Skip to main content
Erschienen in: Journal of Cardiovascular Magnetic Resonance 1/2018

Open Access 01.12.2018 | Research

Artefacts in 1.5 Tesla and 3 Tesla cardiovascular magnetic resonance imaging in patients with leadless cardiac pacemakers

verfasst von: Daniel Kiblboeck, Christian Reiter, Juergen Kammler, Pierre Schmit, Hermann Blessberger, Joerg Kellermair, Franz Fellner, Clemens Steinwender

Erschienen in: Journal of Cardiovascular Magnetic Resonance | Ausgabe 1/2018

Abstract

Background

There are limited data on patients with leadless cardiac pacemakers (LCP) undergoing magnetic resonance imaging. The aim of this prospective, single-center, observational study was to evaluate artefacts on cardiovascular magnetic resonance (CMR) images in patients with LCP.

Methods

Fifteen patients with Micra™ LCP, implanted at least 6 weeks prior to CMR scan, were enrolled and underwent either 1.5 Tesla or 3 Tesla CMR imaging. Artefacts were categorized into grade 1 (excellent image quality), grade 2 (good), grade 3 (poor) and grade 4 (non-diagnostic) for each myocardial segment. One patient was excluded because of an incomplete CMR investigation due to claustrophobia.

Results

LCP caused an arc-shaped artefact (0.99 ± 0.16 cm2) at the right ventricular (RV) apex. Of 224 analyzed myocardial segments of the left ventricle (LV) 158 (70.5%) were affected by grade 1, 27 (12.1%) by grade 2, 17 (7.6%) by grade 3 and 22 (9.8%) by grade 4 artefacts. The artefact burden of grade 3 and 4 artefacts was significantly higher in the 3 Tesla group (3 Tesla vs 1.5 Tesla: 3.7 ± 1.6 vs 1.9 ± 1.4 myocardial segments per patient, p = 0.03). A high artefact burden was particularly observed in the mid anteroseptal, inferoseptal and apical septal myocardial segments of the LV and in the mid and apical segments of the RV. Quantification of LV function and assessment of valves were feasible in all patients. We did not observe any clinical or device-related adverse events.

Conclusion

CMR imaging in patients with LCP is feasible with excellent to good image quality in the majority of LV segments. The artefact burden is comparable small allowing an accurate evaluation of LV function, cardiac structures and valves. However, artefacts in the mid anteroseptal, inferoseptal and apical septal myocardial segments of the LV due to the LCP may impair or even exclude diagnostic evaluation of these segments. Artefacts on CMR images may be reduced by the use of 1.5 Tesla CMR scanners.
Abkürzungen
AHA
American Heart Association
bSSFP
Balanced steady-state free precession
CMR
Cardiovascular magnetic resonance
ECG
Electrocardiogram
FLASH
Fast low angle shot
GRE
Gradient echo
ICD
Implantable cardioverter defibrillators
LCP
Leadless cardiac pacemakers
LV
Left ventricle/left ventricular
MRI
Magnetic resonance imaging
RV
Right ventricle/right ventricular
TSE
Turbo spin echo

Background

Cardiovascular magnetic resonance (CMR) imaging, which has become a versatile, non-invasive imaging tool, allows a comprehensive evaluation of patients with cardiovascular diseases [1]. The different CMR imaging sequences offer the assessment of myocardial function, wall motion abnormalities, viability, coronary perfusion, valves and tissue characterization [1]. Potential hazards for patients with conventional cardiac pacemakers undergoing magnetic resonance imaging (MRI) are radiofrequency-induced heating of lead tips, pacing dysfunction and changes in capture threshold [2]. Several studies have demonstrated safety and feasibility of MRI conditional cardiac pacemakers and implantable cardioverter defibrillators (ICD) [311]. Leadless cardiac pacemaker (LCP) therapy was recently introduced clinically to overcome complications in transvenous pacemaker therapy, such as lead dislogdement and perforation with pericardial effusion, pocket hematoma and device infections [1214]. The Micra™ LCP (Medtronic, Minneapolis, USA), which was investigated in this study, is a MRI conditional cardiac, single chamber pacemaker. The device sizes of 25.9 × 6.7 mm with an integrated lithium silver vanadium oxide, carbon monofluoride battery covered in titanium and is fixed with self-expanding nitinol tines in the right ventricle (RV) [14].
Pacemakers cause metallic susceptibility artefacts due to distortion of the magnetic field [15]. There are limited data about patients with LCP undergoing CMR imaging [16]. To the best of our knowledge, there are no prospective studies in the literature about artefacts on CMR imaging in patients with implanted LCP. It is unknown, whether CMR imaging provides best image quality or less artefacts using 1.5 or 3 Tesla CMR scanners in LCP patients.

