Skip to main content
Erschienen in: Critical Care 1/2021

Open Access 01.12.2021 | COVID-19 | Research Letter

Elevated HbA1c remains a predominant finding in severe COVID-19 and may be associated with increased mortality in patients requiring mechanical ventilation

verfasst von: Sebastian J. Klein, Timo Mayerhöfer, Dietmar Fries, Christian Preuß Hernández, Michael Joannidis, Collaborators

Erschienen in: Critical Care | Ausgabe 1/2021

Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dear Editor,

We have previously reported unusually high rates of elevated glycated hemoglobin (HbA1c) levels in patients with COVID-19 admitted to an ICU between March 11 and April 29, 2020 [1]. Since then, our Tyrolean multicenter COVID-19 Intensive Care Unit Registry (Tyrol-CoV-ICU-Reg) [2] has considerably increased, surpassing 500 patients. To re-evaluate our previously reported findings, we included 306 additional patients in this analysis, who were admitted between April 30, 2020 and May 31, 2021, for whom an admission HbA1c was available. Details of our registry have been reported before [2].
Admission HbA1c was now available in 350 patients. We were able to confirm our finding that HbA1c was elevated (i.e., HbA1c ≥ 5.7%) in most patients (85.1%). However, only 31.7% had a history of diabetes mellitus (DM) or prediabetes (Table 1). Median HbA1c at admission was significantly higher in patients with HbA1c ≥ 6.5% and a history of DM than without history of DM (Mann–Whitney U p < 0.001). Furthermore, a weak correlation for HbA1c and BMI could be established (Pearson R = 0.27, p < 0.001).
Table 1
General characteristics of included patients stratified by history of diabetes mellitus/prediabetes and HbA1c
 
Overall
No history of diabetes mellitus/prediabetes
History of diabetes mellitus/prediabetes
HbA1c < 5.7%
HbA1c 5.7 < 6.5%
HbA1c ≥ 6.5%
HbA1c < 5.7%
HbA1c 5.7 < 6.5%
HbA1c ≥ 6.5%
n
350
49
138
52
3
18
90
Age [years] (median [IQR])
68.00 [58.00, 76.00]
67.00 [54.00, 77.00]
70.00 [61.00, 77.00]
65.00 [55.50, 75.25]
63.00 [56.50, 68.00]
72.00 [62.50, 74.75]
68.00 [58.25, 76.75]
Male—no. (%)
250 (71.4)
32 (65.3)
102 (73.9)
40 (76.9)
3 (100.0)
11 (61.1)
62 (68.9)
BMI [kg/m2] (median [IQR])
27.76 [25.14, 31.22]
25.12 [22.10, 27.53]
27.47 [24.97, 30.66]
29.45 [26.41, 31.51]
25.13 [24.18, 29.52]
28.73 [26.93, 31.71]
29.39 [26.51, 32.92]
HbA1c [%] (median [IQR])
6.30 [5.90, 6.80]
5.40 [5.10, 5.50]
6.10 [5.90, 6.20]
6.70 [6.60, 7.12]
5.50 [5.50, 5.55]
6.10 [5.93, 6.30]
7.60 [6.80, 8.88]
IMV—no. (%)
194 (55.4)
28 (57.1)
80 (58.0)
31 (59.6)
1 (33.3)
9 (50.0)
45 (50.0)
AKI—no. (%)
       
