Skip to main content
Erschienen in: Sports Medicine 4/2005

01.04.2005 | Review Article

The Science of Cycling

Factors Affecting Performance — Part 2

verfasst von: Erik W. Faria, Daryl L. Parker, Dr Irvin E. Faria

Erschienen in: Sports Medicine | Ausgabe 4/2005

Einloggen, um Zugang zu erhalten

Abstract

This review presents information that is useful to athletes, coaches and exercise scientists in the adoption of exercise protocols, prescription of training regimens and creation of research designs. Part 2 focuses on the factors that affect cycling performance. Among those factors, aerodynamic resistance is the major resistance force the racing cyclist must overcome. This challenge can be dealt with through equipment technological modifications and body position configuration adjustments. To successfully achieve efficient transfer of power from the body to the drive train of the bicycle the major concern is bicycle configuration and cycling body position. Peak power output appears to be highly correlated with cycling success. Likewise, gear ratio and pedalling cadence directly influence cycling economy/efficiency. Knowledge of muscle recruitment throughout the crank cycle has important implications for training and body position adjustments while climbing. A review of pacing models suggests that while there appears to be some evidence in favour of one technique over another, there remains the need for further field research to validate the findings. Nevertheless, performance modelling has important implications for the establishment of performance standards and consequent recommendations for training.
Literatur
1.
Zurück zum Zitat Kyle CR. The effect of crosswinds upon time trials. Cycling Sci 1991; 3 (3–4): 51–6 Kyle CR. The effect of crosswinds upon time trials. Cycling Sci 1991; 3 (3–4): 51–6
2.
Zurück zum Zitat Gross AC, Kyle CR, Malewicki DJ. The aerodynamics of human-powered land vehicles. Sci Am 1983; 249: 142–52CrossRef Gross AC, Kyle CR, Malewicki DJ. The aerodynamics of human-powered land vehicles. Sci Am 1983; 249: 142–52CrossRef
3.
Zurück zum Zitat Padilla S, Mujika I, Angulo F. Scientific approach to the 1-hr cycling world record: case study. J Appl Physiol 2000; 89: 1522–7PubMed Padilla S, Mujika I, Angulo F. Scientific approach to the 1-hr cycling world record: case study. J Appl Physiol 2000; 89: 1522–7PubMed
4.
Zurück zum Zitat Faria IE. Energy expenditure, aerodynamics and medical problems in cycling: an update. Sports Med 1992; 14: 43–63PubMedCrossRef Faria IE. Energy expenditure, aerodynamics and medical problems in cycling: an update. Sports Med 1992; 14: 43–63PubMedCrossRef
5.
Zurück zum Zitat Faria IE, Cavanagh PR. The physiology and biomechanics of cycling. New York: John Wiley and Sons, 1978 Faria IE, Cavanagh PR. The physiology and biomechanics of cycling. New York: John Wiley and Sons, 1978
6.
Zurück zum Zitat Gnehm P, Reichenbach S, Altpeter E, et al. Influence of different racing positions on metabolic costs in elite cyclists. Med Sci Sports Exerc 1997; 29: 818–23PubMedCrossRef Gnehm P, Reichenbach S, Altpeter E, et al. Influence of different racing positions on metabolic costs in elite cyclists. Med Sci Sports Exerc 1997; 29: 818–23PubMedCrossRef
7.
Zurück zum Zitat Capelli C, Rosa G, Butti F, et al. Energy cost and efficiency of riding aerodynamic bicycles. Eur J Appl Physiol 1993; 67: 144–9CrossRef Capelli C, Rosa G, Butti F, et al. Energy cost and efficiency of riding aerodynamic bicycles. Eur J Appl Physiol 1993; 67: 144–9CrossRef
8.
Zurück zum Zitat Kyle CR. The aerodynamics of helmets and handlebars. Cycling Sci 1989; 1: 22–5 Kyle CR. The aerodynamics of helmets and handlebars. Cycling Sci 1989; 1: 22–5
9.
Zurück zum Zitat Stegemann J. Exercise physiology: physiological foundation of work and sport [in German]. 4th ed. Stuttgart: Thieme Books, 1991: 59 Stegemann J. Exercise physiology: physiological foundation of work and sport [in German]. 4th ed. Stuttgart: Thieme Books, 1991: 59
10.
Zurück zum Zitat Kyle CR. Mechanical factors affecting the speed of a cycle. In: Burke ER, editor. Science of cycling. Champaign (IL): Human Kinetics, 1986: 124–8 Kyle CR. Mechanical factors affecting the speed of a cycle. In: Burke ER, editor. Science of cycling. Champaign (IL): Human Kinetics, 1986: 124–8
11.
Zurück zum Zitat Swain DP, Coast JR, Clifford PS, et al. Influence of body size on oxygen consumption during bicycling. J Appl Physiol 1987; 62: 668–72PubMed Swain DP, Coast JR, Clifford PS, et al. Influence of body size on oxygen consumption during bicycling. J Appl Physiol 1987; 62: 668–72PubMed
12.
Zurück zum Zitat De Groot G, Sargeant A, Geysel J. Air friction and rolling resistance during cycling. Med Sci Sports Exerc 1995; 27: 1090–5PubMedCrossRef De Groot G, Sargeant A, Geysel J. Air friction and rolling resistance during cycling. Med Sci Sports Exerc 1995; 27: 1090–5PubMedCrossRef
13.
Zurück zum Zitat Bassett DR, Kyle CR, Passfield L, et al. Comparing cycling world records, 1967–1996: modeling with empirical data. Med Sci Sports Exerc 1999; 31: 1665–76PubMedCrossRef Bassett DR, Kyle CR, Passfield L, et al. Comparing cycling world records, 1967–1996: modeling with empirical data. Med Sci Sports Exerc 1999; 31: 1665–76PubMedCrossRef
14.
Zurück zum Zitat Wright ME, Hale T, Keen PS, et al. The relationship between selected anthropometric data, maximal aerobic power and 40 km time-trial performance [abstract]. J Sports Sci 1994; 12: 167 Wright ME, Hale T, Keen PS, et al. The relationship between selected anthropometric data, maximal aerobic power and 40 km time-trial performance [abstract]. J Sports Sci 1994; 12: 167
15.
Zurück zum Zitat Swain DP. The influence of body mass in endurance cycling. Med Sci Sports Exerc 1994; 26: 58–63PubMed Swain DP. The influence of body mass in endurance cycling. Med Sci Sports Exerc 1994; 26: 58–63PubMed
16.
Zurück zum Zitat Lucía A, Hoyos J, Chicharro JL, et al. Preferred pedaling cadence in professional cycling. Med Sci Sports Exerc 2000; 33: 1361–6 Lucía A, Hoyos J, Chicharro JL, et al. Preferred pedaling cadence in professional cycling. Med Sci Sports Exerc 2000; 33: 1361–6
17.
Zurück zum Zitat Hausswirth C, Lehenaff D, Dreano P, et al. Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon. Med Sci Sports Exerc 1999; 31: 599–604PubMedCrossRef Hausswirth C, Lehenaff D, Dreano P, et al. Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon. Med Sci Sports Exerc 1999; 31: 599–604PubMedCrossRef
18.
