Skip to main content
Erschienen in: Der Nervenarzt 6/2014

01.06.2014 | Leitthema

Neuroimaging in der Psychiatrie

Multivariate Analysetechniken zur Diagnostik und Verlaufsprädiktion

verfasst von: J. Kambeitz, PD Dr. N. Koutsouleris

Erschienen in: Der Nervenarzt | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Zusammenfassung

Hintergrund

Multivariate Analysetechniken konnten in vielfachen Studien die Möglichkeit der Anwendung von Neurobildgebungsdaten im klinischen Alltag demonstrieren.

Ziel der Arbeit

Der Beitrag fasst die aktuellen Forschungsergebnisse und klinischen Anwendungen von Neurobildgebungsdaten in der Psychiatrie zusammen.

Material und Methoden

Es wird eine Literaturübersicht über aktuelle Studien gegeben.

Ergebnisse

Aktuelle Forschungsergebnisse im Bereich der Depression, Schizophrenie, bipolaren Störung und demenzieller Erkrankungen legen die klinische Anwendung von Neurobildgebungsdaten zur Diagnosestellung, Differenzialdiagnose und Verlaufsprädiktion nahe.

Diskussion

Bisher besteht eine heterogene Studienlage mit teilweise vielversprechenden Ergebnissen. Weitere systematische, multizentrische Untersuchungen von verschiedenen, klar definierten Patientenpopulationen sind notwendig, um letztendlich die klinische Nutzung von Bildgebungsdaten zu ermöglichen.
Literatur
1.
Zurück zum Zitat Zanetti MV, Schaufelberger MS, Doshi J et al (2013) Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 43:116–125. doi:10.1016/j.pnpbp.2012.12.005PubMedCrossRef Zanetti MV, Schaufelberger MS, Doshi J et al (2013) Neuroanatomical pattern classification in a population-based sample of first-episode schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 43:116–125. doi:10.1016/j.pnpbp.2012.12.005PubMedCrossRef
2.
Zurück zum Zitat Pettersson-Yeo W, Benetti S, Marquand AF et al (2013) Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychol Med 1–16. doi:10.1017/S003329171300024X Pettersson-Yeo W, Benetti S, Marquand AF et al (2013) Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychol Med 1–16. doi:10.1017/S003329171300024X
3.
Zurück zum Zitat Greenstein D, Malley JD, Weisinger B et al (2012) Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls. Front Psychiatry 3:53. doi:10.3389/fpsyt.2012.00053PubMedCentralPubMedCrossRef Greenstein D, Malley JD, Weisinger B et al (2012) Using multivariate machine learning methods and structural MRI to classify childhood onset schizophrenia and healthy controls. Front Psychiatry 3:53. doi:10.3389/fpsyt.2012.00053PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Ota M, Sato N, Ishikawa M et al (2012) Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel-based morphometry. Psychiatry Clin Neurosci 66:611–617. doi:10.1111/j.1440-1819.2012.02397.xPubMedCrossRef Ota M, Sato N, Ishikawa M et al (2012) Discrimination of female schizophrenia patients from healthy women using multiple structural brain measures obtained with voxel-based morphometry. Psychiatry Clin Neurosci 66:611–617. doi:10.1111/j.1440-1819.2012.02397.xPubMedCrossRef
5.
Zurück zum Zitat Liu F, Guo W, Yu D et al (2012) Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PloS One 7:e40968. doi:10.1371/journal.pone.0040968PubMedCentralPubMedCrossRef Liu F, Guo W, Yu D et al (2012) Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PloS One 7:e40968. doi:10.1371/journal.pone.0040968PubMedCentralPubMedCrossRef
6.
Zurück zum Zitat Nieuwenhuis M, Haren NEM van, Hulshoff Pol HE et al (2012) Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage 61:606–612. doi:10.1016/j.neuroimage.2012.03.079PubMedCrossRef Nieuwenhuis M, Haren NEM van, Hulshoff Pol HE et al (2012) Classification of schizophrenia patients and healthy controls from structural MRI scans in two large independent samples. NeuroImage 61:606–612. doi:10.1016/j.neuroimage.2012.03.079PubMedCrossRef
