Skip to main content
Erschienen in: European Radiology 2/2022

21.08.2021 | Imaging Informatics and Artificial Intelligence

Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning

verfasst von: Yiming Li, Dong Wei, Xing Liu, Xing Fan, Kai Wang, Shaowu Li, Zhong Zhang, Kai Ma, Tianyi Qian, Tao Jiang, Yefeng Zheng, Yinyan Wang

Erschienen in: European Radiology | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

The molecular subtyping of diffuse gliomas is important. The aim of this study was to establish predictive models based on preoperative multiparametric MRI.

Methods

A total of 1016 diffuse glioma patients were retrospectively collected from Beijing Tiantan Hospital. Patients were randomly divided into the training (n = 780) and validation (n = 236) sets. According to the 2016 WHO classification, diffuse gliomas can be classified into four binary classification tasks (tasks I–IV). Predictive models based on radiomics and deep convolutional neural network (DCNN) were developed respectively, and their performances were compared with receiver operating characteristic (ROC) curves. Additionally, the radiomics and DCNN features were visualized and compared with the t-distributed stochastic neighbor embedding technique and Spearman’s correlation test.

Results

In the training set, areas under the curves (AUCs) of the DCNN models (ranging from 0.99 to 1.00) outperformed the radiomics models in all tasks, and the accuracies of the DCNN models (ranging from 0.90 to 0.94) outperformed the radiomics models in tasks I, II, and III. In the independent validation set, the accuracies of the DCNN models outperformed the radiomics models in all tasks (0.74–0.83), and the AUCs of the DCNN models (0.85–0.89) outperformed the radiomics models in tasks I, II, and III. DCNN features demonstrated more superior discriminative capability than the radiomics features in feature visualization analysis, and their general correlations were weak.

Conclusions

Both the radiomics and DCNN models could preoperatively predict the molecular subtypes of diffuse gliomas, and the latter performed better in most circumstances.

