
Jill E. Elwing [38]
2006
US
retrospective
59.2
0 (0)
600
All diabetics (100)
Any Adenoma (159)
age, race, hypertension, hypercholesterolemia, BMI, and NSAID status
7
Advanced adenoma (46)
Kazushige Kawai [39]
2012
Japan
prospective
63.1(10.5)
109 (61.9)
176
T2DM (3888)
Polyp (69)
NA
7
Suminori Kono [40]
1998
Japan
retrospective
50–54
5193 (100)
5193
T2DM (166)
sigmoid colon adenomas (821)
body mass index (wt [kg]/ht [m]2), cigarette smoking, alcohol use, rank of the Self Defense Forces, and hospital.
7
Takasei Nishii [41]
2001
Japan
retrospective
48.4
951 (100)
951
T2DM (43)
Colon Adenomas(233)
Age- and BMI
6
Sunghwan Suh [42]
2011
Korea
retrospective
55.9
2528 (72.1)
3505
T2DM (509)
Multiple Adenomatous
sex, age, BMI, TC, HDL, TG, Fasting plasma glucose, HbA1c
7
Polyps (509)
Thomas R [43]
2012
NA
retrospective
58.4
1230 (95)
1295
T2DM (350)
Advanced adenoma (243)
NA
3a
Wang, JH [44]
2013
China
retrospective
NA
NA
470
T2DM
CRA(235)
abdominal circumference, daily calories & fat intake, increased diastolic blood pressure, history of hypertension or fatty liver, family history of cancer in digestive system, LDL and hsCRP, while female and daily fiber intake
6a
Misciagna, G [16]
2004
Italy
retrospective
57.5
154 (64.4)
239
Diabetes (34)/ Glucose (mg/100 ml)
CRA(153)
NA
8
DM diabetes mellitus, T2DM type 2 diabetes mellitus, CRA colorectal adenoma, NSAID nonsteroidal anti-inflammatory drugs, TG serum cholesterol and triglycerides, BMI body mass index, HDL-C high density lipoprotein cholesterol, LDL-C low density lipoprotein cholesterol, hsCRP high-sensitivity C-reactive protein, T2DM non-insulin dependentdiabetes mellitus, TC total cholesterol, HDL high-density lipoprotein, NA not available
a conference abstract

Diabetes and risk of colorectal adenoma

The summary RR of diabetes on CRA was statistically significant (RR: 1.52; 95 % CI: 1.29–1.80). Evidence of the heterogeneity was identified (I 2  = 65.6 %, P < 0.001). Figure 2 shows the results.

Subgroup analysis

As shown in Table 2, we conducted subgroup analyses based on multiple factors, including sub-site of adenoma, geographic region, gender, and study type. The results showed that advanced adenoma was significantly associated with T2DM (RR: 1.41; 95 % CI: 1.06–1.87). However, a similar effect was not detected for proximal, distal, or colon adenoma. No evidence indicated significant associations between T2DM and CRA by gender, i.e., males (RR: 1.36; 95 % CI: 0.99–1.80) or females (RR: 1.29; 95 % CI: 0.76–2.17). he relationships between T2DM and CRA risk was significant in Europe (RR: 1.27, 95 % CI: 1.02–1.57), the USA (RR: 1.69; 95 % CI: 1.14–2.51) and Asia (RR: 1.57; 95 % CI: 1.21–2.05). A significant increase in risk was found in retrospective studies (RR: 1.57; 95 % CI: 1.30–1.89) and not in prospective studies (RR: 1.27; 95 % CI: 0.77–2.10).
Table 2
Subgroup analyses for the effect of diabetes on risk of colorectal adenoma
Subgroup
Sample size
RR (95 % CI)
P value
Heterogeneity
χ 2
I2
P value
Sub-site of adenoma
 Advanced adenoma
2145
1.41 (1.06–1.87)
0.018
1.50
0.0 %
0.473
 Proximal adenoma
9343
1.28 (0.88–1.87)
0.199
10.89
72.4 %
0.012
 Distal adenoma
9343
1.11 (0.89–1.38)
0.353
3.63
17.3 %
0.305
 Colon adenoma
11201
1.06 (0.73–1.53)
0.758
10.72
72.0 %
0.013
 Multiple adenoma
6840
1.95 (0.97–3.94)
0.061
6.73
85.2 %
0.009
Type of diabetes
 Known T2DM
20326
1.56 (1.16–2.08)
0.003
43.88
81.8 %
0.000
 Newly diagnosed T2DM
1604
1.51 (1.16–1.97)
0.002
0.00
0.0 %
0.946
Gender
 Male
7839
1.33 (0.99–1.80)
0.059
4.74
36.7 %
0.192
 Female
5135
1.29 (0.76–2.17)
0.348
10.33
80.6 %
0.006
Area
 Europe
13527
1.27 (1.02–1.57)
0.032
2.18
0.0 %
0.336
 USA
5767
1.69 (1.14–2.51)
0.009
32.18
84.5 %
0.000
 Asia
11684
1.57 (1.21–2.05)
0.001
13.23
62.2 %
0.021
Study type
 Prospective study
13871
1.27 (0.77–2.10)
0.357
11.93
83.2 %
0.003
 Retrospective study
17405
1.57 (1.30–1.89)
0.000
25.40
60.6 %
0.005
 Population based study
6122
1.46 (1.21–1.89)
0.005
2.06
3 %
0.357
Studies with high quality
26046
1.64 (1.26–2.14)
0.000
45.78
78.2 %
0.000
T2DM type 2 diabetes mellitus