7.
Zurück zum Zitat Borgwardt S, Koutsouleris N, Aston J et al (2012) Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition. Schizophr Bull. doi:10.1093/schbul/sbs095 Borgwardt S, Koutsouleris N, Aston J et al (2012) Distinguishing prodromal from first-episode psychosis using neuroanatomical single-subject pattern recognition. Schizophr Bull. doi:10.1093/schbul/sbs095
8.
Zurück zum Zitat Karageorgiou E, Schulz SC, Gollub RL et al (2011) Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses. Neuroinformatics 9:321–333. doi:10.1007/s12021-010-9094-6PubMedCentralPubMedCrossRef Karageorgiou E, Schulz SC, Gollub RL et al (2011) Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses. Neuroinformatics 9:321–333. doi:10.1007/s12021-010-9094-6PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Takayanagi Y, Takahashi T, Orikabe L et al (2011) Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness. PloS One 6:e21047. doi:10.1371/journal.pone.0021047PubMedCentralPubMedCrossRef Takayanagi Y, Takahashi T, Orikabe L et al (2011) Classification of first-episode schizophrenia patients and healthy subjects by automated MRI measures of regional brain volume and cortical thickness. PloS One 6:e21047. doi:10.1371/journal.pone.0021047PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Santos PE, Thomaz CE, Santos D dos et al (2010) Exploring the knowledge contained in neuroimages: statistical discriminant analysis and automatic segmentation of the most significant changes. Artif Intell Med 49:105–115. doi:10.1016/j.artmed.2010.03.003PubMedCrossRef Santos PE, Thomaz CE, Santos D dos et al (2010) Exploring the knowledge contained in neuroimages: statistical discriminant analysis and automatic segmentation of the most significant changes. Artif Intell Med 49:105–115. doi:10.1016/j.artmed.2010.03.003PubMedCrossRef
11.
Zurück zum Zitat Rathi Y, Malcolm J, Michailovich O et al (2010) Biomarkers for identifying first-episode schizophrenia patients using diffusion weighted imaging. Med Image Comput Comput Assist Interv 13:657–665PubMedCentralPubMed Rathi Y, Malcolm J, Michailovich O et al (2010) Biomarkers for identifying first-episode schizophrenia patients using diffusion weighted imaging. Med Image Comput Comput Assist Interv 13:657–665PubMedCentralPubMed
12.
Zurück zum Zitat Kasparek T, Thomaz CE, Sato JR et al (2011) Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects. Psychiatry Res 191:174–181. doi:10.1016/j.pscychresns.2010.09.016PubMedCrossRef Kasparek T, Thomaz CE, Sato JR et al (2011) Maximum-uncertainty linear discrimination analysis of first-episode schizophrenia subjects. Psychiatry Res 191:174–181. doi:10.1016/j.pscychresns.2010.09.016PubMedCrossRef
13.
Zurück zum Zitat Shen H, Wang L, Liu Y, Hu D (2010) Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage 49:3110–3121. doi:10.1016/j.neuroimage.2009.11.011PubMedCrossRef Shen H, Wang L, Liu Y, Hu D (2010) Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage 49:3110–3121. doi:10.1016/j.neuroimage.2009.11.011PubMedCrossRef
14.
Zurück zum Zitat Bansal R, Staib LH, Laine AF et al (2012) Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PloS One 7:e50698. doi:10.1371/journal.pone.0050698PubMedCentralPubMedCrossRef Bansal R, Staib LH, Laine AF et al (2012) Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PloS One 7:e50698. doi:10.1371/journal.pone.0050698PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Sun D, Erp TGM van, Thompson PM et al (2009) Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms. Biol Psychiatry 66:1055–1060. doi:10.1016/j.biopsych.2009.07.019PubMedCentralPubMedCrossRef Sun D, Erp TGM van, Thompson PM et al (2009) Elucidating a magnetic resonance imaging-based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms. Biol Psychiatry 66:1055–1060. doi:10.1016/j.biopsych.2009.07.019PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Fan Y, Shen D, Gur RC et al (2007) COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans Med Imaging 26:93–105. doi:10.1109/TMI.2006.886812PubMedCrossRef Fan Y, Shen D, Gur RC et al (2007) COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans Med Imaging 26:93–105. doi:10.1109/TMI.2006.886812PubMedCrossRef
