Skip to main content
Erschienen in: Molecular Autism 1/2014

Open Access 01.12.2014 | Short report

Neuropathology of the posteroinferior occipitotemporal gyrus in children with autism

verfasst von: Neha Uppal, Isabella Gianatiempo, Bridget Wicinski, James Schmeidler, Helmut Heinsen, Christoph Schmitz, Joseph D Buxbaum, Patrick R Hof

Erschienen in: Molecular Autism | Ausgabe 1/2014

Abstract

Background

While most neuropathologic studies focus on regions involved in behavioral abnormalities in autism, it is also important to identify whether areas that appear functionally normal are devoid of pathologic alterations. In this study we analyzed the posteroinferior occipitotemporal gyrus, an extrastriate area not considered to be affected in autism. This area borders the fusiform gyrus, which is known to exhibit functional and cellular abnormalities in autism.

Findings

No studies have implicated posteroinferior occipitotemporal gyrus dysfunction in autism, leading us to hypothesize that neuropathology would not occur in this area. We indeed observed no significant differences in pyramidal neuron number or size in layers III, V, and VI in seven pairs of autism and controls.

Conclusions

These findings are consistent with the hypothesis that neuropathology is unique to areas involved in stereotypies and social and emotional behaviors, and support the specificity of the localization of pathology in the fusiform gyrus.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​2040-2392-5-17) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

NU: conception and design, data collection, analysis, and interpretation, manuscript preparation, and final approval of the manuscript. IG: data collection, manuscript preparation, and final approval of the manuscript. BW: data collection, manuscript preparation, and final approval of the manuscript. JS: data analysis and interpretation, critical revision and final approval of the manuscript. HH: processed all materials, critical revision and final approval of the manuscript. CS: conception and design, processed all materials, data interpretation, critical revision, and final approval of the manuscript. JDB: conception and design, data interpretation, critical revision and final approval of the manuscript. PRH: conception and design, data interpretation, manuscript preparation, and final approval of the manuscript. All authors read and approved the final manuscript.
Abkürzungen
FFA
fusiform face area
FG
fusiform gyrus
PIOTG
posteroinferior occipitotemporal gyrus.

Findings

Introduction

Neuropathology in autism is typically characterized by subtle alterations in brain regions known to contribute to the behavioral phenotype of the disorder. However, it is important to consider the degree to which these changes are not widespread, but rather are region- and cell-selective, directly influencing the behavior associated with a particular area (for review, see [1]). To assess this further, we analyzed the posteroinferior occipitotemporal gyrus (PIOTG), an extrastriate area directly adjacent to the fusiform gyrus (FG). The FG, which contains the fusiform face area (FFA), is involved in facial processing and therefore is crucial for social communication [2]. As impaired social communication is characteristic of autism [3], a significant effort has been directed towards determining the underlying areas or circuits that may cause this impairment, which often includes the FFA. Many studies report FFA hypoactivation in patients with autism when observing faces (for example, see [4]) and reduced connectivity [5], which may partly explain the social impairments representative of autism. These abnormalities in functional imaging led van Kooten et al. [6] to determine whether neuropathologic changes substantiate these functional deficits. In line with their hypothesis, the authors found reduced neuronal number, density, and size in layers III, V, and VI in the FG in patients with autism. No differences were observed in the primary visual cortex, suggesting that while the FG may not properly communicate with areas involved in ‘social’ processing, primary visual information processing is not affected in autism.
Because neuropathologic changes are reported in areas that are both behaviorally and functionally affected, of which the PIOTG is seemingly neither, we did not expect differences in number or size of pyramidal neurons in patients with autism. This result would support the specificity of the neuropathologic data reported by van Kooten et al. [6].