Sensitivity analysis

Sensitivity analysis indicated that no single study dramatically influenced the pooled RR. The results are shown in Fig. 3. Regardless of which study was omitted, the summary RRs were always greater than one. Similarly, Table 2 shows that excluding low-quality studies yielded results comparable with including all studies (RR: 1.64; 95 % CI: 1.26–2.14).

Publication bias

The Begg’s rank correlation test (p = 0.001) and Egger’s regression test (p = 0.003) results showed potential publication bias that is described in Fig. 4. Once corrected by the trim and fill method [30], the result indicated that the pooled effect size did not changed.

Discussion

This study indicated that patients with diabetes, especially type 2, have about 50 % increased relative risk of developing CRA than non-diabetic individuals, regardless of their geographic location. Although sample size was small in the newly diagnosed T2DM subgroup, the heterogeneity was also small and a significant risk relationship between T2DM and CRA was still detected. A similar result was only found in the advanced adenoma subgroup, not in the proximal, distal, colon or multiple adenoma subgroups. When low-quality studies were excluded, the positive association still existed. These results suggested that T2DM patients should pay more attention to their risk of CRA.
The positive relationship between T2DM and CRA may be linked to insulin resistance or an increased insulin-like growth factor 1 (IGF-1) might take effect in the adenoma–carcinoma process. High insulin levels could promote tumor growth [31, 45, 46]. Also, diabetes may lead to slower bowel transit, which would increase the probability of exposure to potential carcinogens for colonic mucosa [4749]. It is worth noting that there might be some confounding effects because of the similar risk factors for both T2DM and CRA, such as physical inactivity, obesity, and an unhealthy diet habit [12, 50]. For example, a case–control study reported that higher red meat intake could significantly increase the risk of colon adenoma [51]. At the same time, obese people also tend to consume more red meats and have a higher risk of diabetes. Therefore, dietary habits might be a confounding factors. Finally, some researchers also report that obesity might be a confounder in the association between T2DM and colorectal disease [52].
Some studies reported a difference in risk between males and females [12, 39, 5355]; however, the results of our subgroup analysis showed no difference. One possible explanation involves the redistribution of body fat that can occur when women experience menopause. The increase in visceral body mass fat could lead to hyperinsulinemia so that women, especially post-menopausal women, are more susceptible to colorectal diseases. However, the existence of menopause in some women cannot explain the different CRC risks for males and females [5659]. Discrepancies among these studies and ours and the insignificant results by adenoma sub-site might be attributed to the limited sample sizes and insufficient statistical power. For the prospective studies, varied different follow-up procedures and mix of ethnicities different study populations might be the sources of heterogeneity.
Our analysis revealed that with T2DM have about a 5 % higher risk of CRA than newly diagnosed diabetes patients, revealing the duration of T2DM as a risk factor for CRA. A possible explanation is that known T2DM patients’ bowels are exposed to hyperinsulinemia or a hyperglycemic environment for a longer time, and such hormonal or metabolic abnormalities (according to former study [60]) could affect tumour growth. However, some studies reported that metformin use was a protective factor of CRA [33] and cancer [61]. If this is true, diagnosed diabetes patients should have a lower risk of adenomas than new patients, which is counter to our results. On the other hand, the severity of T2DM, which was not confirmed in the included studies, may affect colorectal disease risk and contribute to the mixed results. In sum, there might be a dose–response relationship between insulin and CRA, and further studies should include this as an important potential confounding factor.
Several limitations of in this meta-analysis that should be taken into consideration. First, results for several subgroups, such as gender and adenoma sub-site subgroup, were based on a limited number of studies. Therefore, we cannot rule out the possibility that insufficient statistical power is present. Second, in the present analysis, some small studies with inverse associations between T2DM and risk of CRA risk seemed to be suppressed. The presence of possible publication bias could have led to an overestimation of the effect of T2DM on CRA risk. However, the adjusted result was comparable after trim and fill method corrections. Third, we could not account for all of the confounding factors in the meta-analysis, though most confounders were adjusted in the original RRs. Many factors might induce the adenomas, such as age, ethnicity, inactivity, regular aspirin use, obesity, and family history of CRA, and menopausal status. We could not control for these covariates because of lack of relevant data. Relevant studies with additional data on these other factors may be found by searching by searching beyond the sources used for this study. Furthermore, we could not determine whether using insulin as a therapy for T2DM is an important factor because CRA risk might be altered by hyperinsulinemia, thought to be an important promoter of carcinogenesis [62, 63]. At the same time, metformin may have a direct anti-proliferative effect [64]. Finally, most of the existing studies did not discuss the influences of T2DM severity level on CRA risk. Thus, more cohort studies about these topics should be conducted.