17.
Zurück zum Zitat Kawasaki Y, Suzuki M, Kherif F et al (2007) Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage 34:235–242. doi:10.1016/j.neuroimage.2006.08.018PubMedCrossRef Kawasaki Y, Suzuki M, Kherif F et al (2007) Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage 34:235–242. doi:10.1016/j.neuroimage.2006.08.018PubMedCrossRef
18.
Zurück zum Zitat Yushkevich P, Dubb A, Xie Z et al (2005) Regional structural characterization of the brain of schizophrenia patients. Acad Radiol 12:1250–1261. doi:10.1016/j.acra.2005.06.014PubMedCrossRef Yushkevich P, Dubb A, Xie Z et al (2005) Regional structural characterization of the brain of schizophrenia patients. Acad Radiol 12:1250–1261. doi:10.1016/j.acra.2005.06.014PubMedCrossRef
19.
Zurück zum Zitat Nakamura K, Kawasaki Y, Suzuki M et al (2004) Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects. Schizophr Bull 30:393–404PubMedCrossRef Nakamura K, Kawasaki Y, Suzuki M et al (2004) Multiple structural brain measures obtained by three-dimensional magnetic resonance imaging to distinguish between schizophrenia patients and normal subjects. Schizophr Bull 30:393–404PubMedCrossRef
20.
Zurück zum Zitat Yoon JH, Nguyen DV, McVay LM et al (2012) Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia. Schizophr Res 135:28–33. doi:10.1016/j.schres.2012.01.001PubMedCentralPubMedCrossRef Yoon JH, Nguyen DV, McVay LM et al (2012) Automated classification of fMRI during cognitive control identifies more severely disorganized subjects with schizophrenia. Schizophr Res 135:28–33. doi:10.1016/j.schres.2012.01.001PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Du W, Calhoun VD, Li H et al (2012) High classification accuracy for schizophrenia with rest and task FMRI data. Front Hum Neurosci 6:145. doi:10.3389/fnhum.2012.00145PubMedCentralPubMedCrossRef Du W, Calhoun VD, Li H et al (2012) High classification accuracy for schizophrenia with rest and task FMRI data. Front Hum Neurosci 6:145. doi:10.3389/fnhum.2012.00145PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Anderson A, Dinov ID, Sherin JE et al (2010) Classification of spatially unaligned fMRI scans. NeuroImage 49:2509–2519. doi:10.1016/j.neuroimage.2009.08.036PubMedCentralPubMedCrossRef Anderson A, Dinov ID, Sherin JE et al (2010) Classification of spatially unaligned fMRI scans. NeuroImage 49:2509–2519. doi:10.1016/j.neuroimage.2009.08.036PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Yang H, Liu J, Sui J et al (2010) A hybrid machine learning method for fusing fmri and genetic data: combining both improves classification of schizophrenia. Front Hum Neurosci 4:192. doi:10.3389/fnhum.2010.00192PubMedCentralPubMedCrossRef Yang H, Liu J, Sui J et al (2010) A hybrid machine learning method for fusing fmri and genetic data: combining both improves classification of schizophrenia. Front Hum Neurosci 4:192. doi:10.3389/fnhum.2010.00192PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Costafreda SG, Brébion G, Allen P et al (2008) Affective modulation of external misattribution bias in source monitoring in schizophrenia. Psychol Med 38:821–824. doi:10.1017/S0033291708003243PubMedCrossRef Costafreda SG, Brébion G, Allen P et al (2008) Affective modulation of external misattribution bias in source monitoring in schizophrenia. Psychol Med 38:821–824. doi:10.1017/S0033291708003243PubMedCrossRef
