Skip to main content
Erschienen in: Die Radiologie 5/2022

Open Access 22.02.2022 | Magnetresonanztomografie | Leitthema

Neue klinische Anwendungsbereiche der Niederfeld-Magnetresonanztomographie

Technische und physikalische Aspekte

verfasst von: Hanns-Christian Breit, Jan Vosshenrich, Michael Bach, Elmar M. Merkle

Erschienen in: Die Radiologie | Ausgabe 5/2022

Zusammenfassung

Hintergrund

Die Niederfeld-Magnetresonanztomographie (MRT) erlebt aufgrund technischer Neuerungen eine Renaissance. Die Geräte der neuen Generation bieten neue Anwendungsspektren in der Bildgebung und eine mögliche Antwort auf den steigenden Kostendruck im Gesundheitssystem.

Fragestellung

Einfluss der Feldstärke auf die Technik, Physik, Bildakquisition und die diagnostische Qualität der Untersuchungen.

Material und Methode

Rekapitulation der wichtigen grundlegenden physikalischen Parameter für Bildgewinnung und Qualität. Erste klinische Erfahrungen mit einem neuen 0,55-T-Niederfeldscanner.

Ergebnisse

Niedrigere Feldstärken als die klinisch aktuell verbreiteten 1,5 T und 3 T sind in der Bildgewinnung durch ein zu erwartendes geringeres Signal-zu-Rausch Verhältnis gekennzeichnet. Ob dies eine diagnostische Limitation ist, muss in Studien evaluiert werden, da es verschiedene Optionen gibt, dieses vermeintliche Defizit zu kompensieren. Dies kann durch eine Verlängerung der Akquisitionszeit oder durch Einsatz von Nachverarbeitungsverfahren mit Hilfe der künstlichen Intelligenz (KI) geschehen. Zudem ist zu validieren, in welchen Körperregionen und bei welchen Krankheitsbildern die Bildqualität diagnostisch ausreichend ist. Erste Untersuchungen in unserer Klinik sind vielversprechend und zeigen beispielsweise diagnostische Qualität ohne relevanten Zeitverlust für Untersuchungen der Lendenwirbelsäule. Potenzielle Stärken aufgrund geringerer Suszeptibilitätsartefakte ergeben sich in der Lungenbildgebung oder bei Implantaten.