Conclusions

In conclusion, the results of our meta-analysis indicated that patients with T2DM have higher risks for the development of CRA, which is an important inducement for colorectal cancer. Our study has important implications for clinical and public health. Because T2DM and CRA are prevalent in the developed and developing countries [65], medical workers should increase the rate of CRA screening for T2DM patients so that they can benefit from behavioural interventions that can help prevent CRA [38]. Large prospective studies that investigate the interactions among environmental and behavioral factors, medications, and functional polymorphisms are also needed to further clarify the etiology of CRA.

Funding

This work was supported by National Natural Science Foundation (81001287), Natural Science Foundation of Shanghai (15ZR1412300), Leading Talents of Science in Shanghai 2010 (022), and the Fourth Round of Three-year Action Plan on Public Health Discipline and Talent Program of Shanghai: Evidence-based Public Health and Health Economics in Shanghai (15GWZK0901).

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article and its additional files.

Authors’ contributions

FY, ZJ and JH discussed and developed the question for this review. FY and YG carried out the searches. FY, YG, HW and JF assessed the eligibility of the studies for inclusion, extracted data and carried out all analysis. All authors were involved in interpreted and discussed results. FY wrote the first draft of this paper and it was reviewed by JH. FY and YG revised the paper and the English was improved by JF and JH. QC and YL completed the figures and tables of the analysis. All authors agreed on the final draft of this study. JH is the guarantor.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Tripathi BK, Srivastava AK. Diabetes mellitus: complications and therapeutics. Med Sci Monit. 2006;12(7):Ra130–47.PubMed Tripathi BK, Srivastava AK. Diabetes mellitus: complications and therapeutics. Med Sci Monit. 2006;12(7):Ra130–47.PubMed
2.
Zurück zum Zitat Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.CrossRef Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.CrossRef
3.
Zurück zum Zitat Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185–200.CrossRefPubMedPubMedCentral Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11(11):1185–200.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Ben Q, Wang L, Liu J, Qian A, Wang Q, Yuan Y. Alcohol drinking and the risk of colorectal adenoma: a dose–response meta-analysis. Eur J Cancer Prev. 2015;24(4):286–95.CrossRefPubMed Ben Q, Wang L, Liu J, Qian A, Wang Q, Yuan Y. Alcohol drinking and the risk of colorectal adenoma: a dose–response meta-analysis. Eur J Cancer Prev. 2015;24(4):286–95.CrossRefPubMed
6.
Zurück zum Zitat Botteri E, Iodice S, Raimondi S, Maisonneuve P, Lowenfels AB. Cigarette smoking and adenomatous polyps: a meta-analysis. Gastroenterology. 2008;134(2):388–95.CrossRefPubMed Botteri E, Iodice S, Raimondi S, Maisonneuve P, Lowenfels AB. Cigarette smoking and adenomatous polyps: a meta-analysis. Gastroenterology. 2008;134(2):388–95.CrossRefPubMed
7.
Zurück zum Zitat Ben Q, An W, Jiang Y, Zhan X, Du Y, Cai QC, Gao J, Li Z. Body mass index increases risk for colorectal adenomas based on meta-analysis. Gastroenterology. 2012;142(4):762–72.CrossRefPubMed Ben Q, An W, Jiang Y, Zhan X, Du Y, Cai QC, Gao J, Li Z. Body mass index increases risk for colorectal adenomas based on meta-analysis. Gastroenterology. 2012;142(4):762–72.CrossRefPubMed
9.
Zurück zum Zitat Keum N, Lee DH, Greenwood DC, Zhang X, Giovannucci EL. Calcium intake and colorectal adenoma risk: dose–response meta-analysis of prospective observational studies. Int J Cancer. 2015;136(7):1680–7.CrossRefPubMed Keum N, Lee DH, Greenwood DC, Zhang X, Giovannucci EL. Calcium intake and colorectal adenoma risk: dose–response meta-analysis of prospective observational studies. Int J Cancer. 2015;136(7):1680–7.CrossRefPubMed