25.
Zurück zum Zitat Shi F, Liu Y, Jiang T et al (2007) Regional homogeneity and anatomical parcellation for fMRI image classification: application to schizophrenia and normal controls. Med Image Comput Comput Assist Interv 10:136–143PubMed Shi F, Liu Y, Jiang T et al (2007) Regional homogeneity and anatomical parcellation for fMRI image classification: application to schizophrenia and normal controls. Med Image Comput Comput Assist Interv 10:136–143PubMed
26.
Zurück zum Zitat Hu X, Zhu D, Lv P et al (2013) Fine-granularity functional interaction signatures for characterization of brain conditions. Neuroinformatics. doi:10.1007/s12021-013-9177-2 Hu X, Zhu D, Lv P et al (2013) Fine-granularity functional interaction signatures for characterization of brain conditions. Neuroinformatics. doi:10.1007/s12021-013-9177-2
27.
Zurück zum Zitat Fekete T, Wilf M, Rubin D et al (2013) Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PloS One 8:e62867. doi:10.1371/journal.pone.0062867PubMedCentralPubMedCrossRef Fekete T, Wilf M, Rubin D et al (2013) Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PloS One 8:e62867. doi:10.1371/journal.pone.0062867PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Bassett DS, Nelson BG, Mueller BA et al (2012) Altered resting state complexity in schizophrenia. NeuroImage 59:2196–2207. doi:10.1016/j.neuroimage.2011.10.002PubMedCentralPubMedCrossRef Bassett DS, Nelson BG, Mueller BA et al (2012) Altered resting state complexity in schizophrenia. NeuroImage 59:2196–2207. doi:10.1016/j.neuroimage.2011.10.002PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Tang Y, Wang L, Cao F, Tan L (2012) Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis. Biomed Eng Online 11:50. doi:10.1186/1475-925X-11-50PubMedCentralPubMedCrossRef Tang Y, Wang L, Cao F, Tan L (2012) Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis. Biomed Eng Online 11:50. doi:10.1186/1475-925X-11-50PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Fan Y, Liu Y, Wu H et al (2011) Discriminant analysis of functional connectivity patterns on grassmann manifold. NeuroImage 56:2058–2067. doi:10.1016/j.neuroimage.2011.03.051PubMedCrossRef Fan Y, Liu Y, Wu H et al (2011) Discriminant analysis of functional connectivity patterns on grassmann manifold. NeuroImage 56:2058–2067. doi:10.1016/j.neuroimage.2011.03.051PubMedCrossRef
31.
Zurück zum Zitat Guo S, Kendrick KM, Yu R et al (2012) Key functional circuitry altered in schizophrenia involves parietal regions associated with sense of self. Hum Brain Mapp. http://onlinelibrary.wiley.com/doi/10.1002/hbm.22162/full. Zugegriffen: 13. Juni 2013 Guo S, Kendrick KM, Yu R et al (2012) Key functional circuitry altered in schizophrenia involves parietal regions associated with sense of self. Hum Brain Mapp. http://​onlinelibrary.​wiley.​com/​doi/​10.​1002/​hbm.​22162/​full.​ Zugegriffen: 13. Juni 2013
32.
Zurück zum Zitat Bose SK, Turkheimer FE, Howes OD et al (2008) Classification of schizophrenic patients and healthy controls using [18F] fluorodopa PET imaging. Schizophr Res 106:148–155. doi:10.1016/j.schres.2008.09.011PubMedCrossRef Bose SK, Turkheimer FE, Howes OD et al (2008) Classification of schizophrenic patients and healthy controls using [18F] fluorodopa PET imaging. Schizophr Res 106:148–155. doi:10.1016/j.schres.2008.09.011PubMedCrossRef
33.
Zurück zum Zitat Levy AV, Gomez-Mont F, Volkow ND et al (1992) Spatial low frequency pattern analysis in positron emission tomography: a study between normals and schizophrenics. J Nucl Med 33:287–295PubMed Levy AV, Gomez-Mont F, Volkow ND et al (1992) Spatial low frequency pattern analysis in positron emission tomography: a study between normals and schizophrenics. J Nucl Med 33:287–295PubMed
34.
