Skip to main content
Erschienen in: Brain Structure and Function 2/2020

01.03.2020 | Original Article

Longitudinal developmental analysis of prethalamic eminence derivatives in the chick by mapping of Tbr1 in situ expression

verfasst von: Antonia Alonso, Carmen María Trujillo, Luis Puelles

Erschienen in: Brain Structure and Function | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

The prethalamic eminence (PThE) is the most dorsal subdomain of the prethalamus, which corresponds to prosomere 3 (p3) in the prosomeric model for vertebrate forebrain development. In mammalian and avian embryos, the PThE can be delimited from other prethalamic areas by its lack of Dlx gene expression, as well as by its expression of glutamatergic-related genes such as Pax6, Tbr2 and Tbr1. Several studies in mouse embryos postulate the PThE as a source of migratory neurons that populate given telencephalic centers. Concerning the avian PThE, it is visible at early embryonic stages as a compact primordium, but its morphology becomes cryptic at perinatal stages, so that its developmental course and fate are largely unknown. In this report, we characterize in detail the ontogeny of the chicken PThE from 5 to 15 days of development, according to morphological criteria, and using Tbr1 as a molecular marker for this structure and its migratory cells. We show that initially the PThE contacts rostrally the medial pallium, the pallial amygdala and the paraventricular hypothalamic alar domain. Approximately from embryonic day 6 onwards, the PThE becomes progressively reduced in size and cell content due to massive tangential migration of many of its neuronal derivatives towards nearby subpallial and hypothalamic regions. Our analysis supports that these migratory neurons from the avian PThE target telencephalic centers such as the commissural septal nuclei, as previously described in mammals, but also the diagonal band and preoptic areas, and hypothalamic structures in the paraventricular hypothalamic area.
Literatur
Zurück zum Zitat Alonso G, Szafarczyk A, Assenmacher I (1986) Radioautographic evidence that axons from the area of supraoptic nuclei in the rat project to extrahypothalamic brain regions. Neurosci Lett 66:251–256CrossRefPubMed Alonso G, Szafarczyk A, Assenmacher I (1986) Radioautographic evidence that axons from the area of supraoptic nuclei in the rat project to extrahypothalamic brain regions. Neurosci Lett 66:251–256CrossRefPubMed
Zurück zum Zitat Bardet SM (2007) Organización morfológica y citogenética del hipotálamo del pollo sobre base de mapas moleculares. PhD in Biology (Neuroscience Program). University of Murcia, Spain Bardet SM (2007) Organización morfológica y citogenética del hipotálamo del pollo sobre base de mapas moleculares. PhD in Biology (Neuroscience Program). University of Murcia, Spain
Zurück zum Zitat Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubenstein JL (1993) Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13:3155–3172CrossRefPubMedPubMedCentral Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubenstein JL (1993) Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13:3155–3172CrossRefPubMedPubMedCentral
Zurück zum Zitat de Olmos JS, Heimer L (1999) The concepts of the ventral striatopallidal system and extended amygdala. Ann N Y Acad Sci 877:1–32CrossRefPubMed de Olmos JS, Heimer L (1999) The concepts of the ventral striatopallidal system and extended amygdala. Ann N Y Acad Sci 877:1–32CrossRefPubMed
Zurück zum Zitat Díaz C, Puelles L (1992b) In vitro HRP-labeling of the fasciculus retroflexus in the lizard Gallotia galloti. Brain Behav Evol 39:305–311CrossRefPubMed Díaz C, Puelles L (1992b) In vitro HRP-labeling of the fasciculus retroflexus in the lizard Gallotia galloti. Brain Behav Evol 39:305–311CrossRefPubMed
Zurück zum Zitat Fan C-M, Kuwana E, Bulfone A, Fletcher CF, Copeland NG, Jenkins NA, Crews S, Martinez S, Puelles L, Rubenstein JL, Tessier-Lavigne M (1996) Expression patterns of two murine homologs of drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome. Mol Cell Neurosci 7:1–16. https://doi.org/10.1006/mcne.1996.0001 CrossRefPubMed Fan C-M, Kuwana E, Bulfone A, Fletcher CF, Copeland NG, Jenkins NA, Crews S, Martinez S, Puelles L, Rubenstein JL, Tessier-Lavigne M (1996) Expression patterns of two murine homologs of drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome. Mol Cell Neurosci 7:1–16. https://​doi.​org/​10.​1006/​mcne.​1996.​0001 CrossRefPubMed