Methods

Fifteen patients with an LCP (Micra™, Medtronic, Minneapolis, USA) implanted at least 6 weeks prior to CMR scan were enrolled in this prospective, single-center, observational study. Patients with other ferromagnetic implanted devices which may interact with the CMR scanner were excluded. The study participants were randomized in a 1:1 ratio into two groups: The study participants underwent CMR imaging in either a 1.5 Tesla CMR scanner (Magnetom Avanto Fit, Siemens Healthineers, Erlangen, Germany) or a 3 Tesla CMR scanner (Magnetom Skyra, Siemens Healthineers) with a maximum gradient field of 45mT/m and a slew rate of 200 T/m/s. The Micra™ LCP is a MRI conditional single-chamber cardiac pacemaker and the device sizes 25.9 × 6.7 mm. LCP were interrogated before and immediately after the CMR scan and were programmed to an asynchronous, MRI conditional pacing mode (VOO, 80 bpm) for the CMR scan. During the CMR scan patients were monitored by continuous electrocardiogram (ECG) and pulse oximetry. Blood pressure measurements were performed before and after CMR scans. An intercom was available for patient communication in the CMR scanners.
The CMR protocol was conducted according to the recommendations of the Society for Cardiovascular Magnetic Resonance (SCMR) [17]. We obtained multiple slice transversal balanced steady-state free precession (bSSFP) images for anatomical orientation and bSSFP cine images in the long axis (4- and 2-chamber view of the left ventricle (LV), LV outflow tract view, 2-chamber view of the right ventricle (RV), RV outflow tract view) and multiple short axis of the LV for function evaluation. A fast low angle shot (FLASH) gradient echo (GRE) based sequence was performed of the 4-chamber view of the LV and T1- and T2-weighted Turbo Spin Echo (TSE) sequences were obtained of the 4-chamber view and in the short axis. CMR sequences and parameters for 1.5 and 3 Tesla CMR scans are shown in Table 1. One patient was excluded from the analysis because of an incomplete CMR investigation due to claustrophobia.
Table 1
CMR scan protocols at 3 Tesla and 1.5 Tesla
3 T
TF single-shot localizer
TF single-shot localizer TRA
TF single-shot localizer 2ch
TF single-shot localizer 4ch
TF single-shot localizer SA
TF frequency-scout 4ch
TF cine 4ch
FLASH cine 4ch
TF cine SAG
TF cine 2ch
TF cine 2ch RV
TF cine LVOT
TF cine RVOT
T2 TSE DB FS SA
T2 TSE DB FS 4ch
T1 TSE DB 4ch
T1 TSE DB SA
Time of acquisition [sec]
12
45
1
1
8.6
12
9.5
11
159
9.5
9.5
11
11
9.5
9.5
11
12
Slices/slab
5, 5, 3
30
1
1
9
1
1
1
9
1
1
1
1
1
1
1
1
Slice group
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Total slices
13
30
1
1
9
1
1
1
9
1
1
1
1
1
1
1
1
Distance factor [%]
200
20
20
20
100
20
20
20
67
20
20
20
20
50
50
50
50
Orientation
SAG
COR
TRA
TRA
2ch
4ch
SA
4ch
4ch
4ch
SA
2ch
2ch RV
LVOT
RVOT
SA
4ch
4ch
SA
Phase encoding
A> > P A> > P R> > L
A> > P
A> > P
A> > P
R> > L
A> > P
A> > P
A> > P
R> > L
A> > P
L> > R
A> > P
A> > P
R> > L
A> > P
A> > P
R> > L
FOV read [mm]
430
380
420
420
420
420
380
380
380
400
400
380
380
400
380
380
400
FOV phase [%]
90
90
100
100
100
81
81
80
84
81
81
100
100
78
78
75
75
Slice thickness [mm]
6
5
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
TR [ms]
237
297
269
260
260
269
41
50
41
41
41
41
41
700
700
700
700
TE [ms]
1.14
1.2
1.18
1.14
1.14
1.21
1.25
2.43
1.25
1.24
1.24
1.25
1.25
71
71
31
31
Concatenations
13
3
1
1
9
1
1
1
9
1
1
1
1
1
1
1
1
Flip angle
40
40
40
40
40
40
35
12
35
35
35
35
35
180
180
150
150
Matrix
230 × 256
256 × 230
512 × 460
256 × 256
256 × 256
256 × 256
256 × 208
256 × 208
256 × 206
216 × 256
208 × 256
208 × 256
256 × 256
256 × 256
400 × 512
512 × 400
256 × 192
192 × 256
Phase resolution [%]
65
80
65
65
65
66
81
80
81
81
81
81
81
80
80
80
80
Fat suppression
none
none
none
none
none
none
none
none
none
none
none
none
none
FS
FS
none
none
Dimension
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
Bandwidth [Hz/px]
977
1085
849
977
977
781
1085
543
1085
1085
1085
1085
1085
849
849
781
781
Turbo factor
             
