Skip to main content
Erschienen in: Current Osteoporosis Reports 4/2018

18.06.2018 | Biomechanics (G Niebur and J Wallace, Section Editors)

Mechanical Characterization of Bone: State of the Art in Experimental Approaches—What Types of Experiments Do People Do and How Does One Interpret the Results?

verfasst von: Stacyann Bailey, Deepak Vashishth

Erschienen in: Current Osteoporosis Reports | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The mechanical integrity of bone is determined by the direct measurement of bone mechanical properties. This article presents an overview of the current, most common, and new and upcoming experimental approaches for the mechanical characterization of bone. The key outcome variables of mechanical testing, as well as interpretations of the results in the context of bone structure and biology are also discussed.

Recent Findings

Quasi-static tests are the most commonly used for determining the resistance to structural failure by a single load at the organ (whole bone) level. The resistance to crack initiation or growth by fracture toughness testing and fatigue loading offers additional and more direct characterization of tissue material properties. Non-traditional indentation techniques and in situ testing are being increasingly used to probe the material properties of bone ultrastructure.

Summary

Destructive ex vivo testing or clinical surrogate measures are considered to be the gold standard for estimating fracture risk. The type of mechanical test used for a particular investigation depends on the length scale of interest, where the outcome variables are influenced by the interrelationship between bone structure and composition. Advancement in the sensitivity of mechanical characterization techniques to detect changes in bone at the levels subjected to modifications by aging, disease, and/or pharmaceutical treatment is required. As such, a number of techniques are now available to aid our understanding of the factors that contribute to fracture risk.
Literatur
1.
Zurück zum Zitat Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47:S11–20.CrossRefPubMedPubMedCentral Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47:S11–20.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.CrossRefPubMed Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.CrossRefPubMed
4.
Zurück zum Zitat Cummings SR, Bates D, Black DM. Clinical use of bone densitometry. JAMA. 2002;288(15):1889–97.CrossRefPubMed Cummings SR, Bates D, Black DM. Clinical use of bone densitometry. JAMA. 2002;288(15):1889–97.CrossRefPubMed
5.
Zurück zum Zitat Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int. 2003;14(3):13–8.CrossRef Ammann P, Rizzoli R. Bone strength and its determinants. Osteoporos Int. 2003;14(3):13–8.CrossRef
6.
Zurück zum Zitat Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab. 2016;14(3):133–49.CrossRefPubMedPubMedCentral Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clin Rev Bone Miner Metab. 2016;14(3):133–49.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Sibai T, Morgan EF, Einhorn TA. Anabolic agents and bone quality. Clin Orthop Relat Res. 2011;469(8):2215–24.CrossRefPubMed Sibai T, Morgan EF, Einhorn TA. Anabolic agents and bone quality. Clin Orthop Relat Res. 2011;469(8):2215–24.CrossRefPubMed
8.
Zurück zum Zitat Yamaguchi T, Sugimoto T. Bone metabolism and fracture risk in type 2 diabetes mellitus [review]. Endocr J. 2011;58(8):613–24.CrossRefPubMed Yamaguchi T, Sugimoto T. Bone metabolism and fracture risk in type 2 diabetes mellitus [review]. Endocr J. 2011;58(8):613–24.CrossRefPubMed
9.
Zurück zum Zitat Voide R, van Lenthe G, Müller R. Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J Bone Miner Res. 2008;23(8):1194–203.CrossRefPubMed Voide R, van Lenthe G, Müller R. Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J Bone Miner Res. 2008;23(8):1194–203.CrossRefPubMed
10.
11.