Zurück zum Zitat Ferrán JL, Ayad A, Merchán P, Morales-Delgado N, Sánchez-Arrones L, Alonso A, Sandoval JE, Bardet SM, Corral-San-Miguel R, Sánchez-Guardado LO, Hidalgo-Sánchez M, Martínez-de-la-Torre M, Puelles L (2015) Exploring brain genoarchitecture by single and double chromogenic in situ hybridization (ISH) and immunohistochemistry (IHC) on cryostat, paraffin, or floating sections. In: Hauptmann G (ed) In situ hybridization methods, neuromethods, vol 99. Springer Science + Business Media, New York, pp 83–107. https://doi.org/10.1007/978-1-4939-2303-8_5 CrossRef Ferrán JL, Ayad A, Merchán P, Morales-Delgado N, Sánchez-Arrones L, Alonso A, Sandoval JE, Bardet SM, Corral-San-Miguel R, Sánchez-Guardado LO, Hidalgo-Sánchez M, Martínez-de-la-Torre M, Puelles L (2015) Exploring brain genoarchitecture by single and double chromogenic in situ hybridization (ISH) and immunohistochemistry (IHC) on cryostat, paraffin, or floating sections. In: Hauptmann G (ed) In situ hybridization methods, neuromethods, vol 99. Springer Science + Business Media, New York, pp 83–107. https://​doi.​org/​10.​1007/​978-1-4939-2303-8_​5 CrossRef
Zurück zum Zitat Font C, Lanuza E, Martínez-Marcos A, Hoogland PV, Martínez-García F (1998) Septal complex of the telencephalon of lizards: III. Efferent connections and general discussion. J Comp Neurol 401:525–548CrossRefPubMed Font C, Lanuza E, Martínez-Marcos A, Hoogland PV, Martínez-García F (1998) Septal complex of the telencephalon of lizards: III. Efferent connections and general discussion. J Comp Neurol 401:525–548CrossRefPubMed
Zurück zum Zitat Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325PubMed Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325PubMed
Zurück zum Zitat Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92CrossRefPubMed Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92CrossRefPubMed
Zurück zum Zitat Hetzel W (1974) Die Ontogenese des Telencephalons bei Lcerta sicula (Rafinesque), mit besonderer Berücksichtigung der pallialen Entwicklung. Zool Beitr 20:361–458 Hetzel W (1974) Die Ontogenese des Telencephalons bei Lcerta sicula (Rafinesque), mit besonderer Berücksichtigung der pallialen Entwicklung. Zool Beitr 20:361–458
Zurück zum Zitat Hetzel W (1975) Der nucleus commissurae pallii posterioris bei Lacerta sicula (Rafinesque) und seine ontogenetische Verbindung zum Thalamus. Acta Anat 91:539–551CrossRefPubMed Hetzel W (1975) Der nucleus commissurae pallii posterioris bei Lacerta sicula (Rafinesque) und seine ontogenetische Verbindung zum Thalamus. Acta Anat 91:539–551CrossRefPubMed
Zurück zum Zitat Huilgol D, Udin S, Shimogori T, Saha B, Roy A, Aizawa S, Hevner RF, Meyer G, Ohshima T, Pleasure SJ, Zhao Y, Tole S (2013) Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream. Nat Neurosci 16:157–165. https://doi.org/10.1038/nn.3297 CrossRefPubMed Huilgol D, Udin S, Shimogori T, Saha B, Roy A, Aizawa S, Hevner RF, Meyer G, Ohshima T, Pleasure SJ, Zhao Y, Tole S (2013) Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream. Nat Neurosci 16:157–165. https://​doi.​org/​10.​1038/​nn.​3297 CrossRefPubMed
Zurück zum Zitat Kuhlenbeck H (1973) The central nervous system of vertebrates. vol 3, Part II: overall morphologic pattern. S. Karger, Basel Kuhlenbeck H (1973) The central nervous system of vertebrates. vol 3, Part II: overall morphologic pattern. S. Karger, Basel
Zurück zum Zitat Medina L, Abellán A (2012) Subpallial structures. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 173–220CrossRef Medina L, Abellán A (2012) Subpallial structures. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 173–220CrossRef
Zurück zum Zitat Meyer G, Goffinet AM, Fairén A (1999) What is a Cajal–Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb Cortex 9:765–775CrossRefPubMed Meyer G, Goffinet AM, Fairén A (1999) What is a Cajal–Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb Cortex 9:765–775CrossRefPubMed
Zurück zum Zitat Parent A (1979) Identification of the pallidal and peripallidal cells projecting to the habenula in monkey. Neurosci Lett 15:159–164CrossRefPubMed Parent A (1979) Identification of the pallidal and peripallidal cells projecting to the habenula in monkey. Neurosci Lett 15:159–164CrossRefPubMed
Zurück zum Zitat Parent A (1986) Comparative neurobiology of the basal ganglia. Wiley, New York Parent A (1986) Comparative neurobiology of the basal ganglia. Wiley, New York
Zurück zum Zitat Parent A, De Bellefeuille L (1982) Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res 245:201–213CrossRefPubMed Parent A, De Bellefeuille L (1982) Organization of efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labeling method. Brain Res 245:201–213CrossRefPubMed
Zurück zum Zitat Parent A, Gravel S, Boucher R (1981) The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res Bull 6:23–38CrossRefPubMed Parent A, Gravel S, Boucher R (1981) The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res Bull 6:23–38CrossRefPubMed