21
21
9
9
RF pulse type
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
Gradient mode
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
normal
normal
fast
fast
1,5 T
TF localizer multi iPAT
TF TRA
TF 2ch
TF 4ch
TF SA
TF cine 4ch
FLASH cine 4ch
TF cine SA
TF cine 2ch
TF cine 2ch RV
TF cine LVOT
TF cine RVOT
T2 TSE DB FS SA
T1 TSE DB SA
T2 TSE DB FS 4ch
T1 TSE DB 4ch
Time of acquisition [sec]
16
40
2.4
2.4
12
5.5
6.7
44
6.1
6.1
6.1
6.1
24
13
20
12
Slices/slab
5, 5, 3
30
1
1
9
1
1
9
1
1
1
1
1
1
1
1
Slice group
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Total slices
13
30
1
1
9
1
1
9
1
1
1
1
1
1
1
1
Distance factor [%]
200
20
20
20
100
20
20
67
20
20
20
20
20
25
20
25
Orientation
SAG
COR
TRA
TRA
2ch
4ch
SA
4ch
4ch
SA
2ch
2ch RV
LVOT
RVOT
SA
SA
4ch
4ch
Phase encoding
A> > P A> > P R> > L
A> > P
A> > P
A> > P
A> > P
A> > P
R> > L
A> > P
A> > P
A> > P
A> > P
A> > P
A> > P
H> > F
R> > L
R> > L
FOV read [mm]
400
350
400
400
400
380
380
400
400
400
380
380
400
400
380
380
FOV phase [%]
100
89.8
100
100
100
83.3
83.3
85.8
99.2
99.2
99.2
99.2
75
75
75
75
Slice thk [mm]
8
5
8
6
6
6
6
6
6
6
6
6
8
8
8
8
TR [ms]
288
341
285
288
288
40
51
52
41
41
41
41
700
700
700
700
TE [ms]
1.1
1.2
1.1
1.1
1.1
1.
2.
1.2
1.2
1.2
1.2
1.2
81
29
81
29
Concatenations
1
3
1
1
1
1
1
9
1
1
1
1
1
1
1
1
Flip angle
80
70
80
80
80
70
15
70
70
70
70
70
180
180
180
180
Matrix
256 × 256
512 × 460
256 × 256
256 × 256
256 × 256
240 × 200
200 × 240
206 × 240
238 × 240
238 × 240
240 × 238
238 × 240
384 × 512
384 × 512
512 × 384
512 × 384
Phase resolution [%]
66
80
65
65
65
85
85
85
85
85
85
85
80
80
80
80
Fat suppr.
none
none
none
none
none
none
none
none
none
none
none
none
FS
none
FS
none
Dimension
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
2D
Bandwidth [Hz/px]
1149
977
1149
1149
1149
947
496
947
947
947
947
947
235
305
235
305
Turbo factor
            
23
11
23
11
RF pulse type
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
Gradient mode
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
fast
TF TrueFISP, FLASH fast low angle shot, TSE turbo spin echo, DB dark blood, FS fat saturation, iPAT integrated parallel acquisition techniques, TRA transversal, SAG sagittal, COR coronal, 2ch 2 chamber, 4ch 4 chamber, LVOT left ventricle outflow tract, RV right ventricle, RVOT right ventricle outflow tract, SA short axis
All available CMR images were reviewed by four experienced CMR observers (two cardiologists and two radiologists). In case of inter-observer differences in artefact quantification agreement was reached in case discussion. The LV was divided into 16 segments according to the American Heart Association (AHA) 16 myocardial segmentation classification system [18]. The RV was divided into 3 segments (basal, mid and apical).
LCP related artefacts were graduated as suggested by Klein-Wiele et al. [19]:
  • Grade 1: excellent image quality, no artefacts affecting myocardial segments or cardiac structures
  • Grade 2: good image quality with artefact adjacent to the myocardial segments or cardiac structures, delineation of myocardial borders may be limited, no impact on diagnostic value
  • Grade 3: artefact moderately affecting cardiac structures, less than half of the myocardial segment is superimposed by the artefact
  • Grade 4: poor image quality with significant artefact affecting more than half of the myocardial segment, non-diagnostic image
The artefact size was measured for every patient on short axis bSSFP cine images which showed the largest artefact. The artefact burden was calculated as affected myocardial segments by grade 1 (excellent), grade 2 (good), grade 3 (moderately) and grade 4 artefacts (poor image quality) divided by 224 (16 myocardial segments × 14 study participants) for the LV and divided by 42 (3 myocardial segments × 14 study participants) for the RV. The artefact burden ratio per patient was calculated as affected myocardial segments by grade 3 and 4 artefacts on 1.5 Tesla and 3 Tesla CMR images for the LV and RV.
The study design was approved by the local ethics committee and was conducted according to the Declaration of Helsinki. Written informed consent was obtained from all study participants.

Statistical analysis

Categorical parameters are described as absolute number and percentage. Continuous values are presented as means ± standard deviation or means with 95% confidence intervals (95% CI). Differences between groups involving normally distributed data were analyzed by the unpaired t test; those involving not normally distributed data, by the Mann-Whitney U test; and those involving proportions, by the chi-square test. A two-sided p-value < 0.05 was considered statistically significant. All calculations were performed with SPSS statistical software (Version 21, SPSS Inc., Chicago, Illinois, USA).

Results

Baseline characteristics

Fifteen patients were enrolled in this prospective, single-center, observational study. The 1.5 Tesla and 3 Tesla group comprised seven patients each. One study participant was excluded from the study because of an incomplete CMR investigation due to claustrophobia. The remaining 14 patients (female: n = 3) had a mean age of 77.8 ± 14.6 years and all of them had undergone implantation of a LCP at least 6 weeks prior the CMR scan. Indications for pacemaker implantation were bradycardic arrhythmias in permanent atrial fibrillation (n = 11) or third degree atrioventricular block (n = 3). Baseline characteristics of the study population including comorbidities are shown in Table 2.
Table 2
Baseline characteristics including indication for pacemaker implantation and comorbidities
Baseline characteristics (n = 14)
 Sex
3 female (21.4%)
 Age
77.8 ± 14.6 years
Indication for pacemaker implantation
 Bradycardiac arrhythmia in atrial fibrillation
11 (78.6%)
 3rd degree AV-block
3 (21.4%)
Comorbidities
 Atrial fibrillation
12 (85.7%)
 Coronary artery disease
6 (42.9%)
 Hypertension
8 (57.1%)
 Diabetes
3 (21.4%)
 Chronic kidney disease
6 (42.9%)
 Peripheral artery disease
2 (14.3%)
 History of stroke
2 (14.3%)