Schlussfolgerung

Niederfeldscanner bieten eine Vielzahl von neuen Anwendungsfeldern mit feldstärkebedingten Vorteilen. Bei den meisten anderen klinischen Untersuchungsfeldern kann mindestens eine diagnostische Qualität erwartet werden.
Hinweise
QR-Code scannen & Beitrag online lesen
Die Magnetresonanztomographie (MRT) ist ein elementarer Baustein in der medizinischen Diagnostik sowohl für internistische, neurologische, chirurgische als auch orthopädische Fragestellungen und heutzutage nicht mehr aus Klinik und ambulanter Praxis wegzudenken. Es dominieren Scanner mit Magnetfeldstärken von 1,5 T und 3 T. Aufgrund verschiedener technischer Innovationen ergeben sich jedoch neue Chancen für Scanner mit niedrigeren Feldstärken. Ziel dieser Arbeit ist es, die physikalischen Einflüsse der Feldstärke auf die klinische Bildgebung zu beleuchten.
Die MRT-basierte Bildgebung ist eine Erfolgsgeschichte der Radiologie und der diagnostischen Medizin. Von den Anfängen in den 1980er Jahren mit einigen hundert Geräten ist die MR-basierte Bildgebung mittlerweile ebenso wie die Computertomographie (CT) in der westlichen Welt nahezu überall in der Routine verfügbar [15]. Weltweit waren 2018 mehr als 36.000 Scanner im Einsatz bei einem jährlich zu erwartenden Zuwachs von 2500 Geräten, wobei nach wie vor ausgeprägte regionale Unterschiede existieren [12]. Dabei dominieren Geräte mit Feldstärken von 1,5 T bis 3 T, während Ultrahochfeld-MRT mit 7 T aktuell wenig verbreitet sind.
MR-Systeme mit Niederfeldstärke operieren in einem Bereich von 0,35 T bis 0,6 T und erleben nach ersten klinischen Einsätzen in der Anfangszeit der MRT-Bildgebung aktuell eine Renaissance [14]. Erfahrungen über das Anwendungsspektrum von Niederfeldstärke-MRT im Vergleich zu Geräten höherer Feldstärke stammen überwiegend aus den 1980er und 1990er Jahren. Aufgrund technischer Entwicklungen im Bereich des Spulen- und Gradientenbaus, aber auch im Bereich der Bildnachbearbeitung eröffnete sich in den letzten Jahren ein neuer Blickwinkel auf die Niederfeldtechnik mit neuen Anwendungsmöglichkeiten im Bereich der interventionellen Radiologie [1], der Lungenbildgebung [2, 5] oder auch der muskuloskeletalen Bildgebung [4].
Vorteile dieser Niederfeldgeräte sind sowohl geringere Kosten in der Herstellung von Magneten, Gradienten und Spulen als auch geringere bauliche Anforderungen durch ein deutlich niedrigeres Gewicht und weniger Anforderungen an die Abschirmung in einem Faradaykäfig. Weitere Vorteile sind eine mögliche Reduzierung des durch die Gradienten erzeugten Schalllevels und eine daraus resultierende Steigerung des Patientenkomforts, der zu einer noch höheren Akzeptanz der Patienten führen kann. Klinisch relevant ist dies zudem bei der Untersuchung von Schwangeren oder pädiatrischen Patienten durch ein niedrigeres Stresslevel während der Untersuchung [13]. Zudem führt die niedrigere Feldstärke zu einer Erhöhung der gefühlten und faktischen Patientensicherheit. So korrelieren die physikalischen Kräfte und daraus resultierenden Gefahren metallischer Fremdkörper mit der Feldstärke. Auch etwaige Gefahren wie beispielsweise Hitzeentwicklung durch Implantate, Prothesen oder Tätowierungen sollten bei niedrigeren Feldstärken geringer sein.
Eine weitere Entwicklungsperspektive ist die Verwendung größerer Bohrungen mit einem Zugewinn an Patientenkomfort und der Möglichkeit einer einfachen Patientenüberwachung sowie ggf. der Verzicht auf Sedationen oder Narkosen bei klaustrophobischen Patienten. Zudem bieten sich durch die bessere Zugänglichkeit des Patienten neue Möglichkeiten in der interventionellen Radiologie an [7].
Ziel dieses Beitrags ist es, eine Übersicht über die physikalischen Grundlagen der Bildgebung in Abhängigkeit von der Feldstärke zu liefern und dabei die Vor- und Nachteile, die sich daraus ergeben, zu diskutieren.

Physikalische Aspekte der Bildgebung

Technische Voraussetzungen

Im Bereich der Niederfeld-MRT ist im Gegensatz zu kommerziellen 1,5 T und 3 T eine Erzeugung des Magnetfelds sowohl mit Permanentmagneten, konventionellen Elektromagneten als auch mit supraleitenden Magneten möglich. Gleichzeitig ist der Magnet der Hauptkostenpunkt eines MRT-Systems, Preis und Feldstärke korrelieren miteinander linear.