Materials and methods

Subjects

A total of 12 postmortem brains were analyzed (one hemisphere per case, excluding one autism case and one control for which both hemispheres were available; see Table 1 for details). Accounting for all hemispheres, seven pairs were analyzed. Age range of the cases spanned several developmental stages in order to identify potential developmental changes in the parameters assessed. Tissue processing was performed as previously described [79]. This work involved exclusively postmortem materials and was approved by Autism Speaks and the Icahn School of Medicine at Mount Sinai Institutional Review Board. All postmortem materials used in this study were directly obtained from Autism Speaks. All necessary consent was obtained in writing by the patients or their next of kin and confirmed at time of death. Demographic and clinical data are shown in Table 1.
Table 1
Demographic and clinical data of patients with autism and controls
Case
Diagnosis
Age (years)
Sex
Hemisphere
Cut/mounted thickness (μm)
PMI (hours)
BW (grams)
Cause of death
Relevant clinical information
ADI-R
425-02
A1
4
M
L
200/178.5
30
1,160
Drowning
Symptoms present at two years
14, 10 (NV), 3
Frequent tantrums and self-injurious behavior
Used parents’ hand to reach objects, echolalia, tendency to walk on his tiptoes
Stereotypic play
15-763-95
C1
4
M
L
600/574.1
3
1,380
Myocardial infarct
No known disorder
425-02
A2
4
M
R
200/165.6
30
1,160
Drowning
Symptoms present at two years
14, 10 (NV), 3
Frequent tantrums and self-injurious behavior
Used parents’ hand to reach objects, echolalia, tendency to walk on his tiptoes
Stereotypic play
15-763-95
C2
4
M
R
600/575.6
3
1,380
Myocardial infarct
No known disorder
M6-06
A3
7
M
R
200/176.6
25
1,610
Drowning
Regression after first seizure at 14 months
29. 14 (NV), 3
No spontaneous meaningful language
Used parents’ hands as a tool
No reciprocal social smiling or eye contact
Stereotypic play
Psychiatric and developmental disorders on maternal side
M15-06
C3
7
M
R
200/190.2
12
1,240
Drowning
No known disorder
M5-03
A4
8
M
R
200/182.1
22.2
1,570
Rhabdomyo-sarcoma
Symptoms present at three years
19, 14 (V), 4
Engaged in repetitive play, jumping up and down on his tiptoes, echolalia
Cancer diagnosis at age six
Abnormal EEG
M3-04
C4
8
F
R
200/182.8
20
1,222
Multiple injuries
No known disorder
427-02
A5
11
F
L
200/177.9
13
1,460
Drowning
Tonic-clonic seizures
22, 14 (V), 3
Developmental, intellectual, and language delays
Poor eye contact
Poor social interaction
M9-03
C5
14
M
R
200/188.8
20
1,464
Electrocution
No known disorder
M5-05
A6
17
F
L
200/153.6
25
1,580
Cardiac arrest
Difficulty with reciprocal social interaction
29, 14 (NV), 3
Appropriate emotional response to her family, but not to others
Non-social use of language
Stereotypic behaviors
M16-06
C6
15
F
R
200/174.6
9
1,250
Multiple injuries
No known disorder
M1-03
A7
21
F
R
200/263.6
50
1,108
Obstructive pulmonary disease
Seizures
21, 11 (NV), 3
Engaged in repetitive play, bouncing up and down on her tiptoes, echolalia
Abnormal EEG
M1-07
C7
20
F
R
200/187.1
9
1,340
Multiple injuries
No known disorder
ADI-R scores listed as Qualitative Abnormalities in Reciprocal Social Interaction, Qualitative Abnormalities in Communication (V = verbal, NV = nonverbal), and Restricted, Repetitive and Stereotyped Patterns of Behavior, respectively. Cut-off scores for autism are 10, V = 8 or NV = 7, and 3, in order listed above. BW, brain weight; PMI, postmortem interval.