Zurück zum Zitat Hausswirth C, Vallier JM, Lehenaff D, et al. Effect of two drafting modalities in cycling on running performance. Med Sci Sports Exerc 2001; 33: 485–92PubMedCrossRef Hausswirth C, Vallier JM, Lehenaff D, et al. Effect of two drafting modalities in cycling on running performance. Med Sci Sports Exerc 2001; 33: 485–92PubMedCrossRef
19.
Zurück zum Zitat McCole SD, Claney K, Conte JC. Energy expenditure during bicycling. J Appl Physiol 1990; 68: 748–52PubMed McCole SD, Claney K, Conte JC. Energy expenditure during bicycling. J Appl Physiol 1990; 68: 748–52PubMed
20.
Zurück zum Zitat Di Prampero PE, Capelli G, Mognoni P, et al. Equation of motion of a cyclist. J Appl Physiol 1979; 47: 201–6PubMed Di Prampero PE, Capelli G, Mognoni P, et al. Equation of motion of a cyclist. J Appl Physiol 1979; 47: 201–6PubMed
21.
Zurück zum Zitat Kyle CR. The mechanics and aerodynamics of cycling. In: Burk ER, Newsom M, editors. Medical and scientific aspects of cycling. Champaign (IL): Human Kinetics, 1988: 235–55 Kyle CR. The mechanics and aerodynamics of cycling. In: Burk ER, Newsom M, editors. Medical and scientific aspects of cycling. Champaign (IL): Human Kinetics, 1988: 235–55
22.
Zurück zum Zitat Rowland RD, Rice RS. Bicycle dynamics, rider guidance modelling and disturbance response. New York: Calspan Corporation, 1973 Apr. Technical report #ZS-5157-K-1 Rowland RD, Rice RS. Bicycle dynamics, rider guidance modelling and disturbance response. New York: Calspan Corporation, 1973 Apr. Technical report #ZS-5157-K-1
23.
Zurück zum Zitat Kyle CR, Caiozzo VJ, Palombo C. Predicting human powered vehicle performance using ergometry and aerodynamic drag measurements. Proceedings of the Human Powered Vehicle Symposium; 1993; Technical University Eindhoven, The Netherlands. Gemert: Pandelaar Press, 1993: 5–21 Kyle CR, Caiozzo VJ, Palombo C. Predicting human powered vehicle performance using ergometry and aerodynamic drag measurements. Proceedings of the Human Powered Vehicle Symposium; 1993; Technical University Eindhoven, The Netherlands. Gemert: Pandelaar Press, 1993: 5–21
24.
Zurück zum Zitat Candau R, Frederic G, Ménard M, et al. Simplified deceleration method for assessment of resistive forces in cycling. Med Sci Sports Exerc 1999; 31: 1441–7PubMedCrossRef Candau R, Frederic G, Ménard M, et al. Simplified deceleration method for assessment of resistive forces in cycling. Med Sci Sports Exerc 1999; 31: 1441–7PubMedCrossRef
25.
Zurück zum Zitat Grappe F, Candau R, Belli A, et al. Aerodynamic drag in field cycling with special reference to the Obree’s position. Ergonomics 1997; 40: 1299–322CrossRef Grappe F, Candau R, Belli A, et al. Aerodynamic drag in field cycling with special reference to the Obree’s position. Ergonomics 1997; 40: 1299–322CrossRef
26.
Zurück zum Zitat Gonzales H, Hull ML. Multivariable optimization of cycling biomechanics. J Biomechan 1989; 22: 1152–61 Gonzales H, Hull ML. Multivariable optimization of cycling biomechanics. J Biomechan 1989; 22: 1152–61
27.
Zurück zum Zitat Hull ML, Gonzales HK. Bivariate optimization of pedaling rate and crank arm length in cycling. J Biomechan 1988; 21: 839–49CrossRef Hull ML, Gonzales HK. Bivariate optimization of pedaling rate and crank arm length in cycling. J Biomechan 1988; 21: 839–49CrossRef
28.
Zurück zum Zitat Inbar O, Dotan R, Trousil T, et al. The effect of bicycle crank-length variation upon power performance. Ergonomics 1983; 26: 1139–46PubMedCrossRef Inbar O, Dotan R, Trousil T, et al. The effect of bicycle crank-length variation upon power performance. Ergonomics 1983; 26: 1139–46PubMedCrossRef
29.
Zurück zum Zitat Ericson MO, Nisell R, Arborelius UP, et al. Muscular activity during ergometer cycling. Scand J Rehab Med 1985; 17: 53–61 Ericson MO, Nisell R, Arborelius UP, et al. Muscular activity during ergometer cycling. Scand J Rehab Med 1985; 17: 53–61
30.
Zurück zum Zitat Ericson MO, Bratt A, Nesell R, et al. Load moments about the hip and knee joints during ergometer cycling. Scand J Rehab Med 1986; 18: 165–72 Ericson MO, Bratt A, Nesell R, et al. Load moments about the hip and knee joints during ergometer cycling. Scand J Rehab Med 1986; 18: 165–72
31.
Zurück zum Zitat Boning D, Gonen Y, Maassen N. Relationship between work load, pedal frequency, and physical fitness. Int J Sports Med 1984; 5: 92–7PubMedCrossRef Boning D, Gonen Y, Maassen N. Relationship between work load, pedal frequency, and physical fitness. Int J Sports Med 1984; 5: 92–7PubMedCrossRef
32.
Zurück zum Zitat Hagberg J, Mullin JP, Giese MD, et al. Effect of pedaling rate on submaximal exercise responses of competitive cyclists. J Appl Physiol 1981; 51: 447–51PubMed Hagberg J, Mullin JP, Giese MD, et al. Effect of pedaling rate on submaximal exercise responses of competitive cyclists. J Appl Physiol 1981; 51: 447–51PubMed
33.
Zurück zum Zitat Hamley EJ, Thomas V. Physiological and postural factors in the calibration of the bicycle ergometer. J Appl Physiol 1967; 191: P55–7 Hamley EJ, Thomas V. Physiological and postural factors in the calibration of the bicycle ergometer. J Appl Physiol 1967; 191: P55–7
34.
Zurück zum Zitat Nordeen-Snyder KS. The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Med Sci Sports Exerc 1977; 9: 113–7 Nordeen-Snyder KS. The effect of bicycle seat height variation upon oxygen consumption and lower limb kinematics. Med Sci Sports Exerc 1977; 9: 113–7
35.
Zurück zum Zitat Shennum PL, Devries HA. The effect of saddle height on oxygen consumption during ergometer work. Med Sci Sports 1976; 8: 119–21PubMed Shennum PL, Devries HA. The effect of saddle height on oxygen consumption during ergometer work. Med Sci Sports 1976; 8: 119–21PubMed
36.
Zurück zum Zitat Browning RC, Gregor RJ, Broker JP. Lower extremity kinetics in elite athletes in aerodynamic cycling positions [abstract]. Med Sci Sports Exerc 1992; 24: S186 Browning RC, Gregor RJ, Broker JP. Lower extremity kinetics in elite athletes in aerodynamic cycling positions [abstract]. Med Sci Sports Exerc 1992; 24: S186
37.
Zurück zum Zitat Too D. The effect of body configuration on cycling performance. In: Kreighbaum E, McNeill A, editors. Proceedings of the 6th ISBS Symposium; 1988 Dec; Bozeman (MT). Bozeman (MT): International Society of Biomechanics in Sports, 1988: 51–8 Too D. The effect of body configuration on cycling performance. In: Kreighbaum E, McNeill A, editors. Proceedings of the 6th ISBS Symposium; 1988 Dec; Bozeman (MT). Bozeman (MT): International Society of Biomechanics in Sports, 1988: 51–8
38.