no AKI
233 (67.0)
33 (68.8)
94 (68.6)
31 (59.6)
2 (66.7)
12 (66.7)
61 (67.8)
KDIGO I
38 (10.9)
4 (8.3)
16 (11.7)
7 (13.5)
0 (0.0)
2 (11.1)
9 (10.0)
KDIGO II
18 (5.2)
2 (4.2)
7 (5.1)
2 (3.8)
0 (0.0)
1 (5.6)
6 (6.7)
KDIGO III
59 (17.0)
9 (18.8)
20 (14.6)
12 (23.1)
1 (33.3)
3 (16.7)
14 (15.6)
RRT—no. (%)
55 (15.7)
9 (18.4)
18 (13.0)
10 (19.2)
1 (33.3)
5 (27.8)
12 (13.3)
vv-ECMO
18 (5.1)
4 (8.2)
5 (3.6)
6 (11.5)
0 (0.0)
0 (0.0)
3 (3.3)
IMV [days] (median [IQR])
14.0 [8.0, 24.3]
10.5 [5.5, 20.8]
13.0 [8.0, 25.3]
15.00 [12.5, 26.50]
7.0 [7.0, 7.0]
16.0 [5.0, 29.0]
13.0 [8.0, 24.0]
RRT [days] (median [IQR])
11.0 [3.0, 25.5]
12.0 [6.0, 13.0]
16.5 [3.5, 27.5]
13.50 [9.5, 25.8]
7.0 [7.0, 7.0]
1.0 [1.0, 4.0]
4.0 [1.8, 14.5]
ECMO [days] (median [IQR])
23.5 [12.5, 28.8]
15.0 [14.0, 16.5]
26.0 [14.0, 26.0]
28.50 [16.0, 38.0]
NA [NA, NA]
NA [NA, NA]
27.0 [19.5, 28.5]
SAPS III score (median [IQR])
55.0 [48.0, 63.0]
59.0 [49.5, 69.8]
54.5 [49.0, 63.3]
52.50 [47.0, 62.5]
53.0 [49.5, 61.5]
55.5 [50.8, 59.3]
55.0 [48.0, 62.0]
Hospital LOS (median [IQR])
23.0 [14.0, 39.5]
26.5 [14.0, 40.0]
22.0 [15.0, 35.0]
24.00 [12.0, 45.5]
44.0 [33.5, 61.5]
30.5 [14.8, 45.5]
21.0 [13.0, 36.5]
ICU LOS (median [IQR])
11.0 [5.0, 23.0]
10.0 [4.0, 23.0]
13.0 [7.0, 23.0]
16.50 [5.0, 29.0]
5.0 [3.5, 10.5]
9.5 [6.0, 30.5]
10.0 [5.0, 21.0]
Known comorbidity*—no. (%)
       
Cardiovascular
142 (40.6)
21 (42.9)
56 (40.6)
18 (34.6)
2 (66.7)
12 (66.7)
33 (36.7)
Arterial hypertension
221 (63.1)
26 (53.1)
82 (59.4)
25 (48.1)
3 (100.0)
15 (83.3)
70 (77.8)
Renal
78 (22.3)
12 (24.5)
24 (17.4)
10 (19.2)
2 (66.7)
8 (44.4)
22 (24.4)
Liver
28 (8.0)
3 (6.1)
12 (8.7)
6 (11.5)
0 (0.0)
1 (5.6)
6 (6.7)
Metastatic disease
2 (0.6)
0 (0.0)
0 (0.0)
1 (1.9)
0 (0.0)
0 (0.0)
1 (1.1)
Hematological malignancy
18 (5.1)
3 (6.1)
7 (5.1)
2 (3.8)
0 (0.0)
0 (0.0)
6 (6.7)
Non-hematological malignancy
28 (8.0)
3 (6.1)
15 (10.9)
3 (5.8)
0 (0.0)
0 (0.0)
7 (7.9)
COPD
17 (4.9)
4 (8.2)
8 (5.8)
0 (0.0)
0 (0.0)
1 (5.6)
4 (4.4)
Asthma
50 (14.3)
4 (8.2)
18 (13.0)
8 (15.4)
1 (33.3)
2 (11.1)
17 (18.9)
Respiratory disease—others
27 (7.7)
2 (4.1)
12 (8.7)
3 (5.8)
0 (0.0)
2 (11.1)
8 (8.9)
Diabetes mellitus—no. (%)
       