Image quality and artefacts

The LCP caused an arc-shaped artefact at the site of implantation of the RV apex (Fig. 1). Of 224 analyzed myocardial segments of the LV, 158 (70.5%) were affected by grade 1, 27 (12.1%) by grade 2, 17 (7.6%) by grade 3 and 22 (9.8%) by grade 4 artefacts. Of 42 analyzed segments of the RV, 20 (47.6%) were affected by grade 1, 6 (14.3%) by grade 2, 5 (11.9%) by grade 3 and 11 (26.2%) by grade 4 artefacts. Representative bSSFP cine images of the 4-chamber view with artefact grading obtained with 1.5 Tesla and 3 Tesla are shown in Fig. 1. The artefact area, which was quantified on short axis bSSFP cine images, was slightly higher but not significantly different in the 3 Tesla group compared to the 1.5 Tesla group (both groups: 0.99 ± 0.16 cm2, 3 Tesla vs 1.5 Tesla: 1.02 ± 0.19 cm2 vs 0.95 ± 0.14 cm2, p = 0.41). The artefact burden ratio per patient of affected myocardial segments by grade 3 and 4 artefacts on the short axis bSSFP cine images of the LV was significantly higher in the 3 Tesla group (3 Tesla vs 1.5 Tesla: 3.7 ± 1.6 vs 1.9 ± 1.4 myocardial segments per patient, p = 0.03). The detailed analysis of myocardial segments affected by grade 3 and grade 4 artefacts revealed a high artefact burden particularly in the mid anteroseptal, inferoseptal and apical septal myocardial segments (AHA myocardial segments 8, 9, 14) with an artefact burden of 50, 50 and 85.7% in these regions, respectively. These artefacts were more pronounced in patients undergoing CMR on 3 Tesla CMR scanners (3 Tesla vs 1.5 Tesla: 57.1% vs 42.9%. 57.1% vs 42.9, 100% vs 71.4%). There were no artefacts in the basal inferoseptal, inferior, basal to apical anterolateral and inferolateral myocardial segments (AHA myocardial segments 3, 4, 5, 6, 11, 12 and 16). Details of artefact distribution in the short axis are demonstrated in Fig. 2 and Table 3.
Table 3
Artefact burden of myocardial segments of the LV and RV according to the AHA myocardial segmentation system in the short axis (n = 14)
All [%]
Basal
Mid
Apical
RV
Artefact
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
basal
mid
apical
 grade 1
92.9
78.6
85.7
100
100
100
64.3
21.4
21.4
78.6
100
100
35.7
7.1
42.9
100
100
42.9
0
 grade 2
0
14.3
14.3
0
0
0
28.6
28.6
28.6
14.3
0
0
42.9
7.1
14.3
0
0
35.7
7.1
 grade 3
7.1
0
0
0
0
0
7.1
7.1
14.3
7.1
0
0
21.4
14.3
42.9
0
0
14.3
21.4
 grade 4
0
7.1
0
0
0
0
0
42.9
35.7
0
0
0
0
71.4
0
0
0
7.1
71.4
3 T
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
basal
mid
apical
 grade 1
85.7
71.4
85.7
100
100
100
57.1
0
14.3
57.1
100
100
0
0
14.3
100
100
42.9
0
 grade 2
0
14.3
14.3
0
0
0
28.6
42.9
28.6
28.6
0
0
71.4
0
14.3
0
0
28.6
0
 grade 3
14.3
0
0
0
0
0
14.3
14.3
14.3
14.3
0
0
28.6
0
71.4
0
0
28.6
0
 grade 4
0
14.3
0
0
0
0
0
42.9
42.9
0
0
0
0
100
0
0
0
0
100
1.5 T
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
basal
mid
apical
 grade 1
100
85.7
85.7
100
100
100
71.4
42.9
71.4
100
100
100
71.4
14.3
71.4
100
100
42.9
0
 grade 2
0
14.3
14.3
0
0
0
28.6
14.3
0
0
0
0
14.3
14.3
14.3
0
0
42.9
14.3
 grade 3
0
0
0
0
0
0
0
0
28.6
0
0
0
14.3
28.6
14.3
0
0
0
42.9
 grade 4
0
0
0
0
0
0
0
42.9
0
0
0
0
0
42.9
0
0
0
14.3
42.9
Quantification of LV function and volumetry were feasible in 14 patients (100%) with a mean LV ejection fraction of 49 ± 7.4%. We experienced more problems of ECG-triggering in patients undergoing 3 Tesla CMR scans (3 Tesla vs 1.5 Tesla: 3 vs 0 patients). In one 3 Tesla patient, pulse-triggering was necessary for image acquisition. Analysis of the RV was evenly impaired in both cohorts due to artefacts of the LCP severely compromising the image quality of particularly the mid and apical free wall of the RV (grade 3 and 4 artefacts RV basal: 0%, mid: 21.4%, apical: 92.9%). The artefact burden ratio of affected myocardial segments by grade 3 and 4 artefacts on short axis bSSFP cine images of the RV revealed 1.1 ± 0.4 segments per patient. Therefore, an exact quantification of RV function was not possible in both groups and the RV function was only assessed visually (normal: n = 7, mildly impaired: n = 6, moderately impaired: n = 0, severely impaired: n = 1).
The evaluation of T1 and T2 weighted images showed better image quality with smaller arc-shaped artefacts compared to bSSFP cine imaging and less grade 3 and 4 artefacts in the mid anteroseptal, inferoseptal and septal apical myocardial segments (Figs. 3 and 4). Furthermore, when comparing 4-chamber view bSSFP cine images and GRE based FLASH cine images, there was only a slightly better image quality on FLASH sequences in the mid and apical septal myocardial segments of the LV (Fig. 3).
Aortic, mitral and tricuspid valves could be assessed in all patients (grade 3 and 4 artefacts: 0, 0, 0%, respectively). We did not observe any hemodynamically relevant tricuspid valve insufficiency in our study cohort of patients with LCP.

