Skip to main content
Erschienen in: Skeletal Radiology 10/2007

01.10.2007 | Perspective

Mesenchymal stem and progenitor cells for cartilage repair

verfasst von: Nazish Ahmed, William L. Stanford, Rita A. Kandel

Erschienen in: Skeletal Radiology | Ausgabe 10/2007

Einloggen, um Zugang zu erhalten

Excerpt

Treatment of damaged articular cartilage is problematic due in part to the avascularity of the tissue. Regenerative medicine and tissue engineering offer new approaches for the repair or replacement of damaged or diseased tissue. There is now proof-of-concept to support cell-based regeneration of cartilage, but one of the major issues limiting its use clinically is the availability of a cell source that will form sufficient amounts of tissue comparable to in vivo cartilage both in composition and in mechanical properties. One possible option is to use stem and progenitor cells. This perspective will describe the promise and limitations of the use of stem cells for cartilage repair. …
Literatur
1.
Zurück zum Zitat Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 2002; 10: 432–463.PubMedCrossRef Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 2002; 10: 432–463.PubMedCrossRef
2.
Zurück zum Zitat Hunziker EB. Articular cartilage repair: problems and perspectives. Biorheology 2000; 37: 163–164.PubMed Hunziker EB. Articular cartilage repair: problems and perspectives. Biorheology 2000; 37: 163–164.PubMed
3.
Zurück zum Zitat Kinner B, Capito RM, Spector M. Regeneration of articular cartilage. Adv Biochem Eng Biotechnol 2005; 94: 91–123.PubMed Kinner B, Capito RM, Spector M. Regeneration of articular cartilage. Adv Biochem Eng Biotechnol 2005; 94: 91–123.PubMed
4.
Zurück zum Zitat Boyle J, Luan B, Cruz TF, et al. Characterization of proteoglycan accumulation during formation of cartilagenous tissue in vitro. Osteoarthr Cartil 1995; 3: 117–125.PubMedCrossRef Boyle J, Luan B, Cruz TF, et al. Characterization of proteoglycan accumulation during formation of cartilagenous tissue in vitro. Osteoarthr Cartil 1995; 3: 117–125.PubMedCrossRef
5.
Zurück zum Zitat Chuma H, Mizuta H, Kudo S, et al. One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits. Osteoarthr Cartil 2004; 12: 834–842.PubMedCrossRef Chuma H, Mizuta H, Kudo S, et al. One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits. Osteoarthr Cartil 2004; 12: 834–842.PubMedCrossRef
6.
Zurück zum Zitat Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889–895.PubMedCrossRef Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889–895.PubMedCrossRef
7.
Zurück zum Zitat zur Nieden NI, Kempka G, Rancourt DE, et al. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 2005; 5: 1.PubMedCrossRef zur Nieden NI, Kempka G, Rancourt DE, et al. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 2005; 5: 1.PubMedCrossRef
8.
Zurück zum Zitat Vats A, Bielby RC, Tolley N, et al. Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 2006; 12: 1687–1697.PubMedCrossRef Vats A, Bielby RC, Tolley N, et al. Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 2006; 12: 1687–1697.PubMedCrossRef
9.
Zurück zum Zitat Kramer J, Hargus G, Rohwedel J. Derivation and characterization of chondrocytes from embryonic stem cells in vitro. Methods Mol Biol 2006; 330: 171–190.PubMed Kramer J, Hargus G, Rohwedel J. Derivation and characterization of chondrocytes from embryonic stem cells in vitro. Methods Mol Biol 2006; 330: 171–190.PubMed
10.
Zurück zum Zitat De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106.PubMedCrossRef De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106.PubMedCrossRef
11.
Zurück zum Zitat Kim J, Lee Y, Kim H, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 2007; 40: 75–90.PubMedCrossRef Kim J, Lee Y, Kim H, et al. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 2007; 40: 75–90.PubMedCrossRef
12.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.PubMedCrossRef
13.
Zurück zum Zitat Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005; 11: 1198–1211.PubMedCrossRef Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005; 11: 1198–1211.PubMedCrossRef
14.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.PubMedCrossRef Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.PubMedCrossRef
15.
Zurück zum Zitat Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 2005; 7: 393–395.PubMedCrossRef Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 2005; 7: 393–395.PubMedCrossRef
16.
Zurück zum Zitat Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4: 267–274.PubMed Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4: 267–274.PubMed
17.
Zurück zum Zitat Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282–1286.PubMedCrossRef Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282–1286.PubMedCrossRef
18.
Zurück zum Zitat Otto WR, Rao J. Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif 2004; 37: 97–110.PubMedCrossRef Otto WR, Rao J. Tomorrow’s skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif 2004; 37: 97–110.PubMedCrossRef
19.