Zurück zum Zitat Too D. The effect of hip position/configuration on anaerobic power and capacity in cycling. Int J Sports Biomech 1991; 7: 359–70 Too D. The effect of hip position/configuration on anaerobic power and capacity in cycling. Int J Sports Biomech 1991; 7: 359–70
39.
Zurück zum Zitat Heil D, Wilcox A, Quinn C. Cardiorespiratory responses to seat tube variation during steady state cycling. Med Sci Sports Exerc 1995; 27: 730–5PubMed Heil D, Wilcox A, Quinn C. Cardiorespiratory responses to seat tube variation during steady state cycling. Med Sci Sports Exerc 1995; 27: 730–5PubMed
40.
Zurück zum Zitat Garside I, Doran D. Effects of bicycle frame ergonomics on triathlon 10-K running performance. J Sports Sci 2000; 18: 825–33PubMedCrossRef Garside I, Doran D. Effects of bicycle frame ergonomics on triathlon 10-K running performance. J Sports Sci 2000; 18: 825–33PubMedCrossRef
41.
Zurück zum Zitat Raasch CC, Zajac FE, Ma B, et al. Muscle coordination of maximum-speed pedaling. J Appl Biomech 1997; 30: 595–602CrossRef Raasch CC, Zajac FE, Ma B, et al. Muscle coordination of maximum-speed pedaling. J Appl Biomech 1997; 30: 595–602CrossRef
42.
Zurück zum Zitat Jeukendrup AE, Martin J. Improving cycling performance: how should we spend our time and money. Sports Med 2001; 31: 559–69PubMedCrossRef Jeukendrup AE, Martin J. Improving cycling performance: how should we spend our time and money. Sports Med 2001; 31: 559–69PubMedCrossRef
43.
Zurück zum Zitat MacRae HS-H, Hise KJ, Allen PJ. Effects of front and dual suspension mountain bike systems on uphill cycling performance. Med Sci Sports Exerc 2000; 32: 1276–80CrossRef MacRae HS-H, Hise KJ, Allen PJ. Effects of front and dual suspension mountain bike systems on uphill cycling performance. Med Sci Sports Exerc 2000; 32: 1276–80CrossRef
44.
Zurück zum Zitat Hue O, Galy O, Hertogh C, et al. Enhancing cycling performance using an eccentric chainring. Med Sci Sports Exerc 2001; 33: 1006–10PubMedCrossRef Hue O, Galy O, Hertogh C, et al. Enhancing cycling performance using an eccentric chainring. Med Sci Sports Exerc 2001; 33: 1006–10PubMedCrossRef
45.
Zurück zum Zitat Jones SM, Passfield L. The dynamic calibration of bicycle power measuring cranks. In: Haake SJ, editor. The engineering of sports. Oxford: Blackwell Science, 1998: 265–74 Jones SM, Passfield L. The dynamic calibration of bicycle power measuring cranks. In: Haake SJ, editor. The engineering of sports. Oxford: Blackwell Science, 1998: 265–74
46.
Zurück zum Zitat Atkinson G, Davison R, Jeukendrup A, et al. Science and cycling: current knowledge and future directions for research. J Sports Sci 2003; 21: 767–87PubMedCrossRef Atkinson G, Davison R, Jeukendrup A, et al. Science and cycling: current knowledge and future directions for research. J Sports Sci 2003; 21: 767–87PubMedCrossRef
47.
Zurück zum Zitat Baron R, Bachl N, Petschnig R, et al. Measurement of maximal power output in isokinetic and non-isokinetic cycling: a comparison of two methods. Int J Sports Med 1999; 20: 532–7PubMedCrossRef Baron R, Bachl N, Petschnig R, et al. Measurement of maximal power output in isokinetic and non-isokinetic cycling: a comparison of two methods. Int J Sports Med 1999; 20: 532–7PubMedCrossRef
48.
Zurück zum Zitat Jones NL, McCartney N. Influence of muscle power on aerobic performance and the effects of training. Acta Med Scand Suppl 1986; 711: 115–22PubMed Jones NL, McCartney N. Influence of muscle power on aerobic performance and the effects of training. Acta Med Scand Suppl 1986; 711: 115–22PubMed
49.
Zurück zum Zitat Marsh AP, Martin PE. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Med Sci Sports Exerc 1997; 29: 1225–32PubMedCrossRef Marsh AP, Martin PE. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Med Sci Sports Exerc 1997; 29: 1225–32PubMedCrossRef
50.
Zurück zum Zitat McCartney N, Heigenhauser GJF, Jones NL. Power output and fatigue of human muscle in maximal cycling exercise. J Appl Physiol Resp Environ Exerc Physiol 1983; 55: 218–24 McCartney N, Heigenhauser GJF, Jones NL. Power output and fatigue of human muscle in maximal cycling exercise. J Appl Physiol Resp Environ Exerc Physiol 1983; 55: 218–24
51.
Zurück zum Zitat Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 1981; 51: 1175–82PubMed Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 1981; 51: 1175–82PubMed
52.
Zurück zum Zitat Baron R. Aerobid and anaerobic power characteristics of off-road cyclists. Med Sci Sports Exerc 2001; 33: 1387–93PubMedCrossRef Baron R. Aerobid and anaerobic power characteristics of off-road cyclists. Med Sci Sports Exerc 2001; 33: 1387–93PubMedCrossRef
53.
Zurück zum Zitat Palmer GS, Noakes TD, Hawley JA. Metabolic and performance responses to constant-load vs variable-intensity exercise in trained cyclists. J Appl Physiol 1999; 87: 1186–96PubMed Palmer GS, Noakes TD, Hawley JA. Metabolic and performance responses to constant-load vs variable-intensity exercise in trained cyclists. J Appl Physiol 1999; 87: 1186–96PubMed
54.
Zurück zum Zitat Wilber RL, Zawadzki KM, Kerney JT, et al. Physiological profiles of elite off-road and road cyclists. Med Sci Sports Exerc 1997; 29: 1090–4PubMedCrossRef Wilber RL, Zawadzki KM, Kerney JT, et al. Physiological profiles of elite off-road and road cyclists. Med Sci Sports Exerc 1997; 29: 1090–4PubMedCrossRef
55.
Zurück zum Zitat Tanaka H, Bassett Jr DR, Swensen TC, et al. Aerobic and anaerobic power characteristics of competitive cyclists in the United States Federation. Int J Sports Med 1993; 14: 334–8PubMedCrossRef Tanaka H, Bassett Jr DR, Swensen TC, et al. Aerobic and anaerobic power characteristics of competitive cyclists in the United States Federation. Int J Sports Med 1993; 14: 334–8PubMedCrossRef
56.
Zurück zum Zitat Takaishi T, Yasuda Y, Moritani T. Neuromuscular fatigue during prolonged pedaling rates. Eur J Appl Physiol 1994; 69: 154–8CrossRef Takaishi T, Yasuda Y, Moritani T. Neuromuscular fatigue during prolonged pedaling rates. Eur J Appl Physiol 1994; 69: 154–8CrossRef
57.