Zurück zum Zitat Josin GM, Liddle PF (2001) Neural network analysis of the pattern of functional connectivity between cerebral areas in schizophrenia. Biol Cybern 84:117–122PubMedCrossRef Josin GM, Liddle PF (2001) Neural network analysis of the pattern of functional connectivity between cerebral areas in schizophrenia. Biol Cybern 84:117–122PubMedCrossRef
35.
Zurück zum Zitat Ardekani BA, Tabesh A, Sevy S et al (2011) Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp 32:1–9. doi:10.1002/hbm.20995PubMedCentralPubMedCrossRef Ardekani BA, Tabesh A, Sevy S et al (2011) Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp 32:1–9. doi:10.1002/hbm.20995PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Fu CHY, Mourao-Miranda J, Costafreda SG et al (2008) Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry 63:656–662. doi:10.1016/j.biopsych.2007.08.020PubMedCrossRef Fu CHY, Mourao-Miranda J, Costafreda SG et al (2008) Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry 63:656–662. doi:10.1016/j.biopsych.2007.08.020PubMedCrossRef
37.
Zurück zum Zitat Hahn T, Marquand AF, Ehlis A-C et al (2011) Integrating neurobiological markers of depression. Arch Gen Psychiatry 68:361–368. doi:10.1001/archgenpsychiatry.2010.178PubMedCrossRef Hahn T, Marquand AF, Ehlis A-C et al (2011) Integrating neurobiological markers of depression. Arch Gen Psychiatry 68:361–368. doi:10.1001/archgenpsychiatry.2010.178PubMedCrossRef
38.
Zurück zum Zitat Marquand AF, Mourão-Miranda J, Brammer MJ et al (2008) Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neuroreport 19:1507–1511. doi:10.1097/WNR.0b013e328310425ePubMedCrossRef Marquand AF, Mourão-Miranda J, Brammer MJ et al (2008) Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neuroreport 19:1507–1511. doi:10.1097/WNR.0b013e328310425ePubMedCrossRef
39.
Zurück zum Zitat Nouretdinov I, Costafreda SG, Gammerman A et al (2011) Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage 56:809–813. doi:10.1016/j.neuroimage.2010.05.023PubMedCrossRef Nouretdinov I, Costafreda SG, Gammerman A et al (2011) Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage 56:809–813. doi:10.1016/j.neuroimage.2010.05.023PubMedCrossRef
40.
Zurück zum Zitat Mwangi B, Ebmeier KP, Matthews K, Steele JD (2012) Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain J Neurol 135:1508–1521. doi:10.1093/brain/aws084CrossRef Mwangi B, Ebmeier KP, Matthews K, Steele JD (2012) Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain J Neurol 135:1508–1521. doi:10.1093/brain/aws084CrossRef
41.
Zurück zum Zitat Guo H, Cao X, Liu Z et al (2012) Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. Neuroreport 23:1006–1011. doi:10.1097/WNR.0b013e32835a650cPubMedCrossRef Guo H, Cao X, Liu Z et al (2012) Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. Neuroreport 23:1006–1011. doi:10.1097/WNR.0b013e32835a650cPubMedCrossRef
42.
Zurück zum Zitat Cao L, Guo S, Xue Z et al (2014) Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis. Psychiatry Clin Neurosci 68:110–119. doi:10.1111/pcn.12106PubMedCrossRef Cao L, Guo S, Xue Z et al (2014) Aberrant functional connectivity for diagnosis of major depressive disorder: a discriminant analysis. Psychiatry Clin Neurosci 68:110–119. doi:10.1111/pcn.12106PubMedCrossRef
43.
Zurück zum Zitat Wei M, Qin J, Yan R et al (2013) Identifying major depressive disorder using Hurst exponent of resting-state brain networks. Psychiatry Res 214:306–312. doi:10.1016/j.pscychresns.2013.09.008PubMedCrossRef Wei M, Qin J, Yan R et al (2013) Identifying major depressive disorder using Hurst exponent of resting-state brain networks. Psychiatry Res 214:306–312. doi:10.1016/j.pscychresns.2013.09.008PubMedCrossRef
44.