Regional definition

Although the visual cortex is rather coarsely parsed into Brodmann areas, the PIOTG has recently been characterized by Caspers et al. [10]. The PIOTG (Figure 1A-D) is contained within their area ‘FG2’, lateral to ‘FG1’. FG1 is located on the medial posterior FG, while FG2 is located on the lateral FG, which reaches into the lateral occipitotemporal sulcus [10]. FG2 extends further anteriorly and posteriorly than the expanse of the PIOTG; we restricted our region of interest to accurately and consistently sample the same area in each case.
The PIOTG is a granular cortex, with a dense layer IV and well defined laminar architecture (Figure 1D). Layer II is highly populated, whereas its neighboring layer IIIa is noticeably less dense. Layers IIIb and IIIc have characteristic large pyramidal neurons, and the density of neurons increases near IIIc. The border between layer IIIc and layer IV is somewhat indistinct, though layer IV is distinguishable by its very dense and granular appearance. The medium-sized pyramidal neurons in layer V are evenly concentrated throughout the layer, contrasting with the denser layer VI.
The PIOTG was defined anteriorly by the caudal-most level of the subiculum, and posteriorly by marked columnar neuronal organization. Thus, the PIOTG spans part of Brodmann area 37 (Figure 1E) and extends partially into area 19 (Figure 1 F; [11]). The cytoarchitecture of this junctional region was clearly described by von Economo [12], and we adopted his definition for this analysis. The temporo-occipital junction has a clear lamination pattern in layer III and a thin radial striation at times perceptible into layer IV. Layer V contains small pyramidal cells, with an indistinct border with layer VI. Extending posteriorly into area 19 is a progressively denser layer II, an increased cellularity of layer III, and isolated large neurons close to a distinct and dense layer IV. Layer V is rather thin with small pyramidal neurons and isolated large neurons in its upper border, with a denser layer VI. We relied on the detailed description of Caspers et al. [10] for the dorso-ventral boundaries of our region of interest, within the more global context of the classical descriptions by Brodmann and von Economo [11, 12].

Stereologic design

For stereologic quantification, we selected every available section within the range of sections containing the PIOTG for each case (1:3 series for 200-μm sections, 1:2 for 500- and 600-μm sections). The mounted thickness of these materials was calculated by averaging the measurements of a random sampling of ten sites per slide (40× objective) in the PIOTG.
Sampling grid dimensions were set to sample pyramidal neurons such that the coefficient of error was ≤ 0.1 [13]. StereoInvestigator (MBF Bioscience, Willinston, VT, USA) defined a systematic-random sampling sequence of counting frames and grids within the outlines of each layer analyzed in the PIOTG, in which pyramidal neurons were quantified. Layers were defined at 2.5× and quantification occurred at 40×. Neurons were counted according to stereologic principles, estimating cell population with the Optical Fractionator [14], pyramidal neuron volume with the Nucleator [15], and total layer volume with the Cavalieri principle ([13, 16]; Table 2).
Table 2
Stereologic parameters used for pyramidal neuron quantification in control subjects and patients with autism
Number of sections (average)
7.7
Objective 1
2.5×
Objective 2
40×
Disector height
20 μm
Guard zone
5 μm
Counting frame
75 × 75 μm
Grid size
Layer III: 750 × 750 μm
Layer V: 500 × 500 μm
Layer VI: 500 × 500 μm
Measured thickness (μm, average)
Cut at 200 μm: 185.1
Cut at 600 μm: 574.8
Nucleator rays
4
Cavalieri grid size
100 × 100 μm

Statistical analysis

We compared seven hemispheres of patients with autism to seven hemispheres of controls. For statistical analysis, we used a matched-subject design, comparing each patient with an age-matched control using a paired t-test. Because pairs 1 and 2 compared two hemispheres from the same patient and control, we also conducted paired t- tests excluding either pair 1 or 2 to determine whether having both hemispheres confounded the results. Additionally, we used repeated measures analysis of variance to control for potential effects of age, gender, and postmortem interval. A P-value of 0.05 was used as the criterion for statistical significance. Calculations were performed with GraphPad Prism (version 5.03, GraphPad Software, San Diego, CA, USA) and SPSS (version 20, SPSS Inc., Chicago, IL, USA).