Safety and device integrity

There were no clinical or device-related serious adverse events during CMR scans. The CMR scans, both 1.5 and 3 Tesla, did not lead to malfunction of the implanted LCP devices. We observed no significant change of pacing thresholds (before CMR scan: 0.59 ± 0.15 V/0.24 ms, after: 0.61 ± 0.17 V/0.24 ms, p = 0.08) and a marginal, but statistically significant increase of sensing amplitude (before CMR scan: 14.9 ± 4.7 mV, after: 15.8 ± 4.5 mV, p = 0.02) and impedances (before CMR scan: 527 ± 100 Ω, after: 541 ± 110 Ω, p = 0.02). Battery voltage remained stable (before CMR scan: > 10 years, after: > 10 years).

Discussion

This prospective, single-center, observational study, demonstrates that CMR imaging in patients with LCP implanted at least 6 weeks prior to the CMR scan is feasible. Overall image quality was excellent or good in the majority of CMR images (myocardial segments of the LV affected by grade 1: 70.5%, grade 2: 12.1%, grade 3: 7.6%, grade 4: 9.8%). Artefacts occurred particularly in the mid anteroseptal, inferoseptal and septal apical myocardial segments (AHA myocardial segments 8, 9 and 14) and in the mid and apical segments of the RV. 3 Tesla CMR imaging led to a significantly higher artefact burden ratio per patient compared to 1.5 Tesla CMR imaging. Assessment of LV function and aortic, mitral and tricuspid valve, as well as tissue characterization by T1- and T2- weighted imaging was feasible with both modalities.
Several studies have demonstrated the safety and feasibility of MRI conditional, transvenous pacemakers and ICD undergoing MRI [311]. Potential adverse effects of MRI on implanted cardiac devices include: radiofrequency-induced heating of the lead tips, pacing inhibition/dysfunction, asynchronous pacing with the possibility of induction of ventricular tachyarrhythmias, change or loss of programmed data and changes in capture treshold [2]. A closer distance of the scanning area to the pacing system and a higher field strength increases this risk [2]. Therefore, pacemakers and ICD including leads must be interrogated before and after MRI scans and have to be programmed to MRI conditional pacing modes during the scan. It is recommended to monitor patients with cardiac devices with ECG, pulse oximetry and blood pressure measurements during MRI scans [2]. Soejima et al. demonstrated in an ex-vivo study the safety for the Micra™ LCP in a not perfused phantom model with a device heating of less than 0.4 °C at 1.5 Tesla and 0.5 °C at 3 Tesla MRI [20]. Furthermore they report no MRI-related complication in a clinical case study. We did not observe any clinical or device-related serious adverse events in our study cohort. Pacing threshold did not change significantly and battery voltage remained stable before and after CMR scans. However, we observed a marginal, but statistically significant increase of sensing amplitude (before CMR scan: 14.9 ± 4.7 mV, after: 15.8 ± 4.5 mV, p = 0.02) and impedances (before CMR scan: 527 ± 100 Ω, after: 541 ± 110 Ω, p = 0.02). We do not consider these marginal changes to be clinically relevant because we did not observe any malfunction of LCP during or after CMR scans. Further studies are needed to provide follow up data of LCP after MRI.
Pacemakers and other implanted cardiac electronic devices lead to metallic susceptibility artefacts due to distortion of the magnetic field [15]. Artefacts tend to be larger on 3 Tesla CMR scanners which could be confirmed by our study findings with a higher artefact burden of affected myocardial segments of the LV by grade 3 and 4 artefacts in patients undergoing CMR imaging at 3 Tesla (3 Tesla vs 1.5 Tesla: 3.7 ± 1.6 vs 1.9 ± 1.4 AHA myocardial segments, p = 0.03). These susceptibility artefacts were pronounced in particular in the mid anteroseptal, inferoseptal and apical septal AHA myocardial segments 8, 9 and 14 of the LV and were even more pronounced in patients undergoing CMR on 3 Tesla. The RV was mainly affected in the mid and apical myocardial segments. The size of the arc-shaped artefact by the LCP (0.99 ± 0.16 cm2) was not significantly different in both groups (3 Tesla vs 1.5 Tesla: 1.02 ± 0.19 cm2 vs 0.95 ± 0.14 cm2, p = 0.41). The size of the area affected by the artefact was 7-fold larger compared to the size of the LCP device itself. Quantification of LV function and volumetry were feasible in all patients (n = 14). However, the RV function could only be assessed visually, because of the high artefact burden, demonstrating 7 patients with normal, 6 patients with mildly and 1 patient with severely reduced RV function. However, the impaired RV function cannot be interpreted as a reduced RV function due to the LCP because we did not compare RV function before and after implantation of the LCP.
As described above, mid anteroseptal, inferoseptal and apical septal myocardial segments of the LV and mid and apical segments of the RV were affected by artefacts of the LCP in the majority of patients which may impair or even exclude diagnostic evaluation of these segments especially on perfusion and late gadolinum enhancement images. In contrast to our findings, Klein-Wiele et al. revealed in a population of 61 patients with MRI conditional, transvenous pacemakers no relevant artefacts in patients with right-sided devices irrespective of the imaging sequence [19]. There were no pacemaker induced artefacts in left-sided implants in first pass perfusion sequence, flow analysis and T1 weighted imaging. bSSFP cine sequences tend to have more artefact burden than late gadolinum enhancement sequences [19]. As reported by Sasaki et al. right-sided pacemakers and ICD did not cause susceptibility artefacts on CMR images but artefacts of the anterior and apical LV were described with left-sided ICD [21]. To the best of our knowledge, there are no prospective studies investigating artefacts on CMR scans in patients with LCP. We recently reported about a case of a patient with a LCP and an arc-shaped artefact at the RV apex [16]. As described by Klein-Wiele et al., pacing leads artefacts are smaller and do not usually interfere with myocardial structures which may be a potential advantage of transvenous cardiac pacemaker systems undergoing CMR imaging [19].
LCP are RV single-chamber pacemakers which are implanted by using a femoral percutaneous approach [12]. The next step of leadless technology will be dual-chamber pacing to treat patients with AV block [13]. Aurrichio et al. reported about feasibility, safety and short-term outcome of leadless ultrasound-based endocardial LV resychronization in patients with heart failure [22]. A study by Tjong FV et al. reported about leadless pacing combined with subcutaneous defibrillation therapy [23]. Therefore, the clinical use of these leadless cardiac devices will increase in the next years. Keller J et al. reported artefacts by the can of subcutaneous ICD affecting the LV [24]. This is consistent with our expierence in this patient undergoing CMR imaging that diagnostic evaluation of the LV is severely impaired by artefacts of the subcutaneous ICD.
CMR is an important non-invasive imaging tool to assess patients with cardiovascular diseases by evaluating myocardial function, wall motion abnormalities, viability, coronary perfusion, valves and tissue characterization [1]. Therefore, we were able to demonstrate that CMR is feasible in patients with LCP. Furthermore, the overall image quality was excellent to good and the artefact burden due to the LCP was comparable small and allowed a comprehensive evaluation of the cardiac structures and function, wall motion abnormalities and tissue characterization. However, mid anteroseptal, inferoseptal and apical septal myocardial segments of the LV were affected by artefacts due to the LCP which may impair or even exclude diagnostic evaluation of these segments, especially on perfusion and LGE images (Fig. 4). The artefact burden on CMR images could be significantly reduced by the use of 1.5 Tesla MRI scanners.

