Skip to main content
Erschienen in: Molecular Pain 1/2009

Open Access 01.12.2009 | Short report

NR2B receptor blockade inhibits pain-related sensitization of amygdala neurons

verfasst von: Guangchen Ji, Csilla Horváth, Volker Neugebauer

Erschienen in: Molecular Pain | Ausgabe 1/2009

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Pain-related sensitization and synaptic plasticity in the central nucleus of the amygdala (CeA) depend on the endogenous activation of NMDA receptors and phosphorylation of the NR1 subunit through a PKA-dependent mechanism. Functional NMDA receptors are heteromeric assemblies of NR1 with NR2A-D or NR3A, B subunits. NMDA receptors composed of NR1 and NR2B subunits have been implicated in neuroplasticity and are present in the CeA. Here we used a selective NR2B antagonist (Ro-256981) to determine the contribution of NR2B-containing NMDA receptors to pain-related sensitization of CeA neurons. Extracellular single-unit recordings were made from CeA neurons in anesthetized adult male rats before and during the development of an acute arthritis. Arthritis was induced in one knee joint by intraarticular injections of kaolin and carrageenan. Brief (15 s) mechanical stimuli of innocuous (100–500 g/30 mm2) and noxious (1000–2000 g/30 mm2) intensity were applied to the knee and other parts of the body. In agreement with our previous studies, all CeA neurons developed increased background and evoked activity after arthritis induction. Ro-256981 (1, 10 and 100 μM; 15 min each) was administered into the CeA by microdialysis 5–6 h postinduction of arthritis. Ro-256981 concentration-dependently decreased evoked responses, but not background activity. This pattern of effect is different from that of an NMDA receptor antagonist (AP5) in our previous studies. AP5 (100 μM – 5 mM) inhibited background activity and evoked responses. The differential effects of AP5 and Ro-256981 may suggest that NMDA receptors containing the NR2B subunit are important but not sole contributors to pain-related changes of CeA neurons.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1744-8069-5-21) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing financial interests. Horvath Csilla is employed by Gedeon Richter Ltd, Budapest, Hungary. The company provided the compound (Ro-256981) and partially supported the work as a reference study. The compound is commercially available from Sigma, St Louis, Missouri, USA, and was synthesized at Gedeon Richter Ltd. solely for research purposes. The company has no financial interest in this compound.

Authors' contributions

GJ performed the electrophysiological recordings, analyzed data, and provided figures and the first draft of the manuscript. CH conceived and initiated the study and helped finalize the manuscript. CH and VN conceptualized the hypothesis. VN designed and supervised the experiments, directed the data analysis, and finalized the manuscript. All authors read and approved the manuscript.

Background

Functional NMDA receptors are heteromeric assemblies of NR1 subunits with NR2A-D or, less commonly, with NR3A, B subunits [17]. The NR1 subunit is essential for channel formation, Ca2+ permeability and voltage-dependent Mg2+ block, whereas NR2 subunits form the glutamate binding site and account for kinetic properties. NR2B-containing NMDA receptors have slower kinetics than those that include NR2A [8]. During development NR2B expression is gradually replaced with NR2A in most CNS neurons but not in the central nucleus of the amygdala (CeA) [9]. NR2B containing receptors have been implicated in synaptic plasticity, memory formation and pain modulation [see [10]].
NMDA receptor function in the CeA is increased in a model of arthritis pain [11, 12]. NMDA receptor function can be modulated through phosphorylation of NR1 or NR2 subunits by various kinases, including PKA, PKC, ERK and tyrosine kinase [7, 1317]. Our previous studies showed that PKA-dependent phosphorylation of NR1 in the CeA is a key mechanism of increased responsiveness and synaptic plasticity in the arthritis pain model [11, 12]. ERK activation also increases NMDA receptor function in the CeA, but PKC does not seem to be involved [18]. PKA activation appears to be downstream of CGRP1 receptors [19] and CRF1 receptors)[20, 21]. NMDA receptors in the CeA do not contribute significantly to normal synaptic transmission and the processing of physiological nociceptive inputs [11, 12]. The role of NR2B subunits in pain-related changes of CeA neurons is not known.