10.
Zurück zum Zitat Auburger G, Gispert S, Lahut S, Omur O, Damrath E, Heck M, Basak N. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2? World J Diabetes. 2014;5(3):316–27.CrossRefPubMedPubMedCentral Auburger G, Gispert S, Lahut S, Omur O, Damrath E, Heck M, Basak N. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2? World J Diabetes. 2014;5(3):316–27.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Yin S, Bai H, Jing D. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients: a systemic review and meta-analysis. Diagn Pathol. 2014;9:91.CrossRefPubMedPubMedCentral Yin S, Bai H, Jing D. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients: a systemic review and meta-analysis. Diagn Pathol. 2014;9:91.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst. 2005;97(22):1679–87.CrossRefPubMed Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst. 2005;97(22):1679–87.CrossRefPubMed
13.
Zurück zum Zitat Dash C, Palmer JR, Boggs DA, Rosenberg L, Adams-Campbell LL. Type 2 diabetes and the risk of colorectal adenomas: Black Women's Health Study. Am J Epidemiol. 2014;179(1):112–9.CrossRefPubMed Dash C, Palmer JR, Boggs DA, Rosenberg L, Adams-Campbell LL. Type 2 diabetes and the risk of colorectal adenomas: Black Women's Health Study. Am J Epidemiol. 2014;179(1):112–9.CrossRefPubMed
14.
Zurück zum Zitat Kramer HU, Muller H, Stegmaier C, Rothenbacher D, Raum E, Brenner H. Type 2 diabetes mellitus and gender-specific risk for colorectal neoplasia. Eur J Epidemiol. 2012;27(5):341–7.CrossRefPubMed Kramer HU, Muller H, Stegmaier C, Rothenbacher D, Raum E, Brenner H. Type 2 diabetes mellitus and gender-specific risk for colorectal neoplasia. Eur J Epidemiol. 2012;27(5):341–7.CrossRefPubMed
15.
Zurück zum Zitat Marugame T, Lee K, Eguchi H, Oda T, Shinchi K, Kono S. Relation of impaired glucose tolerance and diabetes mellitus to colorectal adenomas in Japan. Cancer Causes Control. 2002;13(10):917–21.CrossRefPubMed Marugame T, Lee K, Eguchi H, Oda T, Shinchi K, Kono S. Relation of impaired glucose tolerance and diabetes mellitus to colorectal adenomas in Japan. Cancer Causes Control. 2002;13(10):917–21.CrossRefPubMed
16.
Zurück zum Zitat Misciagna G, De Michele G, Guerra V, Cisternino AM, Di Leo A, Freudenheim JL. Serum fructosamine and colorectal adenomas. Eur J Epidemiol. 2004;19(5):425–32.CrossRefPubMed Misciagna G, De Michele G, Guerra V, Cisternino AM, Di Leo A, Freudenheim JL. Serum fructosamine and colorectal adenomas. Eur J Epidemiol. 2004;19(5):425–32.CrossRefPubMed
17.
Zurück zum Zitat Chung YW, Han DS, Park YK, Son BK, Paik CH, Lee HL, Jeon YC, Sohn JH. Association of obesity, serum glucose and lipids with the risk of advanced colorectal adenoma and cancer: a case–control study in Korea. Dig Liver Dis. 2006;38(9):668–72.CrossRefPubMed Chung YW, Han DS, Park YK, Son BK, Paik CH, Lee HL, Jeon YC, Sohn JH. Association of obesity, serum glucose and lipids with the risk of advanced colorectal adenoma and cancer: a case–control study in Korea. Dig Liver Dis. 2006;38(9):668–72.CrossRefPubMed
18.
Zurück zum Zitat Eddi R, Karki A, Shah A, DeBari VA, DePasquale JR. Association of type 2 diabetes and colon adenomas. J Gastrointest Cancer. 2012;43(1):87–92.CrossRefPubMed Eddi R, Karki A, Shah A, DeBari VA, DePasquale JR. Association of type 2 diabetes and colon adenomas. J Gastrointest Cancer. 2012;43(1):87–92.CrossRefPubMed
19.
Zurück zum Zitat Kanadiya MK, Gohel TD, Sanaka MR, Thota PN, Shubrook Jr JH. Relationship between type-2 diabetes and use of metformin with risk of colorectal adenoma in an American population receiving colonoscopy. J Diabetes Complications. 2013;27(5):463–6.CrossRefPubMed Kanadiya MK, Gohel TD, Sanaka MR, Thota PN, Shubrook Jr JH. Relationship between type-2 diabetes and use of metformin with risk of colorectal adenoma in an American population receiving colonoscopy. J Diabetes Complications. 2013;27(5):463–6.CrossRefPubMed