Zurück zum Zitat Takaishi T, Yasuda Y, Ono T, et al. Optimal pedaling rate estimated from neuromuscular fatigue for cyclists. Med Sci Sports Exerc 1996; 28: 1492–7PubMedCrossRef Takaishi T, Yasuda Y, Ono T, et al. Optimal pedaling rate estimated from neuromuscular fatigue for cyclists. Med Sci Sports Exerc 1996; 28: 1492–7PubMedCrossRef
58.
Zurück zum Zitat Ahlquist LE, Basset DR, Sufit R, et al. The effects of pedaling frequency on glycogen depletion rates in type I and II quadriceps muscle fibers during submaximal cycling exercise. Eur J Appl Physiol 1992; 65: 360–4CrossRef Ahlquist LE, Basset DR, Sufit R, et al. The effects of pedaling frequency on glycogen depletion rates in type I and II quadriceps muscle fibers during submaximal cycling exercise. Eur J Appl Physiol 1992; 65: 360–4CrossRef
59.
Zurück zum Zitat Faria EW, Parker DL, Faria IE. The science of cycling: physiology and training – part 1. Sports Med 2005; 35 (4): 285–312PubMedCrossRef Faria EW, Parker DL, Faria IE. The science of cycling: physiology and training – part 1. Sports Med 2005; 35 (4): 285–312PubMedCrossRef
60.
Zurück zum Zitat Coyle EF, Feltner ME, Kautz SA. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991; 23: 93–107PubMed Coyle EF, Feltner ME, Kautz SA. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 1991; 23: 93–107PubMed
61.
Zurück zum Zitat Sidossis LS, Horowitz JF. Load and velocity of contraction influence gross and delta mechanical efficiency. Int J Sports Med 1992; 13: 407–11PubMedCrossRef Sidossis LS, Horowitz JF. Load and velocity of contraction influence gross and delta mechanical efficiency. Int J Sports Med 1992; 13: 407–11PubMedCrossRef
62.
Zurück zum Zitat Lepers R, Hausswirth C, Maffiuletti NA, et al. Evidence of neuromuscular fatigue following prolonged cycling exercise. Med Sci Sports Exerc 2000; 32: 1880–6PubMedCrossRef Lepers R, Hausswirth C, Maffiuletti NA, et al. Evidence of neuromuscular fatigue following prolonged cycling exercise. Med Sci Sports Exerc 2000; 32: 1880–6PubMedCrossRef
63.
Zurück zum Zitat Lepers R, Maffiuletti NA, Millet GY. Effects of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc 2001; 33: 1882–8PubMedCrossRef Lepers R, Maffiuletti NA, Millet GY. Effects of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc 2001; 33: 1882–8PubMedCrossRef
64.
Zurück zum Zitat Lucía A, San Juan AF, Montilla M, et al. In professional road cyclists, low pedalling cadences are less efficient. Med Sci Sports Exerc 2004; 36: 1048–54PubMedCrossRef Lucía A, San Juan AF, Montilla M, et al. In professional road cyclists, low pedalling cadences are less efficient. Med Sci Sports Exerc 2004; 36: 1048–54PubMedCrossRef
65.
Zurück zum Zitat Barclay CJ. Efficiency of fast- and slow-twitch muscles of the mouse performing cyclic contractions. J Exp Biol 1994; 193: 65–78PubMed Barclay CJ. Efficiency of fast- and slow-twitch muscles of the mouse performing cyclic contractions. J Exp Biol 1994; 193: 65–78PubMed
66.
Zurück zum Zitat Barclay CJ. Mechanical efficiency and fatigue of fast and slow muscles in the mouse. J Physiol (Lond) 1996; 497: 781–94 Barclay CJ. Mechanical efficiency and fatigue of fast and slow muscles in the mouse. J Physiol (Lond) 1996; 497: 781–94
67.
Zurück zum Zitat Garnevale TG, Gaesser GA. Effects of pedaling speed on power-duration relationship for high-intensity exercise. Med Sci Sports Exerc 1991; 23: 242–6 Garnevale TG, Gaesser GA. Effects of pedaling speed on power-duration relationship for high-intensity exercise. Med Sci Sports Exerc 1991; 23: 242–6
68.
Zurück zum Zitat Gueli D, Shephard RJ. Pedal frequency in bicycle ergometry. Can J Appl Sport Sci 1976; 1: 137–41 Gueli D, Shephard RJ. Pedal frequency in bicycle ergometry. Can J Appl Sport Sci 1976; 1: 137–41
69.
Zurück zum Zitat Hull ML, Gonzalez HK, Redfield R. Optimization of pedaling rate in cycling using a muscle stress-based objective function. Int J Sports Biomech 1988; 4: 1–20 Hull ML, Gonzalez HK, Redfield R. Optimization of pedaling rate in cycling using a muscle stress-based objective function. Int J Sports Biomech 1988; 4: 1–20
70.
Zurück zum Zitat Marsh AP, Martin PE. The association between cycling experience and preferred and most economical cadences. Med Sci Sports Exerc 1993; 25: 1269–74PubMed Marsh AP, Martin PE. The association between cycling experience and preferred and most economical cadences. Med Sci Sports Exerc 1993; 25: 1269–74PubMed
71.
Zurück zum Zitat Gaesser GA, Brooks GA. Muscle efficiency during steady-rate exercise effects of speed work. J Appl Physiol 1975; 38: 1132–9PubMed Gaesser GA, Brooks GA. Muscle efficiency during steady-rate exercise effects of speed work. J Appl Physiol 1975; 38: 1132–9PubMed
72.
Zurück zum Zitat Faria IE, Sjogaard G, Bonde-Peterson F. Oxygen cost during different pedaling speeds for constant power outputs. J Sports Med Phys Fitness 1982; 22: 295–9PubMed Faria IE, Sjogaard G, Bonde-Peterson F. Oxygen cost during different pedaling speeds for constant power outputs. J Sports Med Phys Fitness 1982; 22: 295–9PubMed
73.
Zurück zum Zitat Takaishi T, Yamamoto T, Ono T, et al. Neuromuscular, metabolic and kinetic adaptations for skilled pedaling performance in cyclists. Med Sci Sports Exerc 1998; 30: 442–9PubMedCrossRef Takaishi T, Yamamoto T, Ono T, et al. Neuromuscular, metabolic and kinetic adaptations for skilled pedaling performance in cyclists. Med Sci Sports Exerc 1998; 30: 442–9PubMedCrossRef
74.
Zurück zum Zitat Chavarren J, Calbet JA. Cycling efficiency and pedaling frequency in road cyclists. Eur J Appl Physiol Occup Physiol 1999; 80: 555–63PubMedCrossRef Chavarren J, Calbet JA. Cycling efficiency and pedaling frequency in road cyclists. Eur J Appl Physiol Occup Physiol 1999; 80: 555–63PubMedCrossRef
75.
Zurück zum Zitat Patterson RP, Moreno MI. Bicycle pedaling forces as a function of pedaling rate and power output. Med Sci Sports Exerc 1990; 22: 512–26PubMed Patterson RP, Moreno MI. Bicycle pedaling forces as a function of pedaling rate and power output. Med Sci Sports Exerc 1990; 22: 512–26PubMed
76.
Zurück zum Zitat Coast RJ, Welch HG. Linear increase in optimal pedal rate with increased power output in cycling ergometry. Eur J Appl Physiol 1985; 53: 339–42CrossRef Coast RJ, Welch HG. Linear increase in optimal pedal rate with increased power output in cycling ergometry. Eur J Appl Physiol 1985; 53: 339–42CrossRef
77.