Key Points

• The molecular subtypes of diffuse gliomas could be predicted with MRI.
• Deep learning features tend to outperform radiomics features in large cohorts.
• The correlation between the radiomics features and DCNN features was low.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR (2019) Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol 15:405–417CrossRef Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR (2019) Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol 15:405–417CrossRef
2.
Zurück zum Zitat Jiang T, Mao Y, Ma W et al (2016) CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 375:263–273CrossRef Jiang T, Mao Y, Ma W et al (2016) CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett 375:263–273CrossRef
3.
Zurück zum Zitat Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRef Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRef
4.
Zurück zum Zitat van den Bent MJ (2010) Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol 120:297–304CrossRef van den Bent MJ (2010) Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol 120:297–304CrossRef
5.
Zurück zum Zitat Sturm D, Orr BA, Toprak UH et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:1060–1072CrossRef Sturm D, Orr BA, Toprak UH et al (2016) New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 164:1060–1072CrossRef
6.
Zurück zum Zitat Lin AL, DeAngelis LM (2017) Reappraising the 2016 WHO classification for diffuse glioma. Neuro Oncol 19:609–610CrossRef Lin AL, DeAngelis LM (2017) Reappraising the 2016 WHO classification for diffuse glioma. Neuro Oncol 19:609–610CrossRef
7.
Zurück zum Zitat Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. The Lancet 392:432–446CrossRef Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. The Lancet 392:432–446CrossRef
8.
Zurück zum Zitat Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820CrossRef Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131:803–820CrossRef
9.
Zurück zum Zitat Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M (2017) Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol 14:434–452CrossRef Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M (2017) Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol 14:434–452CrossRef
10.
Zurück zum Zitat Iuchi T, Sugiyama T, Ohira M et al (2018) Clinical significance of the 2016 WHO classification in Japanese patients with gliomas. Brain Tumor Pathol 35:71–80CrossRef Iuchi T, Sugiyama T, Ohira M et al (2018) Clinical significance of the 2016 WHO classification in Japanese patients with gliomas. Brain Tumor Pathol 35:71–80CrossRef
11.
Zurück zum Zitat Cimino PJ, Zager M, McFerrin L et al (2017) Multidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery. Acta Neuropathol Commun 5:39CrossRef Cimino PJ, Zager M, McFerrin L et al (2017) Multidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery. Acta Neuropathol Commun 5:39CrossRef
12.
Zurück zum Zitat Tabouret E, Nguyen AT, Dehais C et al (2016) Prognostic impact of the 2016 WHO classification of diffuse gliomas in the French POLA cohort. Acta Neuropathol 132:625–634CrossRef Tabouret E, Nguyen AT, Dehais C et al (2016) Prognostic impact of the 2016 WHO classification of diffuse gliomas in the French POLA cohort. Acta Neuropathol 132:625–634CrossRef
13.
Zurück zum Zitat Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef
14.
Zurück zum Zitat Bi WL, Hosny A, Schabath MB et al (2019) Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 69:127–157PubMedPubMedCentral Bi WL, Hosny A, Schabath MB et al (2019) Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 69:127–157PubMedPubMedCentral
15.
Zurück zum Zitat Huang Y-q, Liang C-h, He L et al (2016) Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164CrossRef Huang Y-q, Liang C-h, He L et al (2016) Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164CrossRef
16.
Zurück zum Zitat Kickingereder P, GötzMuschelli MJ et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22:5765–5771CrossRef Kickingereder P, GötzMuschelli MJ et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22:5765–5771CrossRef
17.
Zurück zum Zitat Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762CrossRef
18.
Zurück zum Zitat Napel S, Mu W, Jardim-Perassi BV, Aerts H, Gillies RJ (2018) Quantitative imaging of cancer in the postgenomic era: radio(geno)mics, deep learning, and habitats. Cancer 124:4633–4649CrossRef Napel S, Mu W, Jardim-Perassi BV, Aerts H, Gillies RJ (2018) Quantitative imaging of cancer in the postgenomic era: radio(geno)mics, deep learning, and habitats. Cancer 124:4633–4649CrossRef
20.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
21.
Zurück zum Zitat Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118CrossRef Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118CrossRef
22.
Zurück zum Zitat Gulshan V, Peng L, Coram M et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410CrossRef Gulshan V, Peng L, Coram M et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410CrossRef
23.
Zurück zum Zitat Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39:1201–1207CrossRef Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39:1201–1207CrossRef
24.
Zurück zum Zitat Liang S, Zhang R, Liang D et al (2018) Multimodal 3D DenseNet for IDH genotype prediction in gliomas. Genes (Basel) 9 Liang S, Zhang R, Liang D et al (2018) Multimodal 3D DenseNet for IDH genotype prediction in gliomas. Genes (Basel) 9
26.
Zurück zum Zitat Lu CF, Hsu FT, Hsieh KL et al (2018) Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24:4429–4436CrossRef Lu CF, Hsu FT, Hsieh KL et al (2018) Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res 24:4429–4436CrossRef
27.
Zurück zum Zitat van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107CrossRef van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107CrossRef
28.
Zurück zum Zitat Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J Roy Stat Soc: Ser B (Methodol) 58:267–288 Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J Roy Stat Soc: Ser B (Methodol) 58:267–288
29.
Zurück zum Zitat Hsu C-W, Chang C-C, Lin C-J (2003) A practical guide to support vector classification. Technical Report, Department of Computer Science and Information Engineering, University of National Taiwan: 1–12. Hsu C-W, Chang C-C, Lin C-J (2003) A practical guide to support vector classification. Technical Report, Department of Computer Science and Information Engineering, University of National Taiwan: 1–12.
30.
Zurück zum Zitat Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36:1140–1152CrossRef Orru G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci Biobehav Rev 36:1140–1152CrossRef
31.
Zurück zum Zitat He K, Zhang, X., Ren, S. and Sun, J. (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:770–778 He K, Zhang, X., Ren, S. and Sun, J. (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition:770–778
32.
Zurück zum Zitat Zhou B, et al (2016) Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Zhou B, et al (2016) Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
33.
Zurück zum Zitat Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRef Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRef
34.
Zurück zum Zitat Zhang B, Chang K, Ramkissoon S et al (2017) Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol 19:109–117CrossRef Zhang B, Chang K, Ramkissoon S et al (2017) Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol 19:109–117CrossRef
35.
Zurück zum Zitat Grossmann P, Narayan V, Chang K et al (2017) Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 19:1688–1697CrossRef Grossmann P, Narayan V, Chang K et al (2017) Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 19:1688–1697CrossRef
37.
Zurück zum Zitat Wang S, Shi J, Ye Z et al (2019) Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J 53 Wang S, Shi J, Ye Z et al (2019) Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J 53
38.
Zurück zum Zitat Ting DSW, Cheung CY, Lim G et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318:2211–2223CrossRef Ting DSW, Cheung CY, Lim G et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318:2211–2223CrossRef
39.
Zurück zum Zitat Bush NA, Butowski N (2017) The effect of molecular diagnostics on the treatment of glioma. Curr Oncol Rep 19:26CrossRef Bush NA, Butowski N (2017) The effect of molecular diagnostics on the treatment of glioma. Curr Oncol Rep 19:26CrossRef
40.
Zurück zum Zitat Koriyama S, Nitta M, Kobayashi T et al (2018) A surgical strategy for lower grade gliomas using intraoperative molecular diagnosis. Brain Tumor Pathol 35:159–167CrossRef Koriyama S, Nitta M, Kobayashi T et al (2018) A surgical strategy for lower grade gliomas using intraoperative molecular diagnosis. Brain Tumor Pathol 35:159–167CrossRef
41.
Zurück zum Zitat Wirsching HG, Weller M (2016) The role of molecular diagnostics in the management of patients with gliomas. Curr Treat Options Oncol 17:51CrossRef Wirsching HG, Weller M (2016) The role of molecular diagnostics in the management of patients with gliomas. Curr Treat Options Oncol 17:51CrossRef
Metadaten
Titel
Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning
verfasst von
Yiming Li
Dong Wei
Xing Liu
Xing Fan
Kai Wang
Shaowu Li
Zhong Zhang
Kai Ma
Tianyi Qian
Tao Jiang
Yefeng Zheng
Yinyan Wang
Publikationsdatum
21.08.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-021-08237-6

Weitere Artikel der Ausgabe 2/2022

European Radiology 2/2022 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.