Zurück zum Zitat Fajardo RJ, Karim L, Calley VI, Bouxsein ML. A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res. 2014;29(5):1025–40.CrossRefPubMedPubMedCentral Fajardo RJ, Karim L, Calley VI, Bouxsein ML. A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res. 2014;29(5):1025–40.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat van der Meulen MC, Jepsen KJ, Mikić B. Understanding bone strength: size isn’t everything. Bone. 2001;29(2):101–4.CrossRefPubMed van der Meulen MC, Jepsen KJ, Mikić B. Understanding bone strength: size isn’t everything. Bone. 2001;29(2):101–4.CrossRefPubMed
14.
Zurück zum Zitat Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee A, van der Ham F, et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37(6):825–32.CrossRefPubMedPubMedCentral Hernandez CJ, Tang SY, Baumbach BM, Hwu PB, Sakkee A, van der Ham F, et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37(6):825–32.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Poundarik A, Diab T. Dilatational band formation in bone. Proc Natl Acad Sci. 2012;109(47):19178–83.CrossRefPubMed Poundarik A, Diab T. Dilatational band formation in bone. Proc Natl Acad Sci. 2012;109(47):19178–83.CrossRefPubMed
17.
Zurück zum Zitat Hansma PK, Fantner GE, Kindt JH, Thurner PJ, Schitter G, Turner PJ, et al. Sacrificial bonds in the interfibrillar matrix of bone. J Musculoskelet Neuronal Interact. 2005;5(4):313–5.PubMed Hansma PK, Fantner GE, Kindt JH, Thurner PJ, Schitter G, Turner PJ, et al. Sacrificial bonds in the interfibrillar matrix of bone. J Musculoskelet Neuronal Interact. 2005;5(4):313–5.PubMed
18.
Zurück zum Zitat Fyhrie DP, Christiansen BA. Bone material properties and skeletal fragility. Calcif Tissue Int. 2015;97(3):213–28.CrossRefPubMed Fyhrie DP, Christiansen BA. Bone material properties and skeletal fragility. Calcif Tissue Int. 2015;97(3):213–28.CrossRefPubMed
19.
Zurück zum Zitat Fan Z, Swadener JG, Rho JY, Roy ME, Pharr GM. Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthop Res. 2002;20(4):806–10.CrossRefPubMed Fan Z, Swadener JG, Rho JY, Roy ME, Pharr GM. Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthop Res. 2002;20(4):806–10.CrossRefPubMed
20.
Zurück zum Zitat Currey JD. The structure and mechanics of bone. J Mater Sci. 2012;47(1):41–54.CrossRef Currey JD. The structure and mechanics of bone. J Mater Sci. 2012;47(1):41–54.CrossRef
21.
Zurück zum Zitat Turner C, Burr D. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14(4):595–608.CrossRefPubMed Turner C, Burr D. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14(4):595–608.CrossRefPubMed
22.
Zurück zum Zitat Goodyear SR, Aspden RM. Mechanical properties of bone ex vivo. In: Helfrich MH, Ralston SH, editors. Bone research protocols. Totowa: Humana Press; 2012. p. 555–71.CrossRef Goodyear SR, Aspden RM. Mechanical properties of bone ex vivo. In: Helfrich MH, Ralston SH, editors. Bone research protocols. Totowa: Humana Press; 2012. p. 555–71.CrossRef
23.
Zurück zum Zitat Jepsen KJ, Silva MJ, Vashishth D, Guo XE, van der Meulen MC. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res. 2015;30(6):951–66.CrossRefPubMedPubMedCentral Jepsen KJ, Silva MJ, Vashishth D, Guo XE, van der Meulen MC. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res. 2015;30(6):951–66.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Turner CH, Burr DB. Experimental techniques for bone mechanics. In: Cowin SC, editor. Bone Mechanics handbook, vol. 2; 2001. p. 7–1. Turner CH, Burr DB. Experimental techniques for bone mechanics. In: Cowin SC, editor. Bone Mechanics handbook, vol. 2; 2001. p. 7–1.
25.
Zurück zum Zitat Sharir A, Barak MM, Shahar R. Whole bone mechanics and mechanical testing. Vet J. 2008;177(1):8–17.CrossRefPubMed Sharir A, Barak MM, Shahar R. Whole bone mechanics and mechanical testing. Vet J. 2008;177(1):8–17.CrossRefPubMed
26.
Zurück zum Zitat Brodt MD, Ellis CB, Silva MJ. Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J Bone Miner Res. 1999;14(12):2159–66.CrossRefPubMed Brodt MD, Ellis CB, Silva MJ. Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties. J Bone Miner Res. 1999;14(12):2159–66.CrossRefPubMed
27.