Kontrast und Signal-zu-Rausch-Verhältnis in Abhängigkeit der Feldstärke

Eines der Hauptargumente für höhere Feldstärken war und ist das bessere Signal-zu-Rausch-Verhältnis (SNR). Das Signal einer MR-Messung ist zum einen proportional zu der erreichten Magnetisierung, welche ihrerseits proportional zur Magnetfeldstärke (B) ist. Zum anderen ist die in den Empfangsspulen induzierte Spannung proportional zur Lamorfrequenz, welche ebenfalls proportional zur Magnetfeldstärke ist. Das MR-Signal hängt somit quadratisch von der Magnetfeldstärke ab. Gleichzeitig ist das Rauschen in dem Bereich der hier betrachteten Magnetfeldstärke in etwa proportional zu B^1/2. Das SNR hängt somit in guter Näherung von B^3/2 ab. Aufgrund der mit der Feldstärke abnehmende Fett-Wasser-Verschiebung kann die Datenaufnahme bei niedrigeren Feldstärken mit geringeren Bandbreiten erfolgen, was zu einem Signalgewinn führt.
Neue Nachbearbeitungsmethoden, die auf künstlicher Intelligenz (KI) basieren, können die sichtbare Auflösung erhöhen, das Bildrauschen unterdrücken oder zu einer Messzeitverkürzung genutzt werden (Abb. 1; Tab. 1; [8, 10, 11]).
Tab. 1
Repetitionszeit (TR), Echozeit (TE), Schichtdicke (ST), Auflösung, „field of view“ (FOV) und Akquisitionszeit (TA) sagittaler T1-TSE (Turbo-Spin-Echo) und T2-TSE-Sequenzen eines Wirbelsäulenprotokolls bei 1,5 T und 0,55 T mit (Sternchen) und ohne Verwendung fortgeschrittener Bildnachbearbeitungsprozesse
 
T1-TSE sagittal
T2-TSE sagittal
 
1,5 T
0,55 T
0,55 T*
1,5 T
0,55 T
0,55 T*
TR (ms)
625
454
454
3600
3500
3500
TE (ms)
11
13
13
102
99
96
ST (mm)
4
4
4
4
4
4
Auflösung (mm2)
0,7 × 0,7
0,8 × 0,8
0,5 × 0,5
0,7 × 0,7
0,8 × 0,8
0,5 × 0,5
FOV (mm2)
300 × 300
320 × 320
320 × 320
300 × 300
320 × 320
320 × 320
TA (min)
02:29
05:26
02:28
01:44
03:34
03:23
Eine sehr effektive Methode, um das SNR zu erhöhen, ist eine moderate Reduktion der Auflösung. Bei einer Verringerung der Auflösung von 1 mm auf 1,1 mm isotrop beträgt der Signalgewinn 30 %. Tatsächlich kann der Signalverlust durch die geringere Feldstärke bei 0,55 T gegenüber 1,5 T so hauptsächlich durch eine leichte Reduktion der Auflösung und moderate Verlängerung der Messzeit kompensiert werden. Exemplarisch finden sich auf 0,55 T adaptierte Sequenzen der Lendenwirbelsäule und des Neurokraniums im Vergleich zu 1,5 T in den Tab. 1 und 2.
Tab. 2
Repetitionszeit (TR), Echozeit (TE), Inversionszeit (TI), Schichtdicke (ST), Auflösung, „field of view“ (FOV) und Akquisitionszeit (TA) für diffusionsgewichtete (DWI), T2-TSE und suszeptibilitätsgewichtete (SWI) Magnetresonanztomographie (MRT) des Neurokraniums auf 1,5 T und 0,55 T
 
DWI
FLAIR
SWI
 
1,5 T
0,55 T
1,5 T
0,55 T
1,5 T
0,55 T
TR (ms)
6200
7400
8510
7780
49
172
TI (ms)
2120
2369
TE (ms)
103
102
112
96
40
100
ST (mm)
3
3
3
3
3
3
Auflösung (mm2)
1,44 × 1,44
1,67 × 1,67
0,9 × 0,9
1,28 × 1,03
0,94 × 0,8
1,12 × 0,9
FOV (mm2)
230 × 230
220 × 220
187 × 230
209 × 230
201 × 230
214 × 288
TA (min)
02:04
04:35
01:44
04:56
01:52
02:37
Für den Bildeindruck sind der Kontrast und das Kontrast-zu-Rausch-Verhältnis entscheidend [6]. In der Literatur gibt es kaum aktuelle oder eindeutige Studien bezüglich der diagnostischen Performance in Abhängigkeit von der Feldstärke und somit kaum Evidenz hinsichtlich des diagnostischen Zugewinns bei höheren Feldstärken. Es existieren zwar zahlreiche Studien, die belegen, dass bei höheren Feldstärken die menschliche Anatomie mit einem höheren Detailgrad abgebildet und kleinere anatomische Strukturen abgegrenzt werden können. Ob dies jedoch einen entscheidenden Effekt auf die Diagnose oder gar Therapie, Morbidität und Mortalität des Patienten hat, wird dabei meistens nicht analysiert.
Die Datenlage ist insgesamt widersprüchlich und selbst alte Studien mit Scannern der ersten Generation zeigten zum Teil keinen diagnostischen Zugewinn bei höheren Feldstärken [10, 17]. In ersten Untersuchungen am Universitätsspital Basel wurden beispielsweise keine Einschränkungen im Hinblick auf die diagnostische Aussagekraft bei Wirbelsäulenuntersuchungen an dem 0.55T Siemens Magnetom Free.Max (Siemens Healthineers, Erlangen, Deutschland) verglichen mit einem 1.5T Siemens Magnetom Avanto (Siemens Healthineers, Erlangen, Deutschland) der klinischen Routine gefunden (siehe Abb. 2).