Limitations of this study

Besides the limited number of patients this study has further limitations. This study enrolled only patients with Micra™ LCP and the described artefacts are specific for this LCP. Further studies are needed to evaluate the artefact burden of LCP from other manufactures. However, according to our data the size of the artefact by the LCP did not differ widely with only a small standard deviation on CMR images (0.99± 0.16 cm2). Therefore, we conclude that the localization of the artefact depends mainly on the site of implantation of the LCP which is usually at the apex of the RV or at the apical or mid right interventricular septum. The impaired RV function in 7 patients of our study population cannot be interpreted as a reduced RV function due to the LCP because we did not compare RV function before and after implantation of the LCP. Furthermore, we were not able to report on late gadolinum enhancement sequences as these sequences were not part of our CMR scan protocol. As reported by Klein-Wiele, late gadolinum enhancement sequences showed a lower artefact burden compared to bSSFP cine images [19].

Conclusion

This prospective, single-center, observational study demonstrates that CMR imaging in patients with LCP implanted at least six prior to the CMR scan is feasible. Overall image quality was excellent to good in the majority of CMR images. Assessment of LV function and aortic, mitral and tricuspid valve as well as tissue characterization with T1 and T2 weighted imaging were feasible with 1.5 Tesla and 3 Tesla. However, mid anteroseptal, inferoseptal and apical septal myocardial segments of the LV were affected by artefacts of the LCP in the majority of patients which may impair or even exclude diagnostic evaluation of these segments. Artefact burden on CMR images may be reduced by the use of 1.5 Tesla scanners.

Acknowledgements

The authors want to thank Alexander Kypta MD for supporting this study and, Thomas Lukas MD, Walter Aufreiter and the dedicated staff of the MRI unit of the Kepler University Hospital for image acquisition.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
The study design was approved by the local ethics committee (Ethikkommission Land Oberösterreich, Kepler University Hospital Linz, B-123-16) and was conducted according to the Declaration of Helsinki. Written informed consent was obtained from all study participants.