Zurück zum Zitat Jepsen KJ, Hu B, Tommasini SM, Courtland H-W, Price C, Terranova CJ, et al. Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility. Mamm Genome. 2007;18(6–7):492–507.CrossRefPubMedPubMedCentral Jepsen KJ, Hu B, Tommasini SM, Courtland H-W, Price C, Terranova CJ, et al. Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility. Mamm Genome. 2007;18(6–7):492–507.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Wallace JM, Golcuk K, Morris MD, Kohn DH. Inbred strain-specific effects of exercise in wild type and Biglycan deficient mice. Ann Biomed Eng. 2010;38(4):1607–17.CrossRefPubMed Wallace JM, Golcuk K, Morris MD, Kohn DH. Inbred strain-specific effects of exercise in wild type and Biglycan deficient mice. Ann Biomed Eng. 2010;38(4):1607–17.CrossRefPubMed
29.
Zurück zum Zitat • Guss JD, Horsfield MW, Fontenele FF, Sandoval TN, Luna M, Apoorva F, et al. Alterations to the gut microbiome impair bone strength and tissue material properties. J Bone Miner Res. 2017;32(6):1343–53. The results of this study suggests that tissue material properties may also be impaired and contribute to fracture risk in patients with conditions associated with an altered microbiome. CrossRefPubMedPubMedCentral • Guss JD, Horsfield MW, Fontenele FF, Sandoval TN, Luna M, Apoorva F, et al. Alterations to the gut microbiome impair bone strength and tissue material properties. J Bone Miner Res. 2017;32(6):1343–53. The results of this study suggests that tissue material properties may also be impaired and contribute to fracture risk in patients with conditions associated with an altered microbiome. CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Sinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015;71:115–23.CrossRefPubMed Sinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015;71:115–23.CrossRefPubMed
32.
Zurück zum Zitat Berman AG, Wallace JM, Bart ZR, Allen MR. Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta. Matrix Biol. 2016;52–54:19–28.CrossRefPubMed Berman AG, Wallace JM, Bart ZR, Allen MR. Raloxifene reduces skeletal fractures in an animal model of osteogenesis imperfecta. Matrix Biol. 2016;52–54:19–28.CrossRefPubMed
33.
Zurück zum Zitat Bi X, Grafe I, Ding H, Flores R, Munivez E, Jiang MM, et al. Correlations between bone mechanical properties and bone composition parameters in mouse models of dominant and recessive osteogenesis imperfecta and the response to anti-TGF-β treatment. J Bone Miner Res. 2017;32(2):347–59.CrossRefPubMed Bi X, Grafe I, Ding H, Flores R, Munivez E, Jiang MM, et al. Correlations between bone mechanical properties and bone composition parameters in mouse models of dominant and recessive osteogenesis imperfecta and the response to anti-TGF-β treatment. J Bone Miner Res. 2017;32(2):347–59.CrossRefPubMed
34.
Zurück zum Zitat Grafe I, Alexander S, Yang T, Lietman C, Homan EP, Munivez E, et al. Sclerostin antibody treatment improves the bone phenotype of Crtap−/− mice, a model of recessive osteogenesis imperfecta. J Bone Miner Res. 2016;31(5):1030–40.CrossRefPubMedPubMedCentral Grafe I, Alexander S, Yang T, Lietman C, Homan EP, Munivez E, et al. Sclerostin antibody treatment improves the bone phenotype of Crtap−/− mice, a model of recessive osteogenesis imperfecta. J Bone Miner Res. 2016;31(5):1030–40.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Lambert J, Lamothe JM, Zernicke RF, Auer RN, Reimer RA. Dietary restriction does not adversely affect bone geometry and mechanics in rapidly growing male Wistar rats. Pediatr Res. 2005;57(2):227–31.CrossRefPubMed Lambert J, Lamothe JM, Zernicke RF, Auer RN, Reimer RA. Dietary restriction does not adversely affect bone geometry and mechanics in rapidly growing male Wistar rats. Pediatr Res. 2005;57(2):227–31.CrossRefPubMed
36.
Zurück zum Zitat Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Biomechanics NA. Mechanobiology of trabecular bone: a review. J Biomech Eng. 2015;137(1):108021–1080215.CrossRef Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Biomechanics NA. Mechanobiology of trabecular bone: a review. J Biomech Eng. 2015;137(1):108021–1080215.CrossRef
37.
Zurück zum Zitat Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102.CrossRefPubMed Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102.CrossRefPubMed
38.