Zurück zum Zitat Lollgen H, Graham T, Sjogaard G. Muscle metabolites, force, and perceived exertion bicycling at various pedal rates. Med Sci Sports Exerc 1980; 12: 345–51PubMed Lollgen H, Graham T, Sjogaard G. Muscle metabolites, force, and perceived exertion bicycling at various pedal rates. Med Sci Sports Exerc 1980; 12: 345–51PubMed
78.
Zurück zum Zitat Coast RJ, Cox RH, Welch HG. Optimal pedaling rate in prolonged bouts of cycle ergometry. Med Sci Sports Exerc 1986; 18: 225–30PubMed Coast RJ, Cox RH, Welch HG. Optimal pedaling rate in prolonged bouts of cycle ergometry. Med Sci Sports Exerc 1986; 18: 225–30PubMed
79.
Zurück zum Zitat Croissant PT, Boileau RA. Effect of pedal rate, brake load and power on metabolic responses to bicycle ergometer work. Ergonomics 1984; 27: 691–700CrossRef Croissant PT, Boileau RA. Effect of pedal rate, brake load and power on metabolic responses to bicycle ergometer work. Ergonomics 1984; 27: 691–700CrossRef
80.
Zurück zum Zitat Widrick JJ, Freedson PS, Hamill J. Effect of internal work on the calculation of optimal pedaling rates. Med Sci Sports Exerc 1992; 24: 376–82PubMed Widrick JJ, Freedson PS, Hamill J. Effect of internal work on the calculation of optimal pedaling rates. Med Sci Sports Exerc 1992; 24: 376–82PubMed
81.
Zurück zum Zitat Bisswalter J, Hausswirth C, Smith D, et al. Energetically optimal cadence versus freely-chosen cadence during cycling: effect of exercise duration. Int J Sports Med 2000; 20: 1–5 Bisswalter J, Hausswirth C, Smith D, et al. Energetically optimal cadence versus freely-chosen cadence during cycling: effect of exercise duration. Int J Sports Med 2000; 20: 1–5
82.
Zurück zum Zitat Gotshall RW, Bauer TA, Fahrner SL. Cycling cadence alters exercise hemodynamics. Int J Sports Med 1996; 17: 17–21PubMedCrossRef Gotshall RW, Bauer TA, Fahrner SL. Cycling cadence alters exercise hemodynamics. Int J Sports Med 1996; 17: 17–21PubMedCrossRef
83.
84.
Zurück zum Zitat Pandolf KB, Noble BJ. The effect of pedaling speed and resistance changes on perceived exertion for equivalent power outputs on the bicycle ergometer. Med Sci Sports Exerc 1973; 5: 132–16 Pandolf KB, Noble BJ. The effect of pedaling speed and resistance changes on perceived exertion for equivalent power outputs on the bicycle ergometer. Med Sci Sports Exerc 1973; 5: 132–16
85.
Zurück zum Zitat Marsh AP, Martin PE, Foley KO. Effect of cadence cycling experience and aerobic power on delta efficiency during cycling. Med Sci Sports Exerc 2000; 32: 1630–4PubMed Marsh AP, Martin PE, Foley KO. Effect of cadence cycling experience and aerobic power on delta efficiency during cycling. Med Sci Sports Exerc 2000; 32: 1630–4PubMed
86.
Zurück zum Zitat Sjogaard G. Force-velocity curve for bicycle work. In: Asmussen E, Jorgensen K, editors. Biomechanics VI-A. Baltimore (MD): University Park Press, 1978: 93–9 Sjogaard G. Force-velocity curve for bicycle work. In: Asmussen E, Jorgensen K, editors. Biomechanics VI-A. Baltimore (MD): University Park Press, 1978: 93–9
87.
Zurück zum Zitat Hagan RD, Weis SE, Raven PB. Effect of pedal rate on cardiovascular responses during continuous exercise. Med Sci Sports Exerc 1992; 24: 1088–95PubMed Hagan RD, Weis SE, Raven PB. Effect of pedal rate on cardiovascular responses during continuous exercise. Med Sci Sports Exerc 1992; 24: 1088–95PubMed
88.
Zurück zum Zitat Coyle EF, Sidossis LS, Horowittz JF, et al. Cycling efficiency is related to the percentage of Type I muscle fibers. Med Sci Sports Exerc 1992; 24: 782–8PubMed Coyle EF, Sidossis LS, Horowittz JF, et al. Cycling efficiency is related to the percentage of Type I muscle fibers. Med Sci Sports Exerc 1992; 24: 782–8PubMed
89.
Zurück zum Zitat Lucía A, Hoyos J, Perez M, et al. Inverse relationship between V̇O2max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc 2002; 34: 2079–84PubMedCrossRef Lucía A, Hoyos J, Perez M, et al. Inverse relationship between V̇O2max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc 2002; 34: 2079–84PubMedCrossRef
90.
Zurück zum Zitat Lucía A, Pardo J, Durantez A, et al. Physiological differences between professional and elite road cyclists. Int J Sports Med 1998; 19: 342–8PubMedCrossRef Lucía A, Pardo J, Durantez A, et al. Physiological differences between professional and elite road cyclists. Int J Sports Med 1998; 19: 342–8PubMedCrossRef
91.
Zurück zum Zitat Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 1980; 12: 357–60PubMed Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 1980; 12: 357–60PubMed
92.
Zurück zum Zitat Costill DL, Thompson H, Roberts EL. Fractional utilization of aerobic capacity during distance running. Med Sci Sports Exerc 1973; 5: 248–53 Costill DL, Thompson H, Roberts EL. Fractional utilization of aerobic capacity during distance running. Med Sci Sports Exerc 1973; 5: 248–53
93.
Zurück zum Zitat Brouwer E. On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange (oxygen and carbonic acid output) and urine-N. Acta Physiol Pharmacol Neerl 1957; 6: 795–802PubMed Brouwer E. On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange (oxygen and carbonic acid output) and urine-N. Acta Physiol Pharmacol Neerl 1957; 6: 795–802PubMed
94.
Zurück zum Zitat Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc 2001; 33: 621–7PubMed Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc 2001; 33: 621–7PubMed
95.
Zurück zum Zitat Lucía A, Hoyos J, Santalla A, et al. Kinetics of V̇O2 in professional cyclists. Med Sci Sports Exerc 2002; 34: 320–5PubMedCrossRef Lucía A, Hoyos J, Santalla A, et al. Kinetics of V̇O2 in professional cyclists. Med Sci Sports Exerc 2002; 34: 320–5PubMedCrossRef
96.
Zurück zum Zitat Pool DC, Henson LC. Effect of acute caloric restriction on work efficiency. Am J Clin Nutr 1998; 47: 15–8 Pool DC, Henson LC. Effect of acute caloric restriction on work efficiency. Am J Clin Nutr 1998; 47: 15–8
97.
Zurück zum Zitat Bahr R, Opstad P, Medbo J, et al. Strenuous prolonged exercise elevates resting metabolic rate and causes reduced mechanical efficiency. Aca Physiol Scand 1991; 141: 555–63CrossRef Bahr R, Opstad P, Medbo J, et al. Strenuous prolonged exercise elevates resting metabolic rate and causes reduced mechanical efficiency. Aca Physiol Scand 1991; 141: 555–63CrossRef
98.