T1- und T2-Zeiten

Die longitudinale Relaxationszeit T1 ist abhängig von der Feldstärke und dem in der Bildgebung dargestellten Organ und seiner Umgebung [9]. Dabei korrelieren Feldstärke und T1-Zeit in menschlichem Gewebe positiv. Die verschiedenen Organe und Bestandteile des menschlichen Körpers haben bei 0,55 T also kürzere T1-Zeiten als bei 1,5 T und 3 T. Daher sind prinzipiell für T1-gewichtete Sequenzen bei 0,55 T kürzere Repetitionszeiten und damit Akquisitionszeiten möglich als bei höheren Feldstärken. Dieser Effekt wird jedoch durch das geringere Signal und die damit verbundene Notwendigkeit zur Akquisition mehrerer Mittelungen zum Teil konterkariert.
Die transversale Relaxationszeit T2 ist in der Theorie relativ unabhängig von der Feldstärke [16]. Daher ist zu erwarten, dass Suszeptibilitätseffekte bei niedrigeren Feldstärken geringer ausfallen und so bei einem längeren T2* der Signalabfall beispielsweise durch verschiedene metallische Fremdkörper, Gas oder Luft weniger stark ist. Campbell-Washburn et al. zeigten in einer Untersuchung an 83 Patienten mit einem experimentellen 0,55-T-Scanner, dass die T1-Zeiten verschiedener Gewebe durchschnittlich 32 % kürzer sind als bei 1,5 T. Dahingegen wurden durchschnittlich 26 % längere T2- und 40 % längere T2*-Zeiten beobachtet [1].

Artefakte

Die Artefaktreduktion, insbesondere bei metallischen Fremdmaterialien, ist einer der großen Vorteile von Niederfeldgeräten. Dies ist insbesondere aufgrund einer älter werdenden Bevölkerung mit einem zu erwartenden deutlichen Anstieg an Fremdmaterial, wie beispielsweise Hüftprothesen und Herzschrittmachern von großer Bedeutung. Die Ausdehnung der durch Implantate verursachten Artefakte lässt sich anhand der folgenden Gleichung abschätzen:
$$\text{Artefaktausdehnung }\propto (\Updelta \text{ Suszeptibilit"at *}\mathrm{B}\text{* TE})/\text{ Bandbreite}$$
Erste eigene klinische Erfahrungen zeigen ebenfalls eine Artefaktreduktion eines 0,55 T Siemens Magnetom Free.Max verglichen mit einem 1,5 T Magnetom Avanto, wie in Abb. 3 am Beispiel eines Patienten mit einer Hüftgelenkendoprothese zu sehen ist.
Die geringeren Suszeptibilitätseffekte bei niedrigen Feldstärken sind auch sehr günstig für die Bildgebung der Lunge, und es konnten vielversprechende Ergebnisse dabei erzielt werden [2].