Results

Upon visual inspection, patients with autism and controls showed a similar cytoarchitecture, characteristic of the PIOTG (Figure 1D). We assessed pyramidal neuron number, pyramidal neuron volume, and layer size in layers III, V, and VI in patients with autism and control subjects.
The paired samples t-test resulted in no significant differences in pyramidal neuron number in layers III (t(6) = 0.091, P = 0.9306), V (t(6) = 0.709, P = 0.5047), and VI (t(6) = 0.091, P = 0.9305; Figure 2A). There was also no statistically significant difference in pyramidal neuron volume in layers III (t(6) = 0.038, P = 0.7169), V (t(6) = 1.023, P = 0.3457), and VI (t(6) = 1.32, P = 0.2349; Figure 2B, Figure 3). Volume of layers III (t(6) = 1.236, P = 0.2625), V (t(6) = 1.1, P = 0.3136), and VI (t(6) = 0.141, P = 0.8928) were also not statistically different in patients with autism and controls (Figure 2C). Additionally, pyramidal neuron density was not statistically different in layers III (t(6) = 1.4, P = 0.211), V (t(6) = 0.271, P = 0.7952), and VI (t(6) = 0.278, P = 0.7905; Table 3). These results were still non-significant when either pair 1 or 2 was excluded from analysis (Table 4). In addition, when each covariate (age, gender, and postmortem interval) was added using repeated measured analysis of variance, we did not find any statistically significant differences between patients with autism and controls in any of the parameters assessed.
Table 3
Summary of stereologic results in control subjects and patients with autism
Variable
Controls (mean ± SD)
Autism (mean ± SD)
Pyramidal neuron number
Layer III
1.274 × 106 ± 415515
1.247 × 106 ± 456858
Layer V
600641 ± 217605
512054 ± 213975
Layer VI
369762 ± 135770
378581 ± 176463
Pyramidal neuron volume (μm3)
Layer III
1491 ± 309.1
1446 ± 403.2
Layer V
1468 ± 220.0
1400 ± 225.7
Layer VI
1527 ± 234.2
1395 ± 239.2
Layer volume (mm3)
Layer III
49.26 ± 26.66
71.77 ± 42.69
Layer V
25.52 ± 10.28
35.27 ± 19.79
Layer VI
23.23 ± 16.4
24.71 ± 18.6
Pyramidal neuron density (1/mm3)
Layer III
32687 ± 24425
20882 ± 8094
Layer V
20738 ± 6849
19826 ± 9099
Layer VI
19673 ± 8341
18304 ± 6800
Table 4
Summary of statistical results in control subjects and patients with autism
Variable
P-value for all pairs
P-values without pair 1
P-values without pair 2
Pyramidal neuron number
 Layer III
0.9306
0.9736
0.858
 Layer V
0.5047
0.6099
0.599
 Layer VI
0.9305
0.6718
0.8253
Pyramidal neuron volume
 Layer III
0.7169
0.7121
0.5754
 Layer V
0.3457
0.328
0.2466
 Layer VI
0.2349
0.3165
0.1626
Layer volume
 Layer III
0.2625
0.5003
0.4574
 Layer V
0.3136
0.6044
0.5659
 Layer VI
0.8928
0.6253
0.8258
Pyramidal neuron density
 Layer III
0.2110
0.2596
0.3386
 Layer V
0.7952
0.9194
0.4404
 Layer VI
0.7905
0.9106
0.7668