Zurück zum Zitat Jamal SA, West SL, Miller PD. Fracture risk assessment in patients with chronic kidney disease. Osteoporos Int. 2012;23(4):1191–8.CrossRefPubMed Jamal SA, West SL, Miller PD. Fracture risk assessment in patients with chronic kidney disease. Osteoporos Int. 2012;23(4):1191–8.CrossRefPubMed
39.
Zurück zum Zitat KE E LL, BC T, et al. Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med. 2007;167(2):133–9.CrossRef KE E LL, BC T, et al. Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med. 2007;167(2):133–9.CrossRef
40.
Zurück zum Zitat Oksztulska-Kolanek E, Znorko B, Michałowska M, Pawlak K. The biomechanical testing for the assessment of bone quality in an experimental model of chronic kidney disease. Nephron. 2016;132(1):51–8.CrossRefPubMed Oksztulska-Kolanek E, Znorko B, Michałowska M, Pawlak K. The biomechanical testing for the assessment of bone quality in an experimental model of chronic kidney disease. Nephron. 2016;132(1):51–8.CrossRefPubMed
41.
Zurück zum Zitat Newman CL, Chen NX, Smith E, Smith M, Brown D, Moe SM, et al. Compromised vertebral structural and mechanical properties associated with progressive kidney disease and the effects of traditional pharmacological interventions. Bone. 2015;77:50–6.CrossRefPubMedPubMedCentral Newman CL, Chen NX, Smith E, Smith M, Brown D, Moe SM, et al. Compromised vertebral structural and mechanical properties associated with progressive kidney disease and the effects of traditional pharmacological interventions. Bone. 2015;77:50–6.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Ritchie R, Koester K, Ionova S, Yao W. Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone. 2008;43(5):798–812.CrossRefPubMedPubMedCentral Ritchie R, Koester K, Ionova S, Yao W. Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone. 2008;43(5):798–812.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Vashishth D. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J Biomech. 2004;37(6):943–6.CrossRefPubMed Vashishth D. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J Biomech. 2004;37(6):943–6.CrossRefPubMed
44.
Zurück zum Zitat • Bailey S, Karsenty G, Gundberg C, Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci. 2017;1409(1):79–6. This study demonstrated that bone strength is maintained in the absence of osteocalcin and osteopontin due to morphological adaptation. CrossRefPubMed • Bailey S, Karsenty G, Gundberg C, Vashishth D. Osteocalcin and osteopontin influence bone morphology and mechanical properties. Ann N Y Acad Sci. 2017;1409(1):79–6. This study demonstrated that bone strength is maintained in the absence of osteocalcin and osteopontin due to morphological adaptation. CrossRefPubMed
45.
Zurück zum Zitat Poundarik A, Diab T, Sroga G, Ural A, Boskey A, Gundberg C, et al. Dilatational band formation in bone. Proc Natl Acad Sci. 2012;109(47):19178–83.CrossRefPubMed Poundarik A, Diab T, Sroga G, Ural A, Boskey A, Gundberg C, et al. Dilatational band formation in bone. Proc Natl Acad Sci. 2012;109(47):19178–83.CrossRefPubMed
46.
Zurück zum Zitat Reinwald S, Peterson RG, Allen MR, Burr DB. Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models. Am J Physiol Endocrinol Metab. 2009;296(4):E765–74.CrossRefPubMedPubMedCentral Reinwald S, Peterson RG, Allen MR, Burr DB. Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models. Am J Physiol Endocrinol Metab. 2009;296(4):E765–74.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Creecy A, Uppuganti S, Merkel AR, O’Neal D, Makowski AJ, Granke M, et al. Changes in the fracture resistance of bone with the progression of type 2 diabetes in the ZDSD rat. Calcif Tissue Int. 2016;99(3):289–301.CrossRefPubMedPubMedCentral Creecy A, Uppuganti S, Merkel AR, O’Neal D, Makowski AJ, Granke M, et al. Changes in the fracture resistance of bone with the progression of type 2 diabetes in the ZDSD rat. Calcif Tissue Int. 2016;99(3):289–301.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, Best JP, Michler J, Zysset PK, et al. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone. 2016;93:196–211.CrossRefPubMed Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, Best JP, Michler J, Zysset PK, et al. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone. 2016;93:196–211.CrossRefPubMed