Chemical Shift

Chemical shift beschreibt im Wesentlichen die Abhängigkeit der Larmorfrequenz eines Protons von seiner chemischen Umgebung. So weisen beispielsweise Wasserstoffprotonen in Wasser eine gering unterschiedliche Larmorfrequenz auf als in Fett. Dieser Effekt korreliert proportional mit der Feldstärke B; für den Frequenzunterschied gilt
$$\Updelta f=147\mathrm{\,Hz}/\mathrm{T}\mathrm{*}\mathrm{B}.$$
Dies hat zur Folge, dass der Frequenzunterschied bei 0,55 T um etwa ein Drittel niedriger ist als bei 1,5 T. Durch den geringeren Frequenzunterschied sind spektrale Methoden der Fettsättigung im Hinblick auf die Homogenität bei niedrigeren Feldstärken anspruchsvoller. Dies liegt daran, dass ein spektraler Sättigungspuls ein noch geringeres Frequenzspektrum abdecken darf, um gezielt ausschließlich Fettgewebe zu unterdrücken.
Auswirkungen hat dies auch auf die zunehmend an Bedeutung gewinnende DIXON-Technologie [3]. Bei dieser Technik werden Bilder mit Echozeiten generiert, bei denen sich wasser- und fettgebundene Wasserstoffprotonen in gleicher („in phase“) oder entgegengesetzter Phase („opposed phase“) befinden. Basierend auf diesen Bilddaten, können fett- oder wassersupprimierte Bilder erzeugt werden, so dass durch eine Sequenz effektiv 4 Kontraste generiert werden [11]. Techniken, die noch weitere Echos generieren, ermöglichen die quantitative Bestimmung des Fett- oder Eisengehalts verschiedener Gewebe. Durch den geringeren Frequenzunterschied bei 0,55 T sind längere Echozeiten erforderlich und der Signalabfall zum Zeitpunkt des Echos entsprechend höher. Dies resultiert in einem schlechterem Signal-zu-Rausch Verhältnis der akquirierten Bilder.

Zukunft

Niederfeld-MRT-Geräte versprechen zum einen aufgrund der zu erwartenden geringeren Suszeptibilitätsartefakte einen vielversprechenden Anwendungsbereich im Bereich der Bildgebung von Endoprothesen, bei Patienten mit Implantaten, wie Schrittmachern oder Portsystemen und auch bei der Untersuchung der Lunge. Dabei könnte Letzteres als strahlenfreie Alternative zu Röntgen- oder CT-Aufnahmen, insbesondere bei Kindern zur Beurteilung von Infekten oder aber auch mediastinalen Raumforderungen, dienen. Im Hinblick auf Signal und Auflösung sind zweifelsohne Abstriche gegenüber 1,5-T- und 3‑T-Scannern zu machen. Weitere Studien müssen klären, welche Anforderungen hinsichtlich Bildqualität und Patientenbelastung bei welchen klinischen Anforderungen erfüllt sein müssen, um zu einem optimalen Outcome zu kommen.
Für Niederfeldgeräte bietet sich durch die niedrigeren Anschaffungs- und Unterhaltskosten sowie geringere bauliche Anforderungen an den Scannerraum zudem ein erweitertes Spektrum für die Verwendung der MRT-Bildgebung an. Beispielsweise könnten Systeme näher an Intensivstationen oder Notaufnahmen platziert werden und so eine schnellere Verfügbarkeit der MRT-Bildgebung für schwerkranke Patienten ermöglichen. Auch ein Einsatz in „Low-income“-Ländern könnte eine bisher bestehende Versorgungslücke schließen. Limitationen aufgrund der niedrigeren Feldstärke sind dabei für die meisten Anwendungsfelder nicht zu erwarten.

Fazit für die Praxis

  • Durch technische Neuerungen erleben MRT-Scanner mit niedrigen Feldstärken um 0,55 T eine Renaissance.
  • Physikalisch bedingte Nachteile, wie ein geringeres Signal im Vergleich zu Scannern mit 1,5 T und 3 T können durch Fortschritte der Gradiententechnologie, der parallelen Bildgebung und vielfältige neue Möglichkeiten der Bildnachverarbeitung kompensiert werden.
  • Geringere Suszeptibilitätsartefakte versprechen bessere Resultate in der Lungenbildgebung und bei Patienten mit Implantaten oder anderen Fremdkörpern.
  • Weitere Vorteile sind die deutlich geringeren Anschaffungs‑, Installations- und Unterhaltskosten.
  • Eine sorgfältige Evaluation der Bildqualität im Hinblick auf etwaige Einschränkungen in der Diagnostik ist dabei für jede Fragestellung notwendig.