Competing interests

CS received speakers’ honoraria from Medtronic. DK, CR, JK, PS, JK, HB and FF declare no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Penell DJ. Cardiovascular magnetic resonance. Circulation. 2010;121(5):692–705.CrossRef Penell DJ. Cardiovascular magnetic resonance. Circulation. 2010;121(5):692–705.CrossRef
2.
Zurück zum Zitat Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Europace. 2013;15(8):1070–118.CrossRefPubMed Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Europace. 2013;15(8):1070–118.CrossRefPubMed
4.
Zurück zum Zitat Russo RJ, Costa HS, Silva PD, Anderson JL, Arshad A, Biederman RW, et al. Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N Engl J Med. 2017;376(8):755–64.CrossRefPubMed Russo RJ, Costa HS, Silva PD, Anderson JL, Arshad A, Biederman RW, et al. Assessing the risks associated with MRI in patients with a pacemaker or defibrillator. N Engl J Med. 2017;376(8):755–64.CrossRefPubMed
5.
Zurück zum Zitat Strom JB, Whelan JB, Shen C, Zheng SQ, Mortele KJ, Kramer DB. Safety and utility of magnetic resonance imaging in patients with cardiac implantable electronic devices. Heart Rhythm. 2017;14(8):1138–44.CrossRefPubMedPubMedCentral Strom JB, Whelan JB, Shen C, Zheng SQ, Mortele KJ, Kramer DB. Safety and utility of magnetic resonance imaging in patients with cardiac implantable electronic devices. Heart Rhythm. 2017;14(8):1138–44.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Shah AD, Patel AU, Knezevic A, Hoskins MH, Hirsh DS, Merchant FM, et al. Clinical performance of magnetic resonance imaging conditional and nonconditional cardiac implantable electronic devices. Pacing Clin Electrophysiol. 2017;40(5):467–75.CrossRefPubMed Shah AD, Patel AU, Knezevic A, Hoskins MH, Hirsh DS, Merchant FM, et al. Clinical performance of magnetic resonance imaging conditional and nonconditional cardiac implantable electronic devices. Pacing Clin Electrophysiol. 2017;40(5):467–75.CrossRefPubMed
7.
Zurück zum Zitat Bertelsen L, Petersen HH, Philbert BT, Svendsen JH, Thomsen C, Vejlstrup N. Safety of magnetic resonance scanning without monitoring of patients with pacemakers. Europace. 2017;19(5):818–23.PubMed Bertelsen L, Petersen HH, Philbert BT, Svendsen JH, Thomsen C, Vejlstrup N. Safety of magnetic resonance scanning without monitoring of patients with pacemakers. Europace. 2017;19(5):818–23.PubMed
8.
Zurück zum Zitat Camacho JC, Moreno CC, Shah AD, Mittal PK, Mengistu A, Lloyd MS, et al. Safety and quality of 1.5-T MRI in patients with conventional and MRI-conditional cardiac implantable electronic devices after implementation of a standardized protocol. AJR Am J Roentgenol. 2016;207(3):599–604.CrossRefPubMed Camacho JC, Moreno CC, Shah AD, Mittal PK, Mengistu A, Lloyd MS, et al. Safety and quality of 1.5-T MRI in patients with conventional and MRI-conditional cardiac implantable electronic devices after implementation of a standardized protocol. AJR Am J Roentgenol. 2016;207(3):599–604.CrossRefPubMed
9.
Zurück zum Zitat Horwood L, Attili A, Luba F, Ibrahim EH, Parmar H, Stojanovska J, et al. Magnetic resonance imaging in patients with cardiac implanted electronic devices: focus on contraindications to magnetic resonance imaging protocols. Europace. 2017;19(5):812–7.PubMed Horwood L, Attili A, Luba F, Ibrahim EH, Parmar H, Stojanovska J, et al. Magnetic resonance imaging in patients with cardiac implanted electronic devices: focus on contraindications to magnetic resonance imaging protocols. Europace. 2017;19(5):812–7.PubMed
10.
Zurück zum Zitat Lowe MD, Plummer CJ, Mainsty CH, Linker NJ, British Heart Rhythm Society. Safe use of MRI in people with cardiac implantable electronic devices. Heart. 2015;101(24):1950–3.CrossRefPubMed Lowe MD, Plummer CJ, Mainsty CH, Linker NJ, British Heart Rhythm Society. Safe use of MRI in people with cardiac implantable electronic devices. Heart. 2015;101(24):1950–3.CrossRefPubMed
11.
Zurück zum Zitat Kypta A, Blessberger H, Hoenig S, Saleh K, Lambert T, Kammler J, et al. Clinical safety of an MRI conditional implantable cardioverter defibrillator system: a prospective monocenter ICD-magnetic resonance imaging feasibility study (MIMI). J Magn Reson Imaging. 2016;43(3):574–84.CrossRefPubMed Kypta A, Blessberger H, Hoenig S, Saleh K, Lambert T, Kammler J, et al. Clinical safety of an MRI conditional implantable cardioverter defibrillator system: a prospective monocenter ICD-magnetic resonance imaging feasibility study (MIMI). J Magn Reson Imaging. 2016;43(3):574–84.CrossRefPubMed
12.
Zurück zum Zitat Tjong FV, Reddy VY. Permanent leadless cardiac pacemaker therapy: a comprehensive review. Circulation. 2017;135(15):1458–70.CrossRefPubMed Tjong FV, Reddy VY. Permanent leadless cardiac pacemaker therapy: a comprehensive review. Circulation. 2017;135(15):1458–70.CrossRefPubMed
13.
Zurück zum Zitat Kiehl EL, Cantillon DJ. Leadless cardiac pacing: what primary care providers and non-EP cardiologists should know. Cleve Clin J Med. 2016;83(11 Suppl 2):S24–34.CrossRefPubMed Kiehl EL, Cantillon DJ. Leadless cardiac pacing: what primary care providers and non-EP cardiologists should know. Cleve Clin J Med. 2016;83(11 Suppl 2):S24–34.CrossRefPubMed
14.
15.
16.