20.
Zurück zum Zitat Vu HT, Ufere N, Yan Y, Wang JS, Early DS, Elwing JE. Diabetes mellitus increases risk for colorectal adenomas in younger patients. World J Gastroenterol. 2014;20(22):6946–52.CrossRefPubMedPubMedCentral Vu HT, Ufere N, Yan Y, Wang JS, Early DS, Elwing JE. Diabetes mellitus increases risk for colorectal adenomas in younger patients. World J Gastroenterol. 2014;20(22):6946–52.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.CrossRefPubMed Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.CrossRefPubMed
23.
Zurück zum Zitat DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.CrossRefPubMed DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.CrossRefPubMed
25.
Zurück zum Zitat Greenland S. Quantitative methods in the review of epidemiologic literature. Epidemiol Rev. 1987;9:1–30.CrossRefPubMed Greenland S. Quantitative methods in the review of epidemiologic literature. Epidemiol Rev. 1987;9:1–30.CrossRefPubMed
26.
Zurück zum Zitat Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1.CrossRefPubMed Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1.CrossRefPubMed
27.
Zurück zum Zitat Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRefPubMed Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRefPubMed
28.
Zurück zum Zitat Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin Res ed). 1997;315(7109):629–34.CrossRef Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin Res ed). 1997;315(7109):629–34.CrossRef
29.
Zurück zum Zitat Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRefPubMed Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRefPubMed
30.
Zurück zum Zitat Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.CrossRefPubMed Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.CrossRefPubMed
31.
32.
Zurück zum Zitat Flood A, Mai V, Pfeiffer R, Kahle L, Remaley AT, Lanza E, Schatzkin A. Elevated serum concentrations of insulin and glucose increase risk of recurrent colorectal adenomas. Gastroenterology. 2007;133(5):1423–9.CrossRefPubMed Flood A, Mai V, Pfeiffer R, Kahle L, Remaley AT, Lanza E, Schatzkin A. Elevated serum concentrations of insulin and glucose increase risk of recurrent colorectal adenomas. Gastroenterology. 2007;133(5):1423–9.CrossRefPubMed
33.
Zurück zum Zitat Marks AR, Pietrofesa RA, Jensen CD, Zebrowski A, Corley DA, Doubeni CA. Metformin use and risk of colorectal adenoma after polypectomy in patients with type 2 diabetes mellitus. Cancer Epidemiol Biomarkers Prev. 2015;24(11):1692–8.CrossRefPubMedPubMedCentral Marks AR, Pietrofesa RA, Jensen CD, Zebrowski A, Corley DA, Doubeni CA. Metformin use and risk of colorectal adenoma after polypectomy in patients with type 2 diabetes mellitus. Cancer Epidemiol Biomarkers Prev. 2015;24(11):1692–8.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Yong WC, Dong SH, Park KH, Chang SE, Yoo KS, Park CK. Insulin therapy and colorectal adenoma risk among patients with Type 2 diabetes mellitus: a case–control study in Korea. Dis Colon Rectum. 2008;51(5):593–7.CrossRef Yong WC, Dong SH, Park KH, Chang SE, Yoo KS, Park CK. Insulin therapy and colorectal adenoma risk among patients with Type 2 diabetes mellitus: a case–control study in Korea. Dis Colon Rectum. 2008;51(5):593–7.CrossRef
35.
Zurück zum Zitat Anderson JC, Rangasamy P, Rustagi T, Myers M, Sanders M, Vaziri H, Wu G, Birk JW, Protiva P. Risk factors for sessile serrated adenomas. J Clin Gastroenterol. 2011;45(8):694–9.CrossRefPubMed Anderson JC, Rangasamy P, Rustagi T, Myers M, Sanders M, Vaziri H, Wu G, Birk JW, Protiva P. Risk factors for sessile serrated adenomas. J Clin Gastroenterol. 2011;45(8):694–9.CrossRefPubMed
36.