Zurück zum Zitat Leo AJ, Grande DA. Mesenchymal stem cells in tissue engineering. Cells Tissues Organs 2006; 183: 112–122.PubMedCrossRef Leo AJ, Grande DA. Mesenchymal stem cells in tissue engineering. Cells Tissues Organs 2006; 183: 112–122.PubMedCrossRef
20.
Zurück zum Zitat Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004; 8: 301–316.PubMedCrossRef Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004; 8: 301–316.PubMedCrossRef
21.
Zurück zum Zitat Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521–2529.PubMedCrossRef Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52: 2521–2529.PubMedCrossRef
22.
Zurück zum Zitat Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr Cartil 2005; 13: 845–853.PubMedCrossRef Im GI, Shin YW, Lee KB. Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthr Cartil 2005; 13: 845–853.PubMedCrossRef
23.
Zurück zum Zitat Huang JI, Kazmi N, Durbhakula MM, et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res 2005; 23: 1383–1389.PubMed Huang JI, Kazmi N, Durbhakula MM, et al. Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. J Orthop Res 2005; 23: 1383–1389.PubMed
24.
Zurück zum Zitat Mochizuki T, Muneta T, Sakaguchi Y, et al. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 2006; 54: 843–853.PubMedCrossRef Mochizuki T, Muneta T, Sakaguchi Y, et al. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum 2006; 54: 843–853.PubMedCrossRef
25.
Zurück zum Zitat Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007; 327: 449–462.PubMedCrossRef Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007; 327: 449–462.PubMedCrossRef
26.
Zurück zum Zitat Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 2004; 18: 980–982.PubMed Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J 2004; 18: 980–982.PubMed
27.
Zurück zum Zitat Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–545.PubMedCrossRef Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–545.PubMedCrossRef
28.
Zurück zum Zitat Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther 2004; 6: R422–R432.PubMedCrossRef Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther 2004; 6: R422–R432.PubMedCrossRef
29.
Zurück zum Zitat Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004; 117: 889–897.PubMedCrossRef Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004; 117: 889–897.PubMedCrossRef
30.
Zurück zum Zitat Le Blanc K. Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 2006; 8: 559–561.PubMedCrossRef Le Blanc K. Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 2006; 8: 559–561.PubMedCrossRef
31.
Zurück zum Zitat Alsalameh S, Amin R, Gemba T, et al. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004; 50: 1522–1532.PubMedCrossRef Alsalameh S, Amin R, Gemba T, et al. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004; 50: 1522–1532.PubMedCrossRef
32.
Zurück zum Zitat Bonyadi M, Waldman SD, Liu D, et al. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA 2003; 100: 5840–5845.PubMedCrossRef Bonyadi M, Waldman SD, Liu D, et al. Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci USA 2003; 100: 5840–5845.PubMedCrossRef
33.
Zurück zum Zitat Kafienah W, Mistry S, Dickinson SC, et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum 2007; 56: 177–187.PubMedCrossRef Kafienah W, Mistry S, Dickinson SC, et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum 2007; 56: 177–187.PubMedCrossRef
34.
Zurück zum Zitat Robinson D, Nevo Z. Articular cartilage chondrocytes are more advantageous for generating hyaline-like cartilage than mesenchymal cells isolated from microfracture repairs. Cell Tissue Bank 2001; 2: 23–30.PubMedCrossRef Robinson D, Nevo Z. Articular cartilage chondrocytes are more advantageous for generating hyaline-like cartilage than mesenchymal cells isolated from microfracture repairs. Cell Tissue Bank 2001; 2: 23–30.PubMedCrossRef
35.
Zurück zum Zitat Huang JI, Durbhakula MM, Angele P, et al. Lunate arthroplasty with autologous mesenchymal stem cells in a rabbit model. J Bone Joint Surg Am 2006; 88: 744–752.PubMedCrossRef Huang JI, Durbhakula MM, Angele P, et al. Lunate arthroplasty with autologous mesenchymal stem cells in a rabbit model. J Bone Joint Surg Am 2006; 88: 744–752.PubMedCrossRef
36.
Zurück zum Zitat Shao X, Goh JC, Hutmacher DW, et al. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng 2006; 12: 1539–1551.PubMedCrossRef Shao X, Goh JC, Hutmacher DW, et al. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng 2006; 12: 1539–1551.PubMedCrossRef
37.
Zurück zum Zitat Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002; 10: 199–206.PubMedCrossRef Wakitani S, Imoto K, Yamamoto T, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002; 10: 199–206.PubMedCrossRef
Metadaten
Titel
Mesenchymal stem and progenitor cells for cartilage repair
verfasst von
Nazish Ahmed
William L. Stanford
Rita A. Kandel
Publikationsdatum
01.10.2007
Verlag
Springer-Verlag
Erschienen in
Skeletal Radiology / Ausgabe 10/2007
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-007-0333-3

Weitere Artikel der Ausgabe 10/2007

Skeletal Radiology 10/2007 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.