No pre-known dysglycemia
239 (68.3)
49 (100.0)
138 (100.0)
52 (100.0)
0 (0.0)
0 (0.0)
0 (0.0)
Prediabetes
12 (3.4)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
4 (22.2)
8 (8.9)
DM Type I
4 (1.1)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
2 (11.1)
2 (2.2)
DM Type II
94 (26.9)
0 (0.0)
0 (0.0)
0 (0.0)
3 (100.0)
11 (61.1)
80 (88.9)
DM (other Type, e.g., MODY)
1 (0.3)
0 (0.0)
0 (0.0)
0 (0.0)
0 (0.0)
1 (5.6)
0 (0.0)
ICU mortality—no. (%)
90 (25.7)
13 (26.5)
35 (25.4)
14 (26.9)
0 (0.0)
3 (16.7)
25 (27.8)
Hospital mortality—no. (%)
100 (28.6)
15 (30.6)
37 (26.8)
15 (28.8)
0 (0.0)
3 (16.7)
30 (33.3)
Of 350 included patients, 44 have been previously reported [1]
IQR interquartile range, BMI body mass index, HbA1c glycated hemoglobin, IMV invasive mechanical ventilation, AKI acute kidney injury, KDIGO kidney disease: improving global outcomes, RRT renal replacement therapy, vv-ECMO veno-venous extracorporeal membrane oxygenation, SAPS simplified acute physiology score, LOS length of stay, ICU intensive care unit, COPD chronic obstructive pulmonary disease, DM Diabetes mellitus
*As mentioned in previous medical documents
There was a trend toward longer duration of invasive mechanical ventilation (IMV) in patients with higher HbA1c, albeit non-significant. In patients with history of DM, a tendency toward increased mortality associated with elevated HbA1c was observed, but the groups differed considerably in size (Table 1). When comparing patients with an HbA1c ≥ 6.5% requiring IMV to the rest of our cohort, ICU (40.8% vs. 21.5%; Χ2 p = 0.001) and hospital mortality (42.1% vs. 24.8%; Χ2 p = 0.005) were significantly increased.
In a multivariate logistic regression model including HbA1c, history of DM and IMV, odds ratios (ORs) for hospital death were higher for patients with elevated HbA1c ≥ 6.5%. However, this effect seems to be mainly driven by IMV. A significant association with hospital mortality was shown for treatment with IMV, age and SAPS III score (Table 2).
Table 2
Logistic regression analysis for prediction of hospital mortality
 
Univariate analysis
Multivariate analysis
OR (95% CI)
p
OR (95% CI)
p
Age
1.08 (1.05–1.11)
 < 0.001
1.07 (1.04–1.11)
 < 0.001
Sex (male)
1.29 (0.77–2.21)
0.350
  
BMI
1.00 (0.97–1.05)
0.737
  
Number of comorbidities
1.29 (1.13–1.49)
 < 0.001
1.24 (1.04–1.48)
0.018
SAPS III score
1.08 (1.05–1.11)
 < 0.001
1.05 (1.02–1.08)
0.001
IMV
3.08 (1.87–5.21)
 < 0.001
  