Zurück zum Zitat Bouwens M, Rondagh E, Weijenberg M, Winkens B, Masclee A, Sanduleanu S. Risk factors for the combined adenoma-serrated phenotype: a population-based study. Gastroenterology. 2011;140(5):S346. Bouwens M, Rondagh E, Weijenberg M, Winkens B, Masclee A, Sanduleanu S. Risk factors for the combined adenoma-serrated phenotype: a population-based study. Gastroenterology. 2011;140(5):S346.
37.
Zurück zum Zitat De Kort S, Bouwens M, Weijenberg M, Van Den Brandt PA, Riedl R, Masclee A, Sanduleanu S. Increased prevalence of proximal and multiple adenomas in patients with diabetes mellitus. Gastroenterology. 2013;144(5):S382.CrossRef De Kort S, Bouwens M, Weijenberg M, Van Den Brandt PA, Riedl R, Masclee A, Sanduleanu S. Increased prevalence of proximal and multiple adenomas in patients with diabetes mellitus. Gastroenterology. 2013;144(5):S382.CrossRef
38.
Zurück zum Zitat Elwing JE, Gao F, Davidson NO, Early DS. Type 2 diabetes mellitus: the impact on colorectal adenoma risk in women. Am J Gastroenterol. 2006;101(8):1866–71.CrossRefPubMed Elwing JE, Gao F, Davidson NO, Early DS. Type 2 diabetes mellitus: the impact on colorectal adenoma risk in women. Am J Gastroenterol. 2006;101(8):1866–71.CrossRefPubMed
39.
Zurück zum Zitat Kawai K, Sunami E, Tsuno NH, Kitayama J, Watanabe T. Polyp surveillance after surgery for colorectal cancer. Int J Colorectal Dis. 2012;27(8):1087–93.CrossRefPubMed Kawai K, Sunami E, Tsuno NH, Kitayama J, Watanabe T. Polyp surveillance after surgery for colorectal cancer. Int J Colorectal Dis. 2012;27(8):1087–93.CrossRefPubMed
40.
Zurück zum Zitat Kono S, Honjo S, Todoroki I, Nishiwaki M, Hamada H, Nishikawa H, Koga H, Ogawa S, Nakagawa K. Glucose intolerance and adenomas of the sigmoid colon in Japanese men (Japan). Cancer Causes Control. 1998;9(4):441–6.CrossRefPubMed Kono S, Honjo S, Todoroki I, Nishiwaki M, Hamada H, Nishikawa H, Koga H, Ogawa S, Nakagawa K. Glucose intolerance and adenomas of the sigmoid colon in Japanese men (Japan). Cancer Causes Control. 1998;9(4):441–6.CrossRefPubMed
41.
Zurück zum Zitat Nishii T, Kono S, Abe H, Eguchi H, Shimazaki K, Hatano B, Hamada H. Glucose intolerance, plasma insulin levels, and colon adenomas in Japanese men. Jpn J Cancer Res. 2001;92(8):836–40.CrossRefPubMed Nishii T, Kono S, Abe H, Eguchi H, Shimazaki K, Hatano B, Hamada H. Glucose intolerance, plasma insulin levels, and colon adenomas in Japanese men. Jpn J Cancer Res. 2001;92(8):836–40.CrossRefPubMed
42.
Zurück zum Zitat Suh S, Kang M, Kim MY, Chung HS, Kim SK, Hur KY, Kim JH, Lee MS, Lee MK, Kim KW. Korean type 2 diabetes patients have multiple adenomatous polyps compared to non-diabetic controls. J Korean Med Sci. 2011;26(9):1196–200.CrossRefPubMedPubMedCentral Suh S, Kang M, Kim MY, Chung HS, Kim SK, Hur KY, Kim JH, Lee MS, Lee MK, Kim KW. Korean type 2 diabetes patients have multiple adenomatous polyps compared to non-diabetic controls. J Korean Med Sci. 2011;26(9):1196–200.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Thomas RA, Rao DS, Oni OA, Bansal A, Sharma P, Pandya PK, Rastogi A. Risk factors for advanced adenomas in veterans undergoing screening colonoscopy. Gastroenterology. 2012;142(5):S775–6.CrossRef Thomas RA, Rao DS, Oni OA, Bansal A, Sharma P, Pandya PK, Rastogi A. Risk factors for advanced adenomas in veterans undergoing screening colonoscopy. Gastroenterology. 2012;142(5):S775–6.CrossRef
44.
Zurück zum Zitat Wang JH, Gu F, Lv YM. Retrospective case–control study on risk factors of colorectal adenoma. J Gastroenterol Hepatol. 2013;28:558. Wang JH, Gu F, Lv YM. Retrospective case–control study on risk factors of colorectal adenoma. J Gastroenterol Hepatol. 2013;28:558.
45.
Zurück zum Zitat Ezzat VA, Duncan ER, Wheatcroft SB, Kearney MT. The role of IGF-I and its binding proteins in the development of type 2 diabetes and cardiovascular disease. Diabetes Obes Metab. 2008;10(3):198–211.CrossRefPubMed Ezzat VA, Duncan ER, Wheatcroft SB, Kearney MT. The role of IGF-I and its binding proteins in the development of type 2 diabetes and cardiovascular disease. Diabetes Obes Metab. 2008;10(3):198–211.CrossRefPubMed