Zurück zum Zitat Ma Q, Zeng L-L, Shen H et al (2013) Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res 1495:86–94. doi:10.1016/j.brainres.2012.12.002PubMedCrossRef Ma Q, Zeng L-L, Shen H et al (2013) Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res 1495:86–94. doi:10.1016/j.brainres.2012.12.002PubMedCrossRef
45.
Zurück zum Zitat Zeng L-L, Shen H, Liu L et al (2012) Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain J Neurol 135:1498–1507. doi:10.1093/brain/aws059CrossRef Zeng L-L, Shen H, Liu L et al (2012) Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain J Neurol 135:1498–1507. doi:10.1093/brain/aws059CrossRef
46.
Zurück zum Zitat Mwangi B, Matthews K, Steele JD (2012) Prediction of illness severity in patients with major depression using structural MR brain scans. J Magn Reson Imaging 35:64–71. doi:10.1002/jmri.22806PubMedCrossRef Mwangi B, Matthews K, Steele JD (2012) Prediction of illness severity in patients with major depression using structural MR brain scans. J Magn Reson Imaging 35:64–71. doi:10.1002/jmri.22806PubMedCrossRef
47.
Zurück zum Zitat Teng S, Lu C-F, Wang P-S et al (2013) Classification of bipolar disorder using basal-ganglia-related functional connectivity in the resting state. Conf Proc IEEE Eng Med Biol Soc 2013:1057–1060. doi:10.1109/EMBC.2013.6609686PubMed Teng S, Lu C-F, Wang P-S et al (2013) Classification of bipolar disorder using basal-ganglia-related functional connectivity in the resting state. Conf Proc IEEE Eng Med Biol Soc 2013:1057–1060. doi:10.1109/EMBC.2013.6609686PubMed
48.
Zurück zum Zitat Rocha-Rego V, Jogia J, Marquand AF et al (2014) Examination of the predictive value of structural magnetic resonance scans in bipolar disorder: a pattern classification approach. Psychol Med 44:519–532. doi:10.1017/S0033291713001013PubMedCentralPubMedCrossRef Rocha-Rego V, Jogia J, Marquand AF et al (2014) Examination of the predictive value of structural magnetic resonance scans in bipolar disorder: a pattern classification approach. Psychol Med 44:519–532. doi:10.1017/S0033291713001013PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Schnack HG, Nieuwenhuis M, Haren NEM van et al (2014) Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage 84:299–306. doi:10.1016/j.neuroimage.2013.08.053PubMedCrossRef Schnack HG, Nieuwenhuis M, Haren NEM van et al (2014) Can structural MRI aid in clinical classification? A machine learning study in two independent samples of patients with schizophrenia, bipolar disorder and healthy subjects. NeuroImage 84:299–306. doi:10.1016/j.neuroimage.2013.08.053PubMedCrossRef
50.
Zurück zum Zitat Patwardhan MB, McCrory DC, Matchar DB et al (2004) Alzheimer disease: operating characteristics of PET – a meta-analysis. Radiology 231:73–80. doi:10.1148/radiol.2311021620PubMedCrossRef Patwardhan MB, McCrory DC, Matchar DB et al (2004) Alzheimer disease: operating characteristics of PET – a meta-analysis. Radiology 231:73–80. doi:10.1148/radiol.2311021620PubMedCrossRef
51.
Zurück zum Zitat Klöppel S, Stonnington CM, Barnes J et al (2008) Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method. Brain J Neurol 131:2969–2974. doi:10.1093/brain/awn239CrossRef Klöppel S, Stonnington CM, Barnes J et al (2008) Accuracy of dementia diagnosis: a direct comparison between radiologists and a computerized method. Brain J Neurol 131:2969–2974. doi:10.1093/brain/awn239CrossRef
52.
Zurück zum Zitat Grotegerd D, Stuhrmann A, Kugel H et al (2013) Amygdala excitability to subliminally presented emotional faces distinguishes unipolar and bipolar depression: an fMRI and pattern classification study. Hum Brain Mapp. doi:10.1002/hbm.22380 Grotegerd D, Stuhrmann A, Kugel H et al (2013) Amygdala excitability to subliminally presented emotional faces distinguishes unipolar and bipolar depression: an fMRI and pattern classification study. Hum Brain Mapp. doi:10.1002/hbm.22380
53.