Zurück zum Zitat Parent A, De Bellefeuille L, Mackey A (1984) Organization of primate internal pallidum as revealed by fluorescent retrograde tracing of its efferent projections. Adv Neurol 40:15–20PubMed Parent A, De Bellefeuille L, Mackey A (1984) Organization of primate internal pallidum as revealed by fluorescent retrograde tracing of its efferent projections. Adv Neurol 40:15–20PubMed
Zurück zum Zitat Paxinos G, Watson C (2014) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, San Diego Paxinos G, Watson C (2014) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, San Diego
Zurück zum Zitat Pombal MA, Puelles L (1999) Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers. J Comp Neurol 414:391–422CrossRefPubMed Pombal MA, Puelles L (1999) Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers. J Comp Neurol 414:391–422CrossRefPubMed
Zurück zum Zitat Puelles L (2017) Forebrain development in vertebrates: the evolutionary role of secondary organizers. In: Shepherd SV (ed) The wiley handbook of evolutionary neuroscience. Wiley, Chichester, pp 350–387 Puelles L (2017) Forebrain development in vertebrates: the evolutionary role of secondary organizers. In: Shepherd SV (ed) The wiley handbook of evolutionary neuroscience. Wiley, Chichester, pp 350–387
Zurück zum Zitat Puelles L, Martinez S (2013) Patterning of the diencephalon. In: Rubenstein JLR, Rakic P (eds) Comprehensive developmental neuroscience: patterning and cell type specification in the developing CNS and PNS. Academic Press, Amsterdam, pp 151–172CrossRef Puelles L, Martinez S (2013) Patterning of the diencephalon. In: Rubenstein JLR, Rakic P (eds) Comprehensive developmental neuroscience: patterning and cell type specification in the developing CNS and PNS. Academic Press, Amsterdam, pp 151–172CrossRef
Zurück zum Zitat Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martínez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies, 1st edn. Academic Press, London Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martínez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies, 1st edn. Academic Press, London
Zurück zum Zitat Puelles L, Martinez-de-la-Torre M, Bardet S, Rubenstein JLR (2012) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdan, pp 221–312CrossRef Puelles L, Martinez-de-la-Torre M, Bardet S, Rubenstein JLR (2012) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdan, pp 221–312CrossRef
Zurück zum Zitat Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martínez S (2019) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies, 2nd edn. Academic Press, London Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C, Martínez S (2019) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies, 2nd edn. Academic Press, London
Zurück zum Zitat Remedios R, Huilgol D, Saha B, Hari P, Bhatnagar L, Kowalczyk T, Hevner RF, Suda Y, Aizawa S, Ohshima T, Stoykova A, Tole S (2007) A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex. Nat Neurosci 10:1141–1150. https://doi.org/10.1038/nn1955 CrossRefPubMed Remedios R, Huilgol D, Saha B, Hari P, Bhatnagar L, Kowalczyk T, Hevner RF, Suda Y, Aizawa S, Ohshima T, Stoykova A, Tole S (2007) A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex. Nat Neurosci 10:1141–1150. https://​doi.​org/​10.​1038/​nn1955 CrossRefPubMed
Zurück zum Zitat Risold PY (2004) The septal region. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier-Academic Press, Amsterdam, pp 605–632CrossRef Risold PY (2004) The septal region. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier-Academic Press, Amsterdam, pp 605–632CrossRef
Zurück zum Zitat Staines WA, Yamamoto T, Dewar KM et al (1988) Distribution, morphology and habenular projections of adenosine deaminase-containing neurons in the septal area of rat. Brain Res 455:72–87CrossRefPubMed Staines WA, Yamamoto T, Dewar KM et al (1988) Distribution, morphology and habenular projections of adenosine deaminase-containing neurons in the septal area of rat. Brain Res 455:72–87CrossRefPubMed
Zurück zum Zitat van der Kooy D, Carter DA (1981) The organization of the efferent projections and striatal afferents of the entopeduncular nucleus and adjacent areas in the rat. Brain Res 211:15–36CrossRefPubMed van der Kooy D, Carter DA (1981) The organization of the efferent projections and striatal afferents of the entopeduncular nucleus and adjacent areas in the rat. Brain Res 211:15–36CrossRefPubMed
Metadaten
Titel
Longitudinal developmental analysis of prethalamic eminence derivatives in the chick by mapping of Tbr1 in situ expression
verfasst von
Antonia Alonso
Carmen María Trujillo
Luis Puelles
Publikationsdatum
01.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 2/2020
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-02015-3

Weitere Artikel der Ausgabe 2/2020

Brain Structure and Function 2/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.