46.
Zurück zum Zitat Onitilo AA, Berg RL, Engel JM, Glurich I, Stankowski RV, Williams G, Doi SA. Increased risk of colon cancer in men in the pre-diabetes phase. PLoS One. 2013;8(8), e70426.CrossRefPubMedPubMedCentral Onitilo AA, Berg RL, Engel JM, Glurich I, Stankowski RV, Williams G, Doi SA. Increased risk of colon cancer in men in the pre-diabetes phase. PLoS One. 2013;8(8), e70426.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Rafter JJ, Eng VW, Furrer R, Medline A, Bruce WR. Effects of calcium and pH on the mucosal damage produced by deoxycholic acid in the rat colon. Gut. 1986;27(11):1320–9.CrossRefPubMedPubMedCentral Rafter JJ, Eng VW, Furrer R, Medline A, Bruce WR. Effects of calcium and pH on the mucosal damage produced by deoxycholic acid in the rat colon. Gut. 1986;27(11):1320–9.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Will JC, Galuska DA, Vinicor F, Calle EE. Colorectal cancer: another complication of diabetes mellitus? Am J Epidemiol. 1998;147(9):816–25.CrossRefPubMed Will JC, Galuska DA, Vinicor F, Calle EE. Colorectal cancer: another complication of diabetes mellitus? Am J Epidemiol. 1998;147(9):816–25.CrossRefPubMed
49.
Zurück zum Zitat Yang R, Arem R, Chan L. Gastrointestinal tract complications of diabetes mellitus. Pathophysiology and management. Arch Intern Med. 1984;144(6):1251–6.CrossRefPubMed Yang R, Arem R, Chan L. Gastrointestinal tract complications of diabetes mellitus. Pathophysiology and management. Arch Intern Med. 1984;144(6):1251–6.CrossRefPubMed
50.
51.
Zurück zum Zitat Amutha R, Mirnalini K. Food intake and colorectal adenomas: a case–control study in Malaysia. Asian Pac J Cancer Prev. 2009;10(5):925–32. Amutha R, Mirnalini K. Food intake and colorectal adenomas: a case–control study in Malaysia. Asian Pac J Cancer Prev. 2009;10(5):925–32.
52.
Zurück zum Zitat Steele RJC, Anderson AS, Macleod M, Craigie AM, Caswell S, Belch J, Treweek S. Colorectal adenomas and diabetes: implications for disease prevention. Colorectal Dis. 2015;17:589–94.CrossRefPubMedPubMedCentral Steele RJC, Anderson AS, Macleod M, Craigie AM, Caswell S, Belch J, Treweek S. Colorectal adenomas and diabetes: implications for disease prevention. Colorectal Dis. 2015;17:589–94.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Campbell PT, Deka A, Jacobs EJ, Newton CC, Hildebrand JS, McCullough ML, Limburg PJ, Gapstur SM. Prospective study reveals associations between colorectal cancer and type 2 diabetes mellitus or insulin use in men. Gastroenterology. 2010;139(4):1138–46.CrossRefPubMed Campbell PT, Deka A, Jacobs EJ, Newton CC, Hildebrand JS, McCullough ML, Limburg PJ, Gapstur SM. Prospective study reveals associations between colorectal cancer and type 2 diabetes mellitus or insulin use in men. Gastroenterology. 2010;139(4):1138–46.CrossRefPubMed
54.
Zurück zum Zitat Nilsen TI, Vatten LJ. Prospective study of colorectal cancer risk and physical activity, diabetes, blood glucose and BMI: exploring the hyperinsulinaemia hypothesis. Br J Cancer. 2001;84(3):417–22.CrossRefPubMedPubMedCentral Nilsen TI, Vatten LJ. Prospective study of colorectal cancer risk and physical activity, diabetes, blood glucose and BMI: exploring the hyperinsulinaemia hypothesis. Br J Cancer. 2001;84(3):417–22.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Sandhu MS, Luben R, Khaw KT. Self reported non-insulin dependent diabetes, family history, and risk of prevalent colorectal cancer: population based, cross sectional study. J Epidemiol Community Health. 2001;55(11):804–5.CrossRefPubMedPubMedCentral Sandhu MS, Luben R, Khaw KT. Self reported non-insulin dependent diabetes, family history, and risk of prevalent colorectal cancer: population based, cross sectional study. J Epidemiol Community Health. 2001;55(11):804–5.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Kang HW, Kim D, Kim HJ, Kim CH, Kim YS, Park MJ, Kim JS, Cho SH, Sung MW, Jung HC, et al. Visceral obesity and insulin resistance as risk factors for colorectal adenoma: a cross-sectional, case–control study. Am J Gastroenterol. 2010;105(1):178–87.CrossRefPubMed Kang HW, Kim D, Kim HJ, Kim CH, Kim YS, Park MJ, Kim JS, Cho SH, Sung MW, Jung HC, et al. Visceral obesity and insulin resistance as risk factors for colorectal adenoma: a cross-sectional, case–control study. Am J Gastroenterol. 2010;105(1):178–87.CrossRefPubMed