49.
Zurück zum Zitat Katsamenis OL, Jenkins T, Thurner PJ. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level. Bone. 2015;76:158–68.CrossRefPubMed Katsamenis OL, Jenkins T, Thurner PJ. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level. Bone. 2015;76:158–68.CrossRefPubMed
50.
Zurück zum Zitat Granke M, Makowski AJ, Uppuganti S, Nyman JS. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. J Biomech. 2016;49(13):2748–55.CrossRefPubMedPubMedCentral Granke M, Makowski AJ, Uppuganti S, Nyman JS. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. J Biomech. 2016;49(13):2748–55.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat • Hunckler MD, Chu ED, Baumann AP, Curtis TE, Ravosa MJ, Allen MR, et al. The fracture toughness of small animal cortical bone measured using arc-shaped tension specimens: effects of bisphosphonate and deproteinization treatments. Bone. 2017;105:67–74. In this study, arc-shaped tension specimens were created as a novel technique for measuring cortical bone fracture toughness at multiple locations in small animals. CrossRefPubMed • Hunckler MD, Chu ED, Baumann AP, Curtis TE, Ravosa MJ, Allen MR, et al. The fracture toughness of small animal cortical bone measured using arc-shaped tension specimens: effects of bisphosphonate and deproteinization treatments. Bone. 2017;105:67–74. In this study, arc-shaped tension specimens were created as a novel technique for measuring cortical bone fracture toughness at multiple locations in small animals. CrossRefPubMed
52.
Zurück zum Zitat Silva MJ, Touhey DC. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life. J Orthop Res. 2007;25(2):252–61.CrossRefPubMed Silva MJ, Touhey DC. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life. J Orthop Res. 2007;25(2):252–61.CrossRefPubMed
53.
Zurück zum Zitat George WT, Vashishth D. Damage mechanisms and failure modes of cortical bone under components of physiological loading. J Orthop Res. 2005;23(5):1047–53.CrossRefPubMed George WT, Vashishth D. Damage mechanisms and failure modes of cortical bone under components of physiological loading. J Orthop Res. 2005;23(5):1047–53.CrossRefPubMed
54.
Zurück zum Zitat Vashishth D, Tanner KE, Bonfield W. Fatigue of cortical bone under combined axial-torsional loading. J Orthop Res. 2001;19(3):414–20.CrossRefPubMed Vashishth D, Tanner KE, Bonfield W. Fatigue of cortical bone under combined axial-torsional loading. J Orthop Res. 2001;19(3):414–20.CrossRefPubMed
55.
Zurück zum Zitat George W, Vashishth D. Susceptibility of aging human bone to mixed-mode fracture increases bone fragility. Bone. 2006;38(1):105–11.CrossRefPubMed George W, Vashishth D. Susceptibility of aging human bone to mixed-mode fracture increases bone fragility. Bone. 2006;38(1):105–11.CrossRefPubMed
56.
Zurück zum Zitat • Bajaj D, Geissler JR, Allen MR, Burr DB, Fritton JC. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate. Bone. 2014;64:57–64. This study reports that cyclic mechanical properties of cortical bone are reduced due to alterations of bone structure with bisphonate treatment. CrossRefPubMedPubMedCentral • Bajaj D, Geissler JR, Allen MR, Burr DB, Fritton JC. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate. Bone. 2014;64:57–64. This study reports that cyclic mechanical properties of cortical bone are reduced due to alterations of bone structure with bisphonate treatment. CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat • Torres AM, Matheny JB, Keaveny TM, Taylor D, Rimnac CM, Hernandez CJ. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc Natl Acad Sci. 2016;113(11):2892–7. This article reports that stress concentrations at the strut surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end-products. CrossRefPubMed • Torres AM, Matheny JB, Keaveny TM, Taylor D, Rimnac CM, Hernandez CJ. Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure. Proc Natl Acad Sci. 2016;113(11):2892–7. This article reports that stress concentrations at the strut surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end-products. CrossRefPubMed
58.