Zurück zum Zitat Buelmann B, Schierning B, Toubro S, et al. The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obes Relat Metab Disord 2002; 25: 467–71CrossRef Buelmann B, Schierning B, Toubro S, et al. The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obes Relat Metab Disord 2002; 25: 467–71CrossRef
99.
Zurück zum Zitat Suzuki Y. Mechanical efficiency of fast and slow-twitch muscle fibers in man during cycling. J Appl Physiol 1979; 47: 263–7PubMed Suzuki Y. Mechanical efficiency of fast and slow-twitch muscle fibers in man during cycling. J Appl Physiol 1979; 47: 263–7PubMed
100.
Zurück zum Zitat Coast RJ. Optimal pedaling cadence. In: Burke ER, editor. Optimal pedaling cadence. Champain (IL): Human Kinetics, 1996: 1–117 Coast RJ. Optimal pedaling cadence. In: Burke ER, editor. Optimal pedaling cadence. Champain (IL): Human Kinetics, 1996: 1–117
101.
Zurück zum Zitat Fernández-García B, Periz-Landaluce J, Roidriguez-Alonso M, et al. Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc 2000; 32: 1002–6PubMed Fernández-García B, Periz-Landaluce J, Roidriguez-Alonso M, et al. Intensity of exercise during road race pro-cycling competition. Med Sci Sports Exerc 2000; 32: 1002–6PubMed
102.
Zurück zum Zitat Padilla S, Mujika I, Orbananos J, et al. Exercise intensity and load during mass-start stage races in professional road cycling. Med Sci Sports Exerc 2001; 33: 796–802PubMed Padilla S, Mujika I, Orbananos J, et al. Exercise intensity and load during mass-start stage races in professional road cycling. Med Sci Sports Exerc 2001; 33: 796–802PubMed
103.
Zurück zum Zitat Lucía A, Hoyos J, Carvajal A, et al. Heart rate response to professional road cycling: the Tour de France. Int J Sports Med 1999; 20: 167–72PubMedCrossRef Lucía A, Hoyos J, Carvajal A, et al. Heart rate response to professional road cycling: the Tour de France. Int J Sports Med 1999; 20: 167–72PubMedCrossRef
104.
Zurück zum Zitat Hagberg JM, Coyle EF. Physiological determinants of endurance performance as studied in competitive race walkers. Med Sci Sports Exerc 1983; 15: 287–9PubMedCrossRef Hagberg JM, Coyle EF. Physiological determinants of endurance performance as studied in competitive race walkers. Med Sci Sports Exerc 1983; 15: 287–9PubMedCrossRef
105.
Zurück zum Zitat Sjodin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol Occup Physiol 1982; 49: 45–57PubMedCrossRef Sjodin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol Occup Physiol 1982; 49: 45–57PubMedCrossRef
106.
Zurück zum Zitat Swain DP, Leutholtz BC. Heart rate reserve is equivalent to %V̇O2 Reserve, not to %V̇O2max. Med Sci Sports Exerc 1997; 29: 410–4PubMedCrossRef Swain DP, Leutholtz BC. Heart rate reserve is equivalent to %V̇O2 Reserve, not to %V̇O2max. Med Sci Sports Exerc 1997; 29: 410–4PubMedCrossRef
107.
Zurück zum Zitat Kuipers H, Verstappen FTJ, Keizer HA. Variability of aerobic performance in the Laboratory and its physiological correlates. Int J Sports Med 1985; 6: 197–201PubMedCrossRef Kuipers H, Verstappen FTJ, Keizer HA. Variability of aerobic performance in the Laboratory and its physiological correlates. Int J Sports Med 1985; 6: 197–201PubMedCrossRef
108.
Zurück zum Zitat Impellizzeri F, Sassi A, Rodriguez-Alonso M, et al. Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc 2002; 34: 1808–13PubMedCrossRef Impellizzeri F, Sassi A, Rodriguez-Alonso M, et al. Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc 2002; 34: 1808–13PubMedCrossRef
109.
Zurück zum Zitat Hagberg J, McCole S. Energy expenditure during cycling. In: Burke E, editor. High tech cycling. Champaign (IL): Human Kinetics, 1996: 167–184 Hagberg J, McCole S. Energy expenditure during cycling. In: Burke E, editor. High tech cycling. Champaign (IL): Human Kinetics, 1996: 167–184
110.
Zurück zum Zitat Millet GP, Tronche C, Fuster N, et al. Level ground and uphill cycling efficiency in seated and standing position. Med Sci Sports Exerc 2002; 34: 1645–52PubMedCrossRef Millet GP, Tronche C, Fuster N, et al. Level ground and uphill cycling efficiency in seated and standing position. Med Sci Sports Exerc 2002; 34: 1645–52PubMedCrossRef
111.
Zurück zum Zitat Caldwell GE, McCole SD, Hagberg JM. Pedal force profiles during uphill cycling. In: Herzog W, Nigg BM, editors. Proceedings of the 8th Canadian Society of Biomechanics Conference; 1994 Aug; Calgary. Calgary: Canadian Society of Biomechanics, 1994: 58–9 Caldwell GE, McCole SD, Hagberg JM. Pedal force profiles during uphill cycling. In: Herzog W, Nigg BM, editors. Proceedings of the 8th Canadian Society of Biomechanics Conference; 1994 Aug; Calgary. Calgary: Canadian Society of Biomechanics, 1994: 58–9
112.
Zurück zum Zitat Caldwell GE, Hagberg JM, McCole SD, et al. Lower extremity joint movements during uphill cycling. In: Hoffer A, editor. Proceedings of the 9th Canadian Society of Biomechanics Conference; 1996 Aug; Vancouver. Vancouver: Canadian Society of Biomechanics, 1996: 182–3 Caldwell GE, Hagberg JM, McCole SD, et al. Lower extremity joint movements during uphill cycling. In: Hoffer A, editor. Proceedings of the 9th Canadian Society of Biomechanics Conference; 1996 Aug; Vancouver. Vancouver: Canadian Society of Biomechanics, 1996: 182–3
113.
Zurück zum Zitat Li L, Caldwell GE. Muscle coordination in cycling: effect of surface inclines and posture. J Appl Physiol 1998; 85: 927–34PubMed Li L, Caldwell GE. Muscle coordination in cycling: effect of surface inclines and posture. J Appl Physiol 1998; 85: 927–34PubMed
114.
Zurück zum Zitat Gregor RJ, Broker JP, Ryan MM. The biomechanics of cycling. In: Holloszy JO, editor. Exercise and science review. Baltimore (MD): Williams and Williams, 1991: 127–9 Gregor RJ, Broker JP, Ryan MM. The biomechanics of cycling. In: Holloszy JO, editor. Exercise and science review. Baltimore (MD): Williams and Williams, 1991: 127–9
115.
Zurück zum Zitat Redfield R, Hill ML. On the relation between joint movements and pedaling rates at constant power in bicycling. J Biomech 1986; 19: 317–27PubMedCrossRef Redfield R, Hill ML. On the relation between joint movements and pedaling rates at constant power in bicycling. J Biomech 1986; 19: 317–27PubMedCrossRef
116.
Zurück zum Zitat Van Ingen Schenau GJ, Boots PJM, de Groot D, et al. The constrained control of force and position in multi-joint movements. Neuroscience 1992; 46: 197–207PubMedCrossRef Van Ingen Schenau GJ, Boots PJM, de Groot D, et al. The constrained control of force and position in multi-joint movements. Neuroscience 1992; 46: 197–207PubMedCrossRef
117.