Discussion

The purpose of this study was to identify whether an area with little-known relevance to autism, the PIOTG, exhibited neuropathologic features present in areas associated with the behavioral abnormalities of autism. The significance of the PIOTG in particular is its proximity to the FG, an area well documented to be functionally and anatomically altered in autism. In line with our hypothesis, we found no significant differences in pyramidal neuron number, pyramidal neuron size, pyramidal neuron density, or layer volume in patients with autism compared to age-matched controls (Figures 2, 3). It is important to take the small sample size into consideration, as this is a limitation and does not allow for a formal power analysis; a larger cohort of cases would be more sensitive to potential neuropathology. In addition, it is of note that as demonstrated by the PIOTG, a longer postmortem interval and drowning as a cause of death are two factors that do not result in cytoarchitectural abnormalities in the measured parameters.
Although it is difficult to draw conclusions on functional correlates to an area that has only been characterized morphologically, Caspers et al. [10] suggested that FG2 is within a cortical region involved in higher-order object-related processing. More specifically, FG2 may correlate to a ‘patch’ of the FFA. Although this potential participation in face processing suggests an involvement in autism behaviorally, the role of the PIOTG is likely more general, based on its anatomical location (face processing becomes progressively more complex in more anterior areas). In fact, Caspers et al. confirmed the role of FG2 in face processing, and also uncovered functional lateralization in FG2: the left FG2 is active during visual language processing, while the right FG2 is more active during face processing [17]. FG2 participates in several functions related to visual and face processing, but the principal activation patterns suggest that it is situated early in the functional hierarchy of face processing, and is likely involved in pattern analysis [17]. The neuropathology in face processing areas occurs in areas predominantly involved in emotional or affective characteristics of faces, which FG2 (and therefore the PIOTG) are not. That being said, the PIOTG is still part of the face processing pathway, albeit early on, and there is a possibility that it is affected indirectly. Although all analyzed parameters did not reveal significant differences, patients with autism showed a slight trend towards a reduction for some of the assessed variables, as seen visually in Figure 2. This may indicate a peripheral effect from areas that interact with the PIOTG (for example, the FG, in which patients with autism have neuropathology [6]).
Overall, the PIOTG shows involvement in attention-demanding visual processing, primarily in visual object recognition [10, 14]. This higher-order visual area shows hemispheric lateralization that suggests functions in language, word, and face processing. Although we were unable to parse out potential hemispheric differences, we confirmed a lack of neuropathology in the PIOTG. This result is consistent with the concept that areas uninvolved in social, emotional, and stereotypic behaviors would not show cellular pathology in autism. This study provides a foundation for continuing efforts to characterize the brain in autism, as area-specific neuropathology can provide insight into potential altered cortical functioning.

Availability of supporting data

The data sets supporting the results of this article are included within the article; raw data are shared on the Autism Speaks portal.

Acknowledgements

This study was supported by the Seaver Foundation (NU, JDB), Autism Speaks (CS, PRH), the James S McDonnell Foundation (PRH), and the Simons Foundation (PRH, JDB). We thank Dr. Jane Pickett and Dr. Jerzy Wegiel for securing the precious materials used in this study. Most of all, we are deeply indebted to the patients’ families, who have made this study possible. Written informed consent was obtained from the patients and their relatives for publication of this manuscript and accompanying images. In compliance with Autism Speaks policies, all data generated by this study will be available on the Autism Speaks portal.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​ ) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