Zurück zum Zitat Akkus O, Rimnac CM. Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth. J Biomech. 2001;34(6):757–64.CrossRefPubMed Akkus O, Rimnac CM. Cortical bone tissue resists fatigue fracture by deceleration and arrest of microcrack growth. J Biomech. 2001;34(6):757–64.CrossRefPubMed
59.
Zurück zum Zitat Vashishth D, Tanner KE, Behiri JC, Bonfield W. Failure of osteons under differently applied loads. Trans Orthop Res Soc. 1994;19:429. Vashishth D, Tanner KE, Behiri JC, Bonfield W. Failure of osteons under differently applied loads. Trans Orthop Res Soc. 1994;19:429.
60.
61.
Zurück zum Zitat Nyman JS, Granke M, Singleton RC, Pharr GM. Tissue-level mechanical properties of bone contributing to fracture risk. Curr Osteoporos Rep. 2016;14(4):138–50.CrossRefPubMedPubMedCentral Nyman JS, Granke M, Singleton RC, Pharr GM. Tissue-level mechanical properties of bone contributing to fracture risk. Curr Osteoporos Rep. 2016;14(4):138–50.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Shuman DJ, Costa ALM, Andrade MS. Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater Charact. 2007;58(4):380–9.CrossRef Shuman DJ, Costa ALM, Andrade MS. Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater Charact. 2007;58(4):380–9.CrossRef
63.
Zurück zum Zitat Wolfram U, Schwiedrzik J. Post-yield and failure properties of cortical bone. BoneKEy Reports. 2016;5:829. Wolfram U, Schwiedrzik J. Post-yield and failure properties of cortical bone. BoneKEy Reports. 2016;5:829.
64.
Zurück zum Zitat Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40(4):1144–51.CrossRefPubMed Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40(4):1144–51.CrossRefPubMed
65.
Zurück zum Zitat Tang S, Allen M, Phipps R, Burr D, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int. 2009;20(6):887–94.CrossRefPubMed Tang S, Allen M, Phipps R, Burr D, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int. 2009;20(6):887–94.CrossRefPubMed
66.
Zurück zum Zitat Ascenzi M-G, Di Comite M, Mitov P, Michael Kabo J. Hysteretic pinching of human secondary osteons subjected to torsion. J Biomech. 2007 Jan;40(12):2619–27.CrossRefPubMed Ascenzi M-G, Di Comite M, Mitov P, Michael Kabo J. Hysteretic pinching of human secondary osteons subjected to torsion. J Biomech. 2007 Jan;40(12):2619–27.CrossRefPubMed
67.
Zurück zum Zitat Guo XE, He MY, Goldstein SA. Understanding cement line interface in bone tissue: a linear fracture mechanics approach. ASME-Publications-BED. 1995;29:303. Guo XE, He MY, Goldstein SA. Understanding cement line interface in bone tissue: a linear fracture mechanics approach. ASME-Publications-BED. 1995;29:303.
68.
Zurück zum Zitat Hansma P, Turner P, Drake B, Yurtsev E, Proctor A, Mathews P, et al. The bone diagnostic instrument II: indentation distance increase. Rev Sci Instrum. 2008;79(6):64303.CrossRef Hansma P, Turner P, Drake B, Yurtsev E, Proctor A, Mathews P, et al. The bone diagnostic instrument II: indentation distance increase. Rev Sci Instrum. 2008;79(6):64303.CrossRef
69.
Zurück zum Zitat Allen MR, McNerny EMB, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015;30(9):1539–50.CrossRefPubMedPubMedCentral Allen MR, McNerny EMB, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015;30(9):1539–50.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Jepsen KJ, Schlecht SH. Biomechanical mechanisms: resolving the apparent conundrum of why individuals with type II diabetes show increased fracture incidence despite having normal BMD. J Bone Miner Res. 2014;29(4):784–6.CrossRefPubMedPubMedCentral Jepsen KJ, Schlecht SH. Biomechanical mechanisms: resolving the apparent conundrum of why individuals with type II diabetes show increased fracture incidence despite having normal BMD. J Bone Miner Res. 2014;29(4):784–6.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Furst JR, Bandeira LC, Fan W-W, Agarwal S, Nishiyama KK, McMahon DJ, et al. Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2502–10.CrossRefPubMedPubMedCentral Furst JR, Bandeira LC, Fan W-W, Agarwal S, Nishiyama KK, McMahon DJ, et al. Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2502–10.CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Malgo F, Hamdy NAT, Papapoulos SE, Appelman-Dijkstra NM. Bone material strength index as measured by impact microindentation is low in patients with fractures irrespective of fracture site. Osteoporos Int. 2017;28(8):2433–7.CrossRefPubMedPubMedCentral Malgo F, Hamdy NAT, Papapoulos SE, Appelman-Dijkstra NM. Bone material strength index as measured by impact microindentation is low in patients with fractures irrespective of fracture site. Osteoporos Int. 2017;28(8):2433–7.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Gallant MA, Brown DM, Organ JM, Allen MR, Burr DB. Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing. Bone. 2013;53(1):301–5.CrossRefPubMed Gallant MA, Brown DM, Organ JM, Allen MR, Burr DB. Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing. Bone. 2013;53(1):301–5.CrossRefPubMed
74.
Zurück zum Zitat Carriero A, Bruse JL, Oldknow KJ, Millán JL, Farquharson C, Shefelbine SJ. Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness. Bone. 2014;69:174–9.CrossRefPubMedPubMedCentral Carriero A, Bruse JL, Oldknow KJ, Millán JL, Farquharson C, Shefelbine SJ. Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness. Bone. 2014;69:174–9.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Krege JB, Aref MW, McNerny E, Wallace JM, Organ JM, Allen MR. Reference point indentation is insufficient for detecting alterations in traditional mechanical properties of bone under common experimental conditions. Bone. 2016;87:97–101.CrossRefPubMedPubMedCentral Krege JB, Aref MW, McNerny E, Wallace JM, Organ JM, Allen MR. Reference point indentation is insufficient for detecting alterations in traditional mechanical properties of bone under common experimental conditions. Bone. 2016;87:97–101.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Boskey AL, Robey PG. The composition of bone. Prim Metab Bone Dis Disord Miner Metab. 8th ed. 2013;49–58. Boskey AL, Robey PG. The composition of bone. Prim Metab Bone Dis Disord Miner Metab. 8th ed. 2013;49–58.
77.
Zurück zum Zitat Zysset PK, Edward Guo X, Edward Hoffler C, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999;32(10):1005–12.CrossRefPubMed Zysset PK, Edward Guo X, Edward Hoffler C, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999;32(10):1005–12.CrossRefPubMed
78.
Zurück zum Zitat Casanova M, Balmelli A, Carnelli D, Courty D, Schneider P, Müller R. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. R Soc Open Sci. 2017;4(2):160971.CrossRefPubMedPubMedCentral Casanova M, Balmelli A, Carnelli D, Courty D, Schneider P, Müller R. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. R Soc Open Sci. 2017;4(2):160971.CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Hengsberger S, Kulik A, Zysset PK. A combined atomic force microscopy and nanoindentation technique to investigate the elastic properties of bone structural units. Eur Cells Mater. 2001;1:12–7.CrossRef Hengsberger S, Kulik A, Zysset PK. A combined atomic force microscopy and nanoindentation technique to investigate the elastic properties of bone structural units. Eur Cells Mater. 2001;1:12–7.CrossRef
80.
Zurück zum Zitat Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–83.CrossRef Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–83.CrossRef
81.
Zurück zum Zitat Wang C, Wang Y, Meng H, Gou W, Yuan X, Xu X, et al. Microstructure and Nanomechanical properties of single trabecular bone in different regions of osteonecrosis of the femoral head. J Nanosci Nanotechnol. 16:2264–9. Wang C, Wang Y, Meng H, Gou W, Yuan X, Xu X, et al. Microstructure and Nanomechanical properties of single trabecular bone in different regions of osteonecrosis of the femoral head. J Nanosci Nanotechnol. 16:2264–9.
82.
Zurück zum Zitat Aruwajoye OO, Aswath PB, Kim HKW. Material properties of bone in the femoral head treated with ibandronate and BMP-2 following ischemic osteonecrosis. J Orthop Res. 2017;35(7):1453–60.CrossRefPubMed Aruwajoye OO, Aswath PB, Kim HKW. Material properties of bone in the femoral head treated with ibandronate and BMP-2 following ischemic osteonecrosis. J Orthop Res. 2017;35(7):1453–60.CrossRefPubMed
83.