Einhaltung ethischer Richtlinien

Interessenkonflikt

E.M. Merkle ist Sprecher und Advisor für Siemens Healthineers. Unser Institut erhält Forschungsunterstützung durch Siemens Healthineers. H.‑C. Breit, J. Vosshenrich und M. Bach geben an, dass kein Interessenkonflikt besteht.
Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.
Open Access Dieser Artikel wird unter der Creative Commons Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung, Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en) und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden.
Die in diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material nicht unter der genannten Creative Commons Lizenz steht und die betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für die oben aufgeführten Weiterverwendungen des Materials die Einwilligung des jeweiligen Rechteinhabers einzuholen.
Weitere Details zur Lizenz entnehmen Sie bitte der Lizenzinformation auf http://​creativecommons.​org/​licenses/​by/​4.​0/​deed.​de.

Unsere Produktempfehlungen

Die Radiologie

Print-Titel

  • Ein umfassender Themenschwerpunkt in jeder Ausgabe
  • CME-Punkte sammeln mit praxisrelevanten und leitliniengerechten Fortbildungsbeiträgen
  • IT und Management für Radiologinnen und Radiologen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Campbell-Washburn AE, Ramasawmy R, Restivo MC et al (2019) Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293:384–393PubMedCrossRef Campbell-Washburn AE, Ramasawmy R, Restivo MC et al (2019) Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293:384–393PubMedCrossRef
2.
Zurück zum Zitat Campbell-Washburn AE, Suffredini AF, Chen MY (2021) High-performance 0.55‑T lung MRI in patient with COVID-19 infection. Radiology 299:E246–E247PubMedCrossRef Campbell-Washburn AE, Suffredini AF, Chen MY (2021) High-performance 0.55‑T lung MRI in patient with COVID-19 infection. Radiology 299:E246–E247PubMedCrossRef
4.
Zurück zum Zitat Ejbjerg BJ, Narvestad E, Jacobsen S et al (2005) Optimised, low cost, low field dedicated extremity MRI is highly specific and sensitive for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: comparison with conventional high field MRI and radiography. Ann Rheum Dis 64:1280–1287PubMedPubMedCentralCrossRef Ejbjerg BJ, Narvestad E, Jacobsen S et al (2005) Optimised, low cost, low field dedicated extremity MRI is highly specific and sensitive for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: comparison with conventional high field MRI and radiography. Ann Rheum Dis 64:1280–1287PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Heiss R, Grodzki DM, Horger W et al (2021) High-performance low field MRI enables visualization of persistent pulmonary damage after COVID-19. Magn Reson Imaging 76:49–51PubMedCrossRef Heiss R, Grodzki DM, Horger W et al (2021) High-performance low field MRI enables visualization of persistent pulmonary damage after COVID-19. Magn Reson Imaging 76:49–51PubMedCrossRef
6.
Zurück zum Zitat Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85 Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85
8.
Zurück zum Zitat Kang H‑J, Lee JM, Ahn SJ et al (2019) Clinical feasibility of gadoxetic acid–enhanced isotropic high-resolution 3‑dimensional magnetic resonance cholangiography using an iterative denoising algorithm for evaluation of the biliary anatomy of living liver donors. Invest Radiol 54:103–109PubMedCrossRef Kang H‑J, Lee JM, Ahn SJ et al (2019) Clinical feasibility of gadoxetic acid–enhanced isotropic high-resolution 3‑dimensional magnetic resonance cholangiography using an iterative denoising algorithm for evaluation of the biliary anatomy of living liver donors. Invest Radiol 54:103–109PubMedCrossRef
9.