Zurück zum Zitat Mourão-Miranda J, Almeida JRC, Hassel S et al (2012) Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disord 14:451–460. doi:10.1111/j.1399-5618.2012.01019.xPubMedCentralPubMedCrossRef Mourão-Miranda J, Almeida JRC, Hassel S et al (2012) Pattern recognition analyses of brain activation elicited by happy and neutral faces in unipolar and bipolar depression. Bipolar Disord 14:451–460. doi:10.1111/j.1399-5618.2012.01019.xPubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Serpa MH, Ou Y, Schaufelberger MS et al (2014) Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar I disorder with 1 year of diagnostic stability. Biomed Res Int 2014:706157. doi:10.1155/2014/706157PubMedCentralPubMedCrossRef Serpa MH, Ou Y, Schaufelberger MS et al (2014) Neuroanatomical classification in a population-based sample of psychotic major depression and bipolar I disorder with 1 year of diagnostic stability. Biomed Res Int 2014:706157. doi:10.1155/2014/706157PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Ota M, Ishikawa M, Sato N et al (2013) Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain. J Psychiatr Res 47:1383–1388. doi:10.1016/j.jpsychires.2013.06.010PubMedCrossRef Ota M, Ishikawa M, Sato N et al (2013) Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain. J Psychiatr Res 47:1383–1388. doi:10.1016/j.jpsychires.2013.06.010PubMedCrossRef
56.
Zurück zum Zitat Takizawa R, Fukuda M, Kawasaki S et al (2014) Neuroimaging-aided differential diagnosis of the depressive state. NeuroImage 85(Pt 1):498–507. doi:10.1016/j.neuroimage.2013.05.126PubMedCrossRef Takizawa R, Fukuda M, Kawasaki S et al (2014) Neuroimaging-aided differential diagnosis of the depressive state. NeuroImage 85(Pt 1):498–507. doi:10.1016/j.neuroimage.2013.05.126PubMedCrossRef
57.
Zurück zum Zitat Davatzikos C, Resnick SM, Wu X et al (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage 41:1220–1227. doi:10.1016/j.neuroimage.2008.03.050PubMedCentralPubMedCrossRef Davatzikos C, Resnick SM, Wu X et al (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage 41:1220–1227. doi:10.1016/j.neuroimage.2008.03.050PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Costafreda SG, Chu C, Ashburner J, Fu CH (2009) Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS One 4:e6353PubMedCentralPubMedCrossRef Costafreda SG, Chu C, Ashburner J, Fu CH (2009) Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS One 4:e6353PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Costafreda SG, Khanna A, Mourao-Miranda J, Fu CHY (2009) Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport 20:637–641. doi:10.1097/WNR.0b013e3283294159PubMedCrossRef Costafreda SG, Khanna A, Mourao-Miranda J, Fu CHY (2009) Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport 20:637–641. doi:10.1097/WNR.0b013e3283294159PubMedCrossRef
60.
Zurück zum Zitat Gong Q, Wu Q, Scarpazza C et al (2011) Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage 55:1497–1503. doi:10.1016/j.neuroimage.2010.11.079PubMedCrossRef Gong Q, Wu Q, Scarpazza C et al (2011) Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage 55:1497–1503. doi:10.1016/j.neuroimage.2010.11.079PubMedCrossRef
61.
Zurück zum Zitat Koutsouleris N, Gaser C, Bottlender R et al (2010) Use of neuroanatomical pattern regression to predict the structural brain dynamics of vulnerability and transition to psychosis. Schizophr Res 123:175–187. doi:10.1016/j.schres.2010.08.032PubMedCrossRef Koutsouleris N, Gaser C, Bottlender R et al (2010) Use of neuroanatomical pattern regression to predict the structural brain dynamics of vulnerability and transition to psychosis. Schizophr Res 123:175–187. doi:10.1016/j.schres.2010.08.032PubMedCrossRef
62.