Zurück zum Zitat Kypta A, Blessberger H, Kiblboeck D, Steinwender C. Three tesla cardiac magnetic resonance imaging in a patient with a leadless cardiac pacemaker system. Eur Heart J. 2017;38(34):2628.CrossRefPubMedPubMedCentral Kypta A, Blessberger H, Kiblboeck D, Steinwender C. Three tesla cardiac magnetic resonance imaging in a patient with a leadless cardiac pacemaker system. Eur Heart J. 2017;38(34):2628.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Society of Cardiovascular Magnetic Resonance Board of trustees task force on standardized protocols. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013;15:91.CrossRefPubMedPubMedCentral Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Society of Cardiovascular Magnetic Resonance Board of trustees task force on standardized protocols. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013;15:91.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002;105:539–42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002;105:539–42.CrossRefPubMed
19.
Zurück zum Zitat Klein-Wiele O, Garmer M, Busch M, Mateiescu S, Urbien R, Barbone G, et al. Cardiovascular magnetic resonance in patients with magnetic resonance conditional pacemaker systems at 1.5T: influence of pacemaker related artefacts on image quality including first pass perfusion, aortic and mitral valve assessment, flow measurement, short tau inversion recovery and T1-weighted imaging. Int J Cardiovasc Imaging. 2017;33(3):383–94.CrossRefPubMed Klein-Wiele O, Garmer M, Busch M, Mateiescu S, Urbien R, Barbone G, et al. Cardiovascular magnetic resonance in patients with magnetic resonance conditional pacemaker systems at 1.5T: influence of pacemaker related artefacts on image quality including first pass perfusion, aortic and mitral valve assessment, flow measurement, short tau inversion recovery and T1-weighted imaging. Int J Cardiovasc Imaging. 2017;33(3):383–94.CrossRefPubMed
20.
Zurück zum Zitat Soejima K, Edmonson J, Ellingson ML, Herberg B, Wiklund C, Zhao J. Safety evaluation of a leadless pacemaker for magnetic resonance imaging use. Heart Rhythm. 2016;13(10):2056–63.CrossRefPubMed Soejima K, Edmonson J, Ellingson ML, Herberg B, Wiklund C, Zhao J. Safety evaluation of a leadless pacemaker for magnetic resonance imaging use. Heart Rhythm. 2016;13(10):2056–63.CrossRefPubMed
21.
Zurück zum Zitat Sasaki T, Hansford R, Zviman MM, Kolandaivelu A, Bluemke DA, Berger RD, et al. Quantitative assessment of artifacts on cardiac magnetic resonance imaging of patients with pacemakers and implantable cardioverter-defibrillators. Circ Cardiovasc Imaging. 2011;4:662–70.CrossRefPubMedPubMedCentral Sasaki T, Hansford R, Zviman MM, Kolandaivelu A, Bluemke DA, Berger RD, et al. Quantitative assessment of artifacts on cardiac magnetic resonance imaging of patients with pacemakers and implantable cardioverter-defibrillators. Circ Cardiovasc Imaging. 2011;4:662–70.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Auricchio A, Delnoy PP, Butter C, Brachmann J, Van Erven L, Spitzer S, et al. Feasibility, safety, and short-term outcome of leadless ultrasound-based endocardial left ventricular resynchronization in heart failure patients: results of the wireless stimulation endocardially for CRT (WiSE-CRT) study. Europace. 2014;16(5):681–8.CrossRefPubMed Auricchio A, Delnoy PP, Butter C, Brachmann J, Van Erven L, Spitzer S, et al. Feasibility, safety, and short-term outcome of leadless ultrasound-based endocardial left ventricular resynchronization in heart failure patients: results of the wireless stimulation endocardially for CRT (WiSE-CRT) study. Europace. 2014;16(5):681–8.CrossRefPubMed
23.
Zurück zum Zitat Tjong FV, Brouwer TF, Smeding L, Kooiman KM, de Groot JR, Ligon D, et al. Combined leadless pacemaker and subcutaneous implantable defibrillator therapy: feasibility, safety, and performance. Europace. 2016;18(11):1740–7.CrossRefPubMed Tjong FV, Brouwer TF, Smeding L, Kooiman KM, de Groot JR, Ligon D, et al. Combined leadless pacemaker and subcutaneous implantable defibrillator therapy: feasibility, safety, and performance. Europace. 2016;18(11):1740–7.CrossRefPubMed
24.
Zurück zum Zitat Keller J, Neuzil P, Vymazal J, Janotka M, Brada J, Zacek R, et al. Magnetic resonance imaging in patients with subcutaneous implantable cardioverter-defibrillator. Europace. 2015;17(5):761–6.CrossRefPubMedPubMedCentral Keller J, Neuzil P, Vymazal J, Janotka M, Brada J, Zacek R, et al. Magnetic resonance imaging in patients with subcutaneous implantable cardioverter-defibrillator. Europace. 2015;17(5):761–6.CrossRefPubMedPubMedCentral
Metadaten
Titel
Artefacts in 1.5 Tesla and 3 Tesla cardiovascular magnetic resonance imaging in patients with leadless cardiac pacemakers
verfasst von
Daniel Kiblboeck
Christian Reiter
Juergen Kammler
Pierre Schmit
Hermann Blessberger
Joerg Kellermair
Franz Fellner
Clemens Steinwender
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Cardiovascular Magnetic Resonance / Ausgabe 1/2018
Elektronische ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-018-0469-4

Weitere Artikel der Ausgabe 1/2018

Journal of Cardiovascular Magnetic Resonance 1/2018 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.