NU: conception and design, data collection, analysis, and interpretation, manuscript preparation, and final approval of the manuscript. IG: data collection, manuscript preparation, and final approval of the manuscript. BW: data collection, manuscript preparation, and final approval of the manuscript. JS: data analysis and interpretation, critical revision and final approval of the manuscript. HH: processed all materials, critical revision and final approval of the manuscript. CS: conception and design, processed all materials, data interpretation, critical revision, and final approval of the manuscript. JDB: conception and design, data interpretation, critical revision and final approval of the manuscript. PRH: conception and design, data interpretation, manuscript preparation, and final approval of the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Uppal N, Hof PR: Discrete cortical neuropathology in autism spectrum disorders. The Neuroscience of Autism Spectrum Disorders. Edited by: Buxbaum JD, Hof PR. 2013, Oxford: Elsevier, 313-325.CrossRef Uppal N, Hof PR: Discrete cortical neuropathology in autism spectrum disorders. The Neuroscience of Autism Spectrum Disorders. Edited by: Buxbaum JD, Hof PR. 2013, Oxford: Elsevier, 313-325.CrossRef
2.
Zurück zum Zitat Kanwisher N, McDermott J, Chun MM: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997, 17 (11): 4302-4311.PubMed Kanwisher N, McDermott J, Chun MM: The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997, 17 (11): 4302-4311.PubMed
3.
Zurück zum Zitat CDC, Center for Disease Control: Prevalence of autism spectrum disorders - autism and developmental disabilities monitoring network, 14 sites, United States, 2008. MMWR Surv Summ. 2012, 61: 1-19. CDC, Center for Disease Control: Prevalence of autism spectrum disorders - autism and developmental disabilities monitoring network, 14 sites, United States, 2008. MMWR Surv Summ. 2012, 61: 1-19.
4.
Zurück zum Zitat Piggot J, Kwon H, Mobbs D, Blasey C, Lotspeich L, Menon V, Bookheimer S, Reiss AL: Emotional attribution in high-functioning individuals with autistic spectrum disorder: a functional imaging study. J Am Acad Child Adolesc Psychiatry. 2004, 43 (4): 473-480. 10.1097/00004583-200404000-00014.CrossRefPubMed Piggot J, Kwon H, Mobbs D, Blasey C, Lotspeich L, Menon V, Bookheimer S, Reiss AL: Emotional attribution in high-functioning individuals with autistic spectrum disorder: a functional imaging study. J Am Acad Child Adolesc Psychiatry. 2004, 43 (4): 473-480. 10.1097/00004583-200404000-00014.CrossRefPubMed
5.
Zurück zum Zitat Kleinhans NM, Richards T, Sterling L, Stegbauer KC, Mahurin R, Johnson LC, Greenson J, Dawson G, Aylward E: Abnormal functional connectivity in autism spectrum disorders during face processing. Brain. 2008, 131 (4): 1000-1012. 10.1093/brain/awm334.CrossRefPubMed Kleinhans NM, Richards T, Sterling L, Stegbauer KC, Mahurin R, Johnson LC, Greenson J, Dawson G, Aylward E: Abnormal functional connectivity in autism spectrum disorders during face processing. Brain. 2008, 131 (4): 1000-1012. 10.1093/brain/awm334.CrossRefPubMed
6.
Zurück zum Zitat van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C: Neurons in the fusiform gyrus are fewer and smaller in autism. Brain. 2008, 131 (4): 987-999. 10.1093/brain/awn033.CrossRefPubMed van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C: Neurons in the fusiform gyrus are fewer and smaller in autism. Brain. 2008, 131 (4): 987-999. 10.1093/brain/awn033.CrossRefPubMed
7.
Zurück zum Zitat Heinsen H, Heinsen YL: Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol. 1991, 14: 167-173. 10.1179/his.1991.14.3.167.CrossRef Heinsen H, Heinsen YL: Serial thick, frozen, gallocyanin stained sections of human central nervous system. J Histotechnol. 1991, 14: 167-173. 10.1179/his.1991.14.3.167.CrossRef
8.
Zurück zum Zitat Heinsen H, Arzberger T, Schmitz C: Celloidin mounting (embedding without infiltration) - a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations. J Chem Neuroanat. 2000, 20 (1): 49-59. 10.1016/S0891-0618(00)00067-3.CrossRefPubMed Heinsen H, Arzberger T, Schmitz C: Celloidin mounting (embedding without infiltration) - a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations. J Chem Neuroanat. 2000, 20 (1): 49-59. 10.1016/S0891-0618(00)00067-3.CrossRefPubMed