Ref: HbA1c < 6.5 and no history of DM
    
HbA1c < 6.5 and history of DM
0.43 (0.20–1.35)
0.194
  
HbA1c ≥ 6.5 and no history of DM
1.05 (0.52–2.05)
0.883
  
HbA1c ≥ 6.5 and history of DM
1.30 (0.75–2.23)
0.346
  
Ref: HbA1c < 6.5 and no history of DM and no IMV
    
HbA1c < 6.5 and history of DM, no IMV
  
0.30 (0.01–2.16)
0.304
HbA1c ≥ 6.5 and no history of DM, no IMV
  
0.31 (0.02–1.99)
0.298
HbA1c ≥ 6.5 and history of DM, no IMV
  
2.18 (0.71–6.71)
0.168
HbA1c < 6.5 and no history of DM, IMV
  
3.94 (1.72–9.66)
0.002
HbA1c < 6.5 and history of DM, IMV
  
0.78 (0.04–6.16)
0.832
HbA1c ≥ 6.5 and no history of DM, IMV
  
6.36 (2.02–20.85)
0.002
HbA1c ≥ 6.5 and history of DM, IMV
  
3.66 (1.38–10.17)
0.011
HbA1c and variables with a p value < 0.05 in univariate analysis were included in multivariate analysis. Of 350 included patients, 44 have been previously reported [1]
BMI body mass index, SAPS simplified acute physiology score, IMV invasive mechanical ventilation, HbA1c glycated hemoglobin, DM diabetes mellitus, OR odds ratio, CI confidence interval, Ref reference category
In this follow-up analysis, including 306 additional cases, we were able to confirm our previous findings [1] of an extremely high incidence of elevated HbA1c in critically ill COVID-19 patients. While other pre-admission comorbidities (e.g., arterial hypertension) were more common than DM, chronic dysglycemia as defined by an HbA1c ≥ 5.7% was the predominant factor in our cohort of critically ill COVID-19 patients. We still did not find a strong association between elevated HbA1c and ICU/hospital mortality, but in the subgroup of patients requiring mechanical ventilation, mortality was significantly increased in patients with HbA1c ≥ 6.5%. This is in line with other cohorts of COVID-19 patients, showing that admission blood glucose may be a more relevant predictor for mortality than HbA1c [3]. Admission blood glucose may be interpreted as a biomarker of systemic inflammation on admission, whereas HbA1c represents a marker of glucose control of the past three months [4, 5]. Unfortunately, blood glucose measurements during ICU admission were not recorded in our registry. Furthermore, follow-up of reported patients would be necessary to confirm diagnosis of previously unrecognized diabetes mellitus by admission HbA1c. We also have to acknowledge a potential selection bias for patients in whom HbA1c was measured. BMI has recently been reported as an important risk factor for severe COVID-19 [3]. Though we could establish a weak correlation between BMI and HbA1c, we want to emphasize that prediabetes/and diabetes may exist independently and thus remain an independent risk factor for ICU admission in COVID-19. A possible explanation may be a pathological inflammatory response in diabetic patients [6]. When exposed to an additional inflammatory stimulus, such as mechanical ventilation on top of COVID-19, outcome may be impaired. This finding warrants further research in terms of risk stratification at ICU admission.

Acknowledgements

Collaborators and their Institutions: Bellmann Romuald, Andreas Peer, Ditlbacher Adelheid, Haßlacher Julia, Lehner Georg F. and Perschinka Fabian: Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck (Austria). Hasibeder Walter: Department of Anesthesiology and Critical Care Medicine, Hospital St. Vinzenz Zams (Austria). Krismer Christoph: Department of Internal Medicine, Hospital St. Vinzenz Zams (Austria). Pechlaner Agnes: Department of Internal Medicine, Hospital St. Vinzenz Zams (Austria). Eschertzhuber Stephan: Department of Anesthesia and Intensive Care Medicine, Hospital Hall (Austria). Zagitzer-Hofer Stefanie: Department of Anesthesia and Intensive Care Medicine, Hospital Hall (Austria). Foidl Eva: Department of Anesthesia and Intensive Care Medicine, Hospital Kufstein (Austria). Weilguni Isabella: Department of Anesthesia and Intensive Care Medicine, Hospital Kufstein (Austria). Haslauer-Mariacher Stefanie: Department of Anesthesia and Intensive Care Medicine, Hospital Kufstein (Austria). Kalenka Armin: Department of Anesthesia and Intensive Care Medicine, Hospital Kufstein (Austria). Ribitsch Alexandra: Department of Internal Medicine, Hospital Lienz (Austria). Mayr Andreas: Department of Anesthesia and Intensive Care Medicine, Hospital Lienz (Austria). Ladner Eugen: Department of Anesthesia and Intensive Care Medicine, Hospital Reutte (Austria), Heiner Tatjana: Department of Anesthesia and Intensive Care Medicine, Hospital Reutte (Austria). Mayr-Hueber Bernhard: Department of Anesthesia and Critical Care Medicine, Hospital Schwaz (Austria). Stögermüller Birgit: Department of Anesthesia and Critical Care Medicine, Hospital Schwaz (Austria). Kirchmair Lukas: Department of Anesthesia and Critical Care Medicine, Hospital Schwaz, (Austria). Reitter Bruno: Department of Anesthesia and Intensive Care Medicine, Hospital St. Johann in Tyrol (Austria). Potocnik Miriam: Department of Anesthesia and Intensive Care Medicine, Hospital St. Johann in Tyrol (Austria). Mathis Simon: Department of Anesthesia and Critical Care Medicine, Medical University Innsbruck (Austria). Fiala Anna: Department of Anesthesia and Critical Care Medicine, Medical University Innsbruck (Austria). Brunner Jürgen: Department of Pediatrics, Medical University Innsbruck, (Austria). Claudius Thomé: Department of Neurosurgery, Medical University Innsbruck (Austria).