Zurück zum Zitat Van Ingen Schenau GJ. From rotation to translation: construction on the multi-joint movements and the unique action of bi-articular muscles. Hum Move Sci 1989; 8: 301–37CrossRef Van Ingen Schenau GJ. From rotation to translation: construction on the multi-joint movements and the unique action of bi-articular muscles. Hum Move Sci 1989; 8: 301–37CrossRef
118.
Zurück zum Zitat Palmer GS, Noakes TD, Hawley JA. Effects of steady-state versus stochastic exercise on subsequent cycling performance. Med Sci Sports Exerc 1997; 29: 684–7PubMedCrossRef Palmer GS, Noakes TD, Hawley JA. Effects of steady-state versus stochastic exercise on subsequent cycling performance. Med Sci Sports Exerc 1997; 29: 684–7PubMedCrossRef
119.
Zurück zum Zitat Foster C, Snyder AC, Thompson NN, et al. Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc 1993; 25: 383–8PubMed Foster C, Snyder AC, Thompson NN, et al. Effect of pacing strategy on cycle time trial performance. Med Sci Sports Exerc 1993; 25: 383–8PubMed
120.
Zurück zum Zitat Bishop D, Bonetti D, Dawson B. The influence of pacing strategy on V̇O2 and supramaximal kayak performance. Med Sci Sports Exerc 2002; 34: 1041–7PubMedCrossRef Bishop D, Bonetti D, Dawson B. The influence of pacing strategy on V̇O2 and supramaximal kayak performance. Med Sci Sports Exerc 2002; 34: 1041–7PubMedCrossRef
121.
Zurück zum Zitat Liedl MA, Swan DP, Branch JD. Physiological effects of constant versus variable power during endurance cycling. Med Sci Sports Exerc 1999; 31: 1472–7PubMedCrossRef Liedl MA, Swan DP, Branch JD. Physiological effects of constant versus variable power during endurance cycling. Med Sci Sports Exerc 1999; 31: 1472–7PubMedCrossRef
122.
Zurück zum Zitat Faria IE, Peiffer J, Garcia B, et al. Effect of pacing with HR on cycling time trial performance [abstract]. Med Sci Sports Exerc 2003; 35: S369 Faria IE, Peiffer J, Garcia B, et al. Effect of pacing with HR on cycling time trial performance [abstract]. Med Sci Sports Exerc 2003; 35: S369
123.
Zurück zum Zitat Swain DP. Varying power to optimize cycling time trial performance on hills and in wind. Med Sci Sports Exerc 1997; 29: 1104–8PubMedCrossRef Swain DP. Varying power to optimize cycling time trial performance on hills and in wind. Med Sci Sports Exerc 1997; 29: 1104–8PubMedCrossRef
124.
Zurück zum Zitat Atkinson G, Brunskill A. Effect of pacing strategy on cycling performance in a time trial with simulated head and tail wind. Ergonomics 2000; 43: 1449–60PubMedCrossRef Atkinson G, Brunskill A. Effect of pacing strategy on cycling performance in a time trial with simulated head and tail wind. Ergonomics 2000; 43: 1449–60PubMedCrossRef
125.
Zurück zum Zitat Billat VL, Slawinski S, Danel M, et al. Effects of free versus constant pace on performance and oxygen kinetics in running. Med Sci Sports Exerc 2001; 33: 2080–8 Billat VL, Slawinski S, Danel M, et al. Effects of free versus constant pace on performance and oxygen kinetics in running. Med Sci Sports Exerc 2001; 33: 2080–8
126.
Zurück zum Zitat Wolski L, McKenzie D, Wenger H. Altitude training for improvement in sea level performance. Is the scientific evidence of benefit? Sport Med 1996; 4: 251–63CrossRef Wolski L, McKenzie D, Wenger H. Altitude training for improvement in sea level performance. Is the scientific evidence of benefit? Sport Med 1996; 4: 251–63CrossRef
127.
Zurück zum Zitat Bailey D, Davis B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med 1997; 31: 183–90PubMedCrossRef Bailey D, Davis B. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med 1997; 31: 183–90PubMedCrossRef
128.
Zurück zum Zitat Fulco C, Rock P, Cymerman A. Improving athletic performance: is altitude residence or altitude training helpful? Aviat Space Environ Med 2000; 71: 162–71PubMed Fulco C, Rock P, Cymerman A. Improving athletic performance: is altitude residence or altitude training helpful? Aviat Space Environ Med 2000; 71: 162–71PubMed
129.
Zurück zum Zitat Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol 2001; 84: 283–90PubMedCrossRef Meeuwsen T, Hendriksen IJ, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. Eur J Appl Physiol 2001; 84: 283–90PubMedCrossRef
130.
Zurück zum Zitat Hahn AG, Gore CJ. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med 2001; 31: 533–57PubMedCrossRef Hahn AG, Gore CJ. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med 2001; 31: 533–57PubMedCrossRef
131.
Zurück zum Zitat Terrados N, Melichna J, Sylven C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol 1988; 57: 203–9CrossRef Terrados N, Melichna J, Sylven C, et al. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. Eur J Appl Physiol 1988; 57: 203–9CrossRef
132.
Zurück zum Zitat Gore CJ, Hahn AG, Scroop GC, et al. Increased arterial desaturation in trained cyclists during maximal exercise at 580m altitude. J Appl Physiol 1996; 80: 2204–10PubMed Gore CJ, Hahn AG, Scroop GC, et al. Increased arterial desaturation in trained cyclists during maximal exercise at 580m altitude. J Appl Physiol 1996; 80: 2204–10PubMed
133.
Zurück zum Zitat Robergs RA, Roberts S. Exercise physiology: sports performance and clinical applications. St Louis (MO): Mosby Year-Book, 1997: 647–9 Robergs RA, Roberts S. Exercise physiology: sports performance and clinical applications. St Louis (MO): Mosby Year-Book, 1997: 647–9
134.
Zurück zum Zitat Peronnet F, Bouissou P, Perrault H, et al. The one hour cycling record at sea level and at altitude. Cycling Sci 1991; 3: 16–22 Peronnet F, Bouissou P, Perrault H, et al. The one hour cycling record at sea level and at altitude. Cycling Sci 1991; 3: 16–22
135.
Zurück zum Zitat Squires RW, Buskirk ER. Aerobic capacity during acute exposure to simulated altitude, 914 m to 2286 m. Med Sci Sports Exerc 1982; 14: 36–40PubMedCrossRef Squires RW, Buskirk ER. Aerobic capacity during acute exposure to simulated altitude, 914 m to 2286 m. Med Sci Sports Exerc 1982; 14: 36–40PubMedCrossRef
136.
Zurück zum Zitat Ferretti G, Moia C, Thomet JM, et al. The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Appl Physiol 1997; 498: 231–7 Ferretti G, Moia C, Thomet JM, et al. The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. J Appl Physiol 1997; 498: 231–7
137.
Zurück zum Zitat Chapman RF, Emery M, Stager JM. Degree of arterial desaturation in normoxia influences V̇O2max decline in mild hypoxia. Med Sci Sports Exerc 1999; 31: 658–63PubMedCrossRef Chapman RF, Emery M, Stager JM. Degree of arterial desaturation in normoxia influences V̇O2max decline in mild hypoxia. Med Sci Sports Exerc 1999; 31: 658–63PubMedCrossRef
138.