9.
Zurück zum Zitat Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY, Chauhan A, Chauhan V, Bobrowicz TW, de Leon M, Louis LA, Cohen IL, London E, Brown WT, Wisniewski T: The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010, 119 (6): 755-770. 10.1007/s00401-010-0655-4.PubMedCentralCrossRefPubMed Wegiel J, Kuchna I, Nowicki K, Imaki H, Marchi E, Ma SY, Chauhan A, Chauhan V, Bobrowicz TW, de Leon M, Louis LA, Cohen IL, London E, Brown WT, Wisniewski T: The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010, 119 (6): 755-770. 10.1007/s00401-010-0655-4.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Caspers J, Zilles K, Eickhoff SB, Schleicher A, Mohlberg H, Amunts K: Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct Funct. 2013, 218 (2): 511-526. 10.1007/s00429-012-0411-8.PubMedCentralCrossRefPubMed Caspers J, Zilles K, Eickhoff SB, Schleicher A, Mohlberg H, Amunts K: Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct Funct. 2013, 218 (2): 511-526. 10.1007/s00429-012-0411-8.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Brodmann K: Vergleichende Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien Dargestellt auf Grund des Zellenbaues. 1909, Leipzig: Barth Brodmann K: Vergleichende Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien Dargestellt auf Grund des Zellenbaues. 1909, Leipzig: Barth
12.
Zurück zum Zitat von Economo C: L’architecture cellulaire normale de l’écorce cérébrale. 1927, Paris: Masson von Economo C: L’architecture cellulaire normale de l’écorce cérébrale. 1927, Paris: Masson
13.
Zurück zum Zitat Schmitz C, Hof PR: Design-based stereology in neuroscience. Neuroscience. 2005, 130 (4): 813-831. 10.1016/j.neuroscience.2004.08.050.CrossRefPubMed Schmitz C, Hof PR: Design-based stereology in neuroscience. Neuroscience. 2005, 130 (4): 813-831. 10.1016/j.neuroscience.2004.08.050.CrossRefPubMed
14.
Zurück zum Zitat Sterio DC: The unbiased estimation of number and size of arbitrary particles using the disector. J Microsc. 1984, 134: 127-136. 10.1111/j.1365-2818.1984.tb02501.x.CrossRefPubMed Sterio DC: The unbiased estimation of number and size of arbitrary particles using the disector. J Microsc. 1984, 134: 127-136. 10.1111/j.1365-2818.1984.tb02501.x.CrossRefPubMed
15.
Zurück zum Zitat Gundersen HJG: The nucleator. J Microsc. 1988, 151: 3-21. 10.1111/j.1365-2818.1988.tb04609.x.CrossRefPubMed Gundersen HJG: The nucleator. J Microsc. 1988, 151: 3-21. 10.1111/j.1365-2818.1988.tb04609.x.CrossRefPubMed
16.
Zurück zum Zitat Cavalieri B: Geometria indivisibilibus continuorum. Reprinted in. Edited by: Typis Clementis Ferronij, Bononiae. 1966, Torino: Unione Tipografico-Editrice Torinese, 1635- as Geometria Degli Indivisibili Cavalieri B: Geometria indivisibilibus continuorum. Reprinted in. Edited by: Typis Clementis Ferronij, Bononiae. 1966, Torino: Unione Tipografico-Editrice Torinese, 1635- as Geometria Degli Indivisibili
17.
Zurück zum Zitat Caspers J, Zilles K, Amunts K, Laird AR, Fox PT, Eickhoff SB: Functional characterization and differential coactivation patterns of two cytoarchitectonic visual areas on the human posterior fusiform gyrus. Hum Brain Mapp. 2013, doi: 10.1002/hbm.22364 Caspers J, Zilles K, Amunts K, Laird AR, Fox PT, Eickhoff SB: Functional characterization and differential coactivation patterns of two cytoarchitectonic visual areas on the human posterior fusiform gyrus. Hum Brain Mapp. 2013, doi: 10.1002/hbm.22364
Metadaten
Titel
Neuropathology of the posteroinferior occipitotemporal gyrus in children with autism
verfasst von
Neha Uppal
Isabella Gianatiempo
Bridget Wicinski
James Schmeidler
Helmut Heinsen
Christoph Schmitz
Joseph D Buxbaum
Patrick R Hof
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Molecular Autism / Ausgabe 1/2014
Elektronische ISSN: 2040-2392
DOI
https://doi.org/10.1186/2040-2392-5-17

Weitere Artikel der Ausgabe 1/2014

Molecular Autism 1/2014 Zur Ausgabe