Zurück zum Zitat Koenig SH (1996) Molecular basis of magnetic relaxation of water protons of tissue. Acad Radiol 3:597–606PubMedCrossRef Koenig SH (1996) Molecular basis of magnetic relaxation of water protons of tissue. Acad Radiol 3:597–606PubMedCrossRef
10.
Zurück zum Zitat Lee DH, Vellet AD, Eliasziw M et al (1995) MR imaging field strength: prospective evaluation of the diagnostic accuracy of MR for diagnosis of multiple sclerosis at 0.5 and 1.5 T. Radiology 194:257–262PubMedCrossRef Lee DH, Vellet AD, Eliasziw M et al (1995) MR imaging field strength: prospective evaluation of the diagnostic accuracy of MR for diagnosis of multiple sclerosis at 0.5 and 1.5 T. Radiology 194:257–262PubMedCrossRef
11.
Zurück zum Zitat Leyendecker JR, Brown JJ, Merkle EM (2010) Practical guide to abdominal and pelvic MRI. Lippincott Williams & Wilkins, Leyendecker JR, Brown JJ, Merkle EM (2010) Practical guide to abdominal and pelvic MRI. Lippincott Williams & Wilkins,
12.
Zurück zum Zitat Ogbole GI, Adeyomoye AO, Badu-Peprah A et al (2018) Survey of magnetic resonance imaging availability in West Africa. Pan Afr Med J 30:240PubMedPubMedCentralCrossRef Ogbole GI, Adeyomoye AO, Badu-Peprah A et al (2018) Survey of magnetic resonance imaging availability in West Africa. Pan Afr Med J 30:240PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Přibil J, Přibilová A, Frollo I (2018) Vibration and noise in magnetic resonance imaging of the vocal tract: differences between whole-body and open-air devices. Sensors 18:1112PubMedCentralCrossRef Přibil J, Přibilová A, Frollo I (2018) Vibration and noise in magnetic resonance imaging of the vocal tract: differences between whole-body and open-air devices. Sensors 18:1112PubMedCentralCrossRef
14.
Zurück zum Zitat Runge VM, Heverhagen JT (2020) Advocating the development of next-generation, advanced-design low-field magnetic resonance systems. Invest Radiol 55:747–753PubMedCrossRef Runge VM, Heverhagen JT (2020) Advocating the development of next-generation, advanced-design low-field magnetic resonance systems. Invest Radiol 55:747–753PubMedCrossRef
15.
Zurück zum Zitat Scherzinger AL, Hendee WR (1985) Basic principles of magnetic resonance imaging—an update. West J Med 143:782PubMedPubMedCentral Scherzinger AL, Hendee WR (1985) Basic principles of magnetic resonance imaging—an update. West J Med 143:782PubMedPubMedCentral
16.
Zurück zum Zitat Stanisz GJ, Odrobina EE, Pun J et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512PubMedCrossRef Stanisz GJ, Odrobina EE, Pun J et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512PubMedCrossRef
17.
Zurück zum Zitat Vellet AD, Lee DH, Munk PL et al (1995) Anterior cruciate ligament tear: prospective evaluation of diagnostic accuracy of middle-and high-field-strength MR imaging at 1.5 and 0.5 T. Radiology 197:826–830PubMedCrossRef Vellet AD, Lee DH, Munk PL et al (1995) Anterior cruciate ligament tear: prospective evaluation of diagnostic accuracy of middle-and high-field-strength MR imaging at 1.5 and 0.5 T. Radiology 197:826–830PubMedCrossRef
Metadaten
Titel
Neue klinische Anwendungsbereiche der Niederfeld-Magnetresonanztomographie
Technische und physikalische Aspekte
verfasst von
Hanns-Christian Breit
Jan Vosshenrich
Michael Bach
Elmar M. Merkle
Publikationsdatum
22.02.2022
Verlag
Springer Medizin
Erschienen in
Die Radiologie / Ausgabe 5/2022
Print ISSN: 2731-7048
Elektronische ISSN: 2731-7056
DOI
https://doi.org/10.1007/s00117-022-00967-y

Weitere Artikel der Ausgabe 5/2022

Die Radiologie 5/2022 Zur Ausgabe

Mitteilungen des Berufsverbandes der Deutschen Radiologen

Mitteilungen des Berufsverbandes der Deutschen Radiologen

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.