Zurück zum Zitat Koutsouleris N, Borgwardt S, Meisenzahl EM et al (2012) Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study. Schizophr Bull 38:1234–1246. doi:10.1093/schbul/sbr145PubMedCentralPubMedCrossRef Koutsouleris N, Borgwardt S, Meisenzahl EM et al (2012) Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study. Schizophr Bull 38:1234–1246. doi:10.1093/schbul/sbr145PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Davatzikos C, Fan Y, Wu X et al (2008) Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol Aging 29:514–523. doi:10.1016/j.neurobiolaging.2006.11.010PubMedCentralPubMedCrossRef Davatzikos C, Fan Y, Wu X et al (2008) Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol Aging 29:514–523. doi:10.1016/j.neurobiolaging.2006.11.010PubMedCentralPubMedCrossRef
64.
Zurück zum Zitat Fan Y, Resnick SM, Wu X, Davatzikos C (2008) Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. NeuroImage 41:277–285. doi:10.1016/j.neuroimage.2008.02.043PubMedCentralPubMedCrossRef Fan Y, Resnick SM, Wu X, Davatzikos C (2008) Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. NeuroImage 41:277–285. doi:10.1016/j.neuroimage.2008.02.043PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Fan Y, Batmanghelich N, Clark CM et al (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39:1731–1743. doi:10.1016/j.neuroimage.2007.10.031PubMedCentralPubMedCrossRef Fan Y, Batmanghelich N, Clark CM et al (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39:1731–1743. doi:10.1016/j.neuroimage.2007.10.031PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Teipel SJ, Born C, Ewers M et al (2007) Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment. NeuroImage 38:13–24. doi:10.1016/j.neuroimage.2007.07.008PubMedCrossRef Teipel SJ, Born C, Ewers M et al (2007) Multivariate deformation-based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment. NeuroImage 38:13–24. doi:10.1016/j.neuroimage.2007.07.008PubMedCrossRef
67.
Zurück zum Zitat Davatzikos C, Xu F, An Y et al (2009) Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain J Neurol 132:2026–2035. doi:10.1093/brain/awp091CrossRef Davatzikos C, Xu F, An Y et al (2009) Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain J Neurol 132:2026–2035. doi:10.1093/brain/awp091CrossRef
68.
Zurück zum Zitat Gaser C, Franke K, Klöppel S et al (2013) BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PloS One 8:e67346. doi:10.1371/journal.pone.0067346PubMedCentralPubMedCrossRef Gaser C, Franke K, Klöppel S et al (2013) BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PloS One 8:e67346. doi:10.1371/journal.pone.0067346PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Fusar-Poli P, Bonoldi I, Yung AR et al (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69:220–229. doi:10.1001/archgenpsychiatry.2011.1472PubMedCrossRef Fusar-Poli P, Bonoldi I, Yung AR et al (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69:220–229. doi:10.1001/archgenpsychiatry.2011.1472PubMedCrossRef
70.
Zurück zum Zitat Stafford MR, Jackson H, Mayo-Wilson E et al (2013) Early interventions to prevent psychosis: systematic review and meta-analysis. BMJ 346:f185–f185. doi:10.1136/bmj.f185PubMedCentralPubMedCrossRef Stafford MR, Jackson H, Mayo-Wilson E et al (2013) Early interventions to prevent psychosis: systematic review and meta-analysis. BMJ 346:f185–f185. doi:10.1136/bmj.f185PubMedCentralPubMedCrossRef
Metadaten
Titel
Neuroimaging in der Psychiatrie
Multivariate Analysetechniken zur Diagnostik und Verlaufsprädiktion
verfasst von
J. Kambeitz
PD Dr. N. Koutsouleris
Publikationsdatum
01.06.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Der Nervenarzt / Ausgabe 6/2014
Print ISSN: 0028-2804
Elektronische ISSN: 1433-0407
DOI
https://doi.org/10.1007/s00115-014-4022-x

Weitere Artikel der Ausgabe 6/2014

Der Nervenarzt 6/2014 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.