Zurück zum Zitat Islam A, Neil Dong X, Wang X. Mechanistic modeling of a nanoscratch test for determination of in situ toughness of bone. J Mech Behav Biomed Mater. 2012;5(1):156–64.CrossRefPubMed Islam A, Neil Dong X, Wang X. Mechanistic modeling of a nanoscratch test for determination of in situ toughness of bone. J Mech Behav Biomed Mater. 2012;5(1):156–64.CrossRefPubMed
84.
Zurück zum Zitat Kataruka A, Mendu K, Okeoghene O, Puthuvelil J, Akono AT. Microscopic assessment of bone toughness using scratch tests. Bone Reports. 2017;6:17–25.CrossRefPubMed Kataruka A, Mendu K, Okeoghene O, Puthuvelil J, Akono AT. Microscopic assessment of bone toughness using scratch tests. Bone Reports. 2017;6:17–25.CrossRefPubMed
85.
Zurück zum Zitat Wang X, Xu H, Huang Y, Gu S, Jiang JX. Coupling effect of water and proteoglycans on the in situ toughness of bone. J Bone Miner Res. 2016;31(5):1026–9.CrossRefPubMedPubMedCentral Wang X, Xu H, Huang Y, Gu S, Jiang JX. Coupling effect of water and proteoglycans on the in situ toughness of bone. J Bone Miner Res. 2016;31(5):1026–9.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Zimmermann EA, Gludovatz B, Schaible E, Busse B, Ritchie RO. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials. 2014;35(21):5472–81.CrossRefPubMed Zimmermann EA, Gludovatz B, Schaible E, Busse B, Ritchie RO. Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials. 2014;35(21):5472–81.CrossRefPubMed
87.
Zurück zum Zitat Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A. 2006;103(47):17741–6.CrossRefPubMedPubMedCentral Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A. 2006;103(47):17741–6.CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Rudolf C, Boesl B, Agarwal A. In situ mechanical testing techniques for real-time materials deformation characterization. JOM. 2016;68(1):136–42.CrossRef Rudolf C, Boesl B, Agarwal A. In situ mechanical testing techniques for real-time materials deformation characterization. JOM. 2016;68(1):136–42.CrossRef
89.
Zurück zum Zitat Gupta HS, Krauss S, Kerschnitzki M, Karunaratne A, Dunlop JWC, Barber AH, et al. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J Mech Behav Biomed Mater. 2013;28:366–82.CrossRefPubMed Gupta HS, Krauss S, Kerschnitzki M, Karunaratne A, Dunlop JWC, Barber AH, et al. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J Mech Behav Biomed Mater. 2013;28:366–82.CrossRefPubMed
90.
Zurück zum Zitat Zimmermann EA, Schaible E, Gludovatz B, Schmidt FN, Riedel C, Krause M, et al. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions. Sci Rep. 2016;6:21072.CrossRefPubMedPubMedCentral Zimmermann EA, Schaible E, Gludovatz B, Schmidt FN, Riedel C, Krause M, et al. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions. Sci Rep. 2016;6:21072.CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Samuel J, Park J-S, Almer J, Wang X. Effect of water on nanomechanics of bone is different between tension and compression. J Mech Behav Biomed Mater. 2016;57:128–38.CrossRefPubMed Samuel J, Park J-S, Almer J, Wang X. Effect of water on nanomechanics of bone is different between tension and compression. J Mech Behav Biomed Mater. 2016;57:128–38.CrossRefPubMed
Metadaten
Titel
Mechanical Characterization of Bone: State of the Art in Experimental Approaches—What Types of Experiments Do People Do and How Does One Interpret the Results?
verfasst von
Stacyann Bailey
Deepak Vashishth
Publikationsdatum
18.06.2018
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 4/2018
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-018-0454-8

Weitere Artikel der Ausgabe 4/2018

Current Osteoporosis Reports 4/2018 Zur Ausgabe

Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)

Bone Marrow Adipose Tissue and Skeletal Health

Rare Bone Disease (C Langman and E Shore, Section Editors)

Modeling Rare Bone Diseases in Animals

Cancer-induced Musculoskeletal Diseases (J Sterling and E Keller, Section Editors)

Surgical Approach to Bone Metastases

Epidemiology and Pathophysiology (F Cosman and D Shoback, Section Editors)

Current Understanding of Epidemiology, Pathophysiology, and Management of Atypical Femur Fractures

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.