Zurück zum Zitat Wilber RL, Holm PL, Morris DM, et al. Effect of FIO2 on physiological responses and cycling performance at moderate altitude. Med Sci Sports Exerc 2003; 35: 1153–9PubMedCrossRef Wilber RL, Holm PL, Morris DM, et al. Effect of FIO2 on physiological responses and cycling performance at moderate altitude. Med Sci Sports Exerc 2003; 35: 1153–9PubMedCrossRef
139.
Zurück zum Zitat Daniels J. Altitude and athletic training and performance. Am J Sports Med 1979; 7: 370–3CrossRef Daniels J. Altitude and athletic training and performance. Am J Sports Med 1979; 7: 370–3CrossRef
140.
Zurück zum Zitat Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performed at altitude. Aviat Space Environ Med 1998; 69: 793–801PubMed Fulco CS, Rock PB, Cymerman A. Maximal and submaximal exercise performed at altitude. Aviat Space Environ Med 1998; 69: 793–801PubMed
141.
Zurück zum Zitat Weston AR, MacKenzie G, Tufts A, et al. Optimal time of arrival for performance at moderate altitude (1700 m). Med Sci Sports Exerc 2001; 33: 298–302PubMed Weston AR, MacKenzie G, Tufts A, et al. Optimal time of arrival for performance at moderate altitude (1700 m). Med Sci Sports Exerc 2001; 33: 298–302PubMed
142.
Zurück zum Zitat Robergs RA, Quintana R, Parker DL, et al. Multiple variables explain the variability in the decrement in V̇O2max during acute hypobaric hypoxia. Med Sci Sports Exerc 1998; 30: 869–79PubMedCrossRef Robergs RA, Quintana R, Parker DL, et al. Multiple variables explain the variability in the decrement in V̇O2max during acute hypobaric hypoxia. Med Sci Sports Exerc 1998; 30: 869–79PubMedCrossRef
144.
Zurück zum Zitat Billings CR, Bason R, Mathews D, et al. Cost of submaximal and maximal work during chronic exposure at 3,800 m. J Appl Physiol 1971; 30: 406–8PubMed Billings CR, Bason R, Mathews D, et al. Cost of submaximal and maximal work during chronic exposure at 3,800 m. J Appl Physiol 1971; 30: 406–8PubMed
145.
Zurück zum Zitat Maher JT, Jones LC, Hartley LH. Effects of high altitude exposure on submaximal endurance capacity of men. J Appl Physiol 1974; 37: 895–901PubMed Maher JT, Jones LC, Hartley LH. Effects of high altitude exposure on submaximal endurance capacity of men. J Appl Physiol 1974; 37: 895–901PubMed
146.
Zurück zum Zitat Schumacher YO, Mueller P. The 4000m team pursuit cycling world record: theoretical and practical aspects. Med Sci Sports Exerc 2002; 34: 1029–36PubMedCrossRef Schumacher YO, Mueller P. The 4000m team pursuit cycling world record: theoretical and practical aspects. Med Sci Sports Exerc 2002; 34: 1029–36PubMedCrossRef
147.
Zurück zum Zitat Broker JP, Kyle CR, Burke ER. Racing cyclist power requirements in the 4000m individual and team pursuits. Med Sci Sports Exerc 1999; 31: 1677–85PubMedCrossRef Broker JP, Kyle CR, Burke ER. Racing cyclist power requirements in the 4000m individual and team pursuits. Med Sci Sports Exerc 1999; 31: 1677–85PubMedCrossRef
148.
Zurück zum Zitat Capelli C, Schena F, Zamparo P, et al. Energetics of best performance in track cycling. Med Sci Sports Exerc 1998; 30: 614–24PubMedCrossRef Capelli C, Schena F, Zamparo P, et al. Energetics of best performance in track cycling. Med Sci Sports Exerc 1998; 30: 614–24PubMedCrossRef
149.
Zurück zum Zitat Marion GA, Leger LA. Energetics of indoor track cycling in trained competitors. Int J Sports Med 1988; 9: 234–9PubMedCrossRef Marion GA, Leger LA. Energetics of indoor track cycling in trained competitors. Int J Sports Med 1988; 9: 234–9PubMedCrossRef
150.
Zurück zum Zitat Olds TS, Norton KI, Craig NP. Mathematical model of cycling performance. J Appl Physiol 1993; 75: 730–7PubMed Olds TS, Norton KI, Craig NP. Mathematical model of cycling performance. J Appl Physiol 1993; 75: 730–7PubMed
151.
Zurück zum Zitat Olds TS, Norton KI, Lowe ELA, et al. Modeling road cycling performance. J Appl Physiol 1995; 78: 1596–611PubMed Olds TS, Norton KI, Lowe ELA, et al. Modeling road cycling performance. J Appl Physiol 1995; 78: 1596–611PubMed
152.
Zurück zum Zitat Olds TS, Norton KI, Craig N, et al. The limits of the possible: models of power supply and demand in cycling. Aust J Sci Med Sport 1995; 27: 29–33PubMed Olds TS, Norton KI, Craig N, et al. The limits of the possible: models of power supply and demand in cycling. Aust J Sci Med Sport 1995; 27: 29–33PubMed
153.
Zurück zum Zitat Van Soest O, Casius LJ. Which factors determine the optimal pedaling rate in sprint cycling? Med Sci Sports Exerc 2000; 32: 1927–34PubMedCrossRef Van Soest O, Casius LJ. Which factors determine the optimal pedaling rate in sprint cycling? Med Sci Sports Exerc 2000; 32: 1927–34PubMedCrossRef
154.
Zurück zum Zitat Beelen A, Sargeant A AJ. Effect of fatigue on maximal power output at different contraction velocities in humans. J Appl Physiol 1991; 71: 2332–7PubMed Beelen A, Sargeant A AJ. Effect of fatigue on maximal power output at different contraction velocities in humans. J Appl Physiol 1991; 71: 2332–7PubMed
155.
Zurück zum Zitat Bobbert MF, Gerritsen KGM, Litjens MCA, et al. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc 1996; 28: 1402–12PubMedCrossRef Bobbert MF, Gerritsen KGM, Litjens MCA, et al. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc 1996; 28: 1402–12PubMedCrossRef
156.
Zurück zum Zitat Heil DP. Defining the role of body mass as a determinant of time-trial cycling performance. Sixth IOC World Congress on Sport Science; 2002, Salt Lake Med Sci Sports Exerc 2002, 34 (5): IOC 29CrossRef Heil DP. Defining the role of body mass as a determinant of time-trial cycling performance. Sixth IOC World Congress on Sport Science; 2002, Salt Lake Med Sci Sports Exerc 2002, 34 (5): IOC 29CrossRef
Metadaten
Titel
The Science of Cycling
Factors Affecting Performance — Part 2
verfasst von
Erik W. Faria
Daryl L. Parker
Dr Irvin E. Faria
Publikationsdatum
01.04.2005
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 4/2005
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200535040-00003

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Knie-TEP: Kein Vorteil durch antibiotikahaltigen Knochenzement

29.05.2024 Periprothetische Infektionen Nachrichten

Zur Zementierung einer Knie-TEP wird in Deutschland zu über 98% Knochenzement verwendet, der mit einem Antibiotikum beladen ist. Ob er wirklich besser ist als Zement ohne Antibiotikum, kann laut Registerdaten bezweifelt werden.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.