Declarations

This study was approved by the ethics committee of the Medical University Innsbruck (# 1099/2020). Informed consent or post hoc informed consent was obtained.
Not applicable—manuscript contains no individual patient data.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Klein SJ, Fries D, Kaser S, Mathis S, Thome C, Joannidis M. Unrecognized diabetes in critically ill COVID-19 patients. Crit Care. 2020;24(1):406.CrossRef Klein SJ, Fries D, Kaser S, Mathis S, Thome C, Joannidis M. Unrecognized diabetes in critically ill COVID-19 patients. Crit Care. 2020;24(1):406.CrossRef
2.
Zurück zum Zitat Klein SJ, Bellmann R, Dejaco H, Eschertzhuber S, Fries D, Furtwangler W, Gasteiger L, Hasibeder W, Helbok R, Hochhold C, et al. Structured ICU resource management in a pandemic is associated with favorable outcome in critically ill COVID19 patients. Wien Klin Wochenschr. 2020;132(21–22):653–63.CrossRef Klein SJ, Bellmann R, Dejaco H, Eschertzhuber S, Fries D, Furtwangler W, Gasteiger L, Hasibeder W, Helbok R, Hochhold C, et al. Structured ICU resource management in a pandemic is associated with favorable outcome in critically ill COVID19 patients. Wien Klin Wochenschr. 2020;132(21–22):653–63.CrossRef
3.
Zurück zum Zitat Cariou B, Hadjadj S, Wargny M, Pichelin M, Al-Salameh A, Allix I, Amadou C, Arnault G, Baudoux F, Bauduceau B, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020;63(8):1500–15.CrossRef Cariou B, Hadjadj S, Wargny M, Pichelin M, Al-Salameh A, Allix I, Amadou C, Arnault G, Baudoux F, Bauduceau B, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020;63(8):1500–15.CrossRef
4.
Zurück zum Zitat Schlesinger S, Neuenschwander M, Lang A, Pafili K, Kuss O, Herder C, Roden M. Risk phenotypes of diabetes and association with COVID-19 severity and death: a living systematic review and meta-analysis. Diabetologia. 2021;64(7):1480–91. Schlesinger S, Neuenschwander M, Lang A, Pafili K, Kuss O, Herder C, Roden M. Risk phenotypes of diabetes and association with COVID-19 severity and death: a living systematic review and meta-analysis. Diabetologia. 2021;64(7):1480–91.
5.
Zurück zum Zitat Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87(3):978–82.CrossRef Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87(3):978–82.CrossRef
6.
Zurück zum Zitat Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020;8(9):782–92.CrossRef Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020;8(9):782–92.CrossRef
Metadaten
Titel
Elevated HbA1c remains a predominant finding in severe COVID-19 and may be associated with increased mortality in patients requiring mechanical ventilation
verfasst von
Sebastian J. Klein
Timo Mayerhöfer
Dietmar Fries
Christian Preuß Hernández
Michael Joannidis
Collaborators
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Critical Care / Ausgabe 1/2021
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-021-03730-2

Weitere Artikel der Ausgabe 1/2021

Critical Care 1/2021 Zur Ausgabe

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.