57.
Zurück zum Zitat Szmuilowicz ED, Stuenkel CA, Seely EW. Influence of menopause on diabetes and diabetes risk. Nat Rev Endocrinol. 2009;5(10):553–8.CrossRefPubMed Szmuilowicz ED, Stuenkel CA, Seely EW. Influence of menopause on diabetes and diabetes risk. Nat Rev Endocrinol. 2009;5(10):553–8.CrossRefPubMed
58.
Zurück zum Zitat Yamaji T, Iwasaki M, Sasazuki S, Tsugane S. Interaction between adiponectin and leptin influences the risk of colorectal adenoma. Cancer Res. 2010;70(13):5430–7.CrossRefPubMed Yamaji T, Iwasaki M, Sasazuki S, Tsugane S. Interaction between adiponectin and leptin influences the risk of colorectal adenoma. Cancer Res. 2010;70(13):5430–7.CrossRefPubMed
59.
Zurück zum Zitat Yamamoto S, Nakagawa T, Matsushita Y, Kusano S, Hayashi T, Irokawa M, Aoki T, Korogi Y, Mizoue T. Visceral fat area and markers of insulin resistance in relation to colorectal neoplasia. Diabetes Care. 2010;33(1):184–9.CrossRefPubMed Yamamoto S, Nakagawa T, Matsushita Y, Kusano S, Hayashi T, Irokawa M, Aoki T, Korogi Y, Mizoue T. Visceral fat area and markers of insulin resistance in relation to colorectal neoplasia. Diabetes Care. 2010;33(1):184–9.CrossRefPubMed
60.
Zurück zum Zitat Mao Y, Tao M, Jia X, Xu H, Chen K, Tang H, Li D. Effect of diabetes mellitus on survival in patients with pancreatic cancer: a systematic review and meta-analysis. Sci Rep. 2015;5:17102.CrossRefPubMedPubMedCentral Mao Y, Tao M, Jia X, Xu H, Chen K, Tang H, Li D. Effect of diabetes mellitus on survival in patients with pancreatic cancer: a systematic review and meta-analysis. Sci Rep. 2015;5:17102.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Zhang P, Hao L, Tan X, Chen L, Wang S. Association of metformin use with cancer incidence and mortality: a meta-analysis. Cancer Epidemiol. 2013;37(3):207–18.CrossRefPubMed Zhang P, Hao L, Tan X, Chen L, Wang S. Association of metformin use with cancer incidence and mortality: a meta-analysis. Cancer Epidemiol. 2013;37(3):207–18.CrossRefPubMed
62.
Zurück zum Zitat Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52(9):1766–77.CrossRefPubMed Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52(9):1766–77.CrossRefPubMed
63.
Zurück zum Zitat Yang YX, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology. 2004;127(4):1044–50.CrossRefPubMed Yang YX, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology. 2004;127(4):1044–50.CrossRefPubMed
64.
Zurück zum Zitat Yang YX, Habel LA, Capra AM, Achacoso NS, Quesenberry Jr CP, Ferrara A, Levin TR, Lewis JD. Serial glycosylated hemoglobin levels and risk of colorectal neoplasia among patients with type 2 diabetes mellitus. Cancer Epidemiol Biomarkers Prev. 2010;19(12):3027–36.CrossRefPubMedPubMedCentral Yang YX, Habel LA, Capra AM, Achacoso NS, Quesenberry Jr CP, Ferrara A, Levin TR, Lewis JD. Serial glycosylated hemoglobin levels and risk of colorectal neoplasia among patients with type 2 diabetes mellitus. Cancer Epidemiol Biomarkers Prev. 2010;19(12):3027–36.CrossRefPubMedPubMedCentral
Metadaten
Titel
Type 2 diabetes mellitus and risk of colorectal adenoma: a meta-analysis of observational studies
verfasst von
Feifei Yu
Yibin Guo
Hao Wang
Jian Feng
Zhichao Jin
Qi Chen
Yu Liu
Jia He
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2016
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-016-2685-3

Weitere Artikel der Ausgabe 1/2016

BMC Cancer 1/2016 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.