Findings

Extracellular single-units were made from 8 neurons in the laterocapsular division of the CeA in 8 anesthetized male rats (250–350 g) as described in detail before)[21, 22]. All experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Texas Medical Branch and conform to the guidelines of the International Association for the Study of Pain (IASP) and of the National Institutes of Health (NIH). Animals were mounted in a stereotaxic frame, paralyzed with pancuronium (induction: 0.3–0.5 mg, i.v.; maintenance: 0.3 mg/h, i.v.) and artificially ventilated (3–3.5 ml; 55–65 strokes/min). Constant levels of anesthesia were maintained by continuous i.v. infusion of pentobarbital (15 mg/kg per h). A small unilateral craniotomy was performed at the sutura frontoparietalis level for the recording of CeA neurons with glass-insulated carbon filament electrodes and for drug application by microdialysis (CMA11/Microdialysis Inc., North Chelmsford, MA; 8 kD cut-off, membrane diameter: 250 μm, membrane length: 1 mm). The following stereotaxic coordinates were used [23]: recording electrode, 2.1–2.8 mm caudal to bregma; 3.8–4.2 mm lateral to midline; depth 7–9 mm; microdialysis probe, 1.8 mm caudal to bregma; 4.0 mm lateral to midline; depth of tip 9.0 mm.
Background activity and responses evoked by brief (15 s) mechanical test stimuli of increasing intensities (100, 500, 1000, 1500 and 2000 g/30 mm2 force, applied with a calibrated forceps at 15 s interstimulus intervals; see Fig. 1) were recorded before and after induction of a knee joint arthritis with intraarticular injections of kaolin and carrageenan [24]. Stimulus intensities of 100 and 500 g/30 mm2 applied to the knee and other deep tissue are considered innocuous, whereas intensities of >1500 g/30 mm2 are noxious because they evoke withdrawal reflexes and vocalizations in awake rats [25]. Background activity before stimulation was subtracted from the total response during stimulation to calculate the net response evoked by a particular stimulus.
In this study neurons were selected which had a receptive field in the knee and responded more strongly to noxious than innocuous stimuli. These so-called multireceptive (MR) neurons, and only MR neurons, become sensitized consistently in the arthritis pain model [11, 19, 22, 26]. Figures 1 and 2 show individual examples. Background activity and evoked responses are enhanced after arthritis induction (Fig. 1B). Figure 2 illustrates the time course of pain-related changes. Responses to innocuous (500 g/30 mm2) and noxious (2000 g/30 mm2) stimulation (compression) of the knee (Fig. 2A) and background activity (Fig. 2B) increased within few hours after arthritis induction and reached a maximum plateau at 5 h postinduction.
A potent and selective NR2B receptor antagonist (Ro-256981) [27, 28] was administered into the CeA through a microdialysis probe that had been inserted stereotaxically several hours before the experiment. Artificial cerebrospinal fluid (ACSF) was pumped through the fiber at a rate of 5 μl/min throughout the experiment to maintain stable conditions in the tissue. Ro-256981 (R-R*, S*)-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidine propanol) was a gift from Gedeon Richter Ltd., Budapest, Hungary. Ro-256981 was dissolved in water to obtain stock solutions (10 mM). Stock solutions were diluted in ACSF to their final concentrations on the day of the experiment. Drug concentrations in the microdialysis fiber were 1.0, 10 and 100 μM, i.e., 100 times that predicted to be needed in the tissue based on data in the literature [27], because of the concentration gradient across the dialysis membrane [11, 22, 29]. Ro-256981 was only tested in the arthritis state because NMDA receptor antagonists have little or no effect on CeA neurons under normal conditions [11, 12].
Administration of different concentrations (15 min each) of Ro-256981 into the CeA 5–6 h postinduction of arthritis decreased the evoked responses but not background activity (see individual examples in Figs. 1 and 2). The effects of Ro-256981 were concentration-dependent (Fig. 3; n = 8 neurons) and partially reversible after washout in ACSF for >30 min (Fig. 1D and Fig. 2A). Concentrations of 10 μM and 100 μM had significant effects (P < 0.05–0.001, Dunnett's multiple comparison test comparing the effects of individual concentrations of Ro-256981 to predrug control values). Non-linear regression analysis yielded apparent IC50 values of 7.9 μM and 9.3 μM for the inhibition of responses to normally innocuous and noxious stimuli, respectively.
Considering the concentration gradient across the dialysis membrane and diffusion in the tissue, these IC50 values are consistent with reported Kd values of 3 nM for the high-affinity binding Ro-256981 to rat forebrain membranes that contain different NMDA receptor subtypes [27]. They are also consistent with IC50 values for inhibitory effects of Ro-256981 on membrane currents evoked in oocytes coexpressing NR1C and NR2B (9 nM) or NR1F and NR2B (17 nM) and on NMDA-induced membrane currents in cultured rat cortical neurons expressing NR2B as the dominant NR2 subunit (15 nM) [27]. The selectivity of Ro-256981 for NR2B over NR2A is about 5000-fold [27].
Our data show that the endogenous activation of NR2B-containing receptors contributes critically to the increased evoked responses, but not background activity, of CeA neurons observed in the arthritis pain model. The diagnostic NMDA receptor antagonist AP5 inhibited evoked responses and background activity of CeA neurons in this pain model [11]. Furthermore, the effects of AP5 were greater on responses evoked by low- than high-intensity stimulation [11]. The differential effects of Ro-256981 and AP5 may suggest the involvement of other NMDA subtypes.
Accumulating evidence implicates NR2B-containing NMDA receptors in pain mechanisms and pain behavior. Systemic application of NR2B-selective antagonists such as CP-101,606 and Ro-256981 had antinociceptive effects in models of inflammatory and neuropathic pain [28, 30, 31]. Ro-256981 applied systemically or injected into the anterior cingulate cortex (ACC) inhibited allodynia-like behavior of mice in an inflammatory pain model [32]. Ro-256981 also decreased NMDA receptor-mediated synaptic currents in ACC neurons in slices from mice with hindpaw inflammation and this effect was greater than in slices from control mice [32]. Spinal administration of Ro-256981 decreased the responses of spinal dorsal horn neurons to electrical C-fiber stimulation and attenuated C-fiber evoked long-term potentiation [33]. Hindpaw inflammation increased the expression of NR2B, but not NR1 or NR2A, in the ACC [32] and increased tyrosine phosphorylation of NR2B, but not NR2A, in the spinal cord [34, 35] but not ACC [32]. Overexpression of NR2B in the ACC and insular cortex of transgenic mice resulted in prolonged nocifensive behavior in the formalin pain test without altering acute nocifensive responses [36].

Conclusion

This study shows for the first time that NR2B receptor activation in the amygdala (CeA) contributes to pain-related increases of responsiveness of CeA neurons in the arthritis pain model. Administration of a selective NR2B receptor antagonist (Ro-256981) into the CeA decreased evoked responses but not background activity of CeA 5–6 h postinduction of arthritis. The differential effects of Ro-256981 and the diagnostic NMDA receptor antagonist (AP5) measured in our previous study [11] suggest that other NMDA receptor subtypes may be involved as well. In agreement with previous studies in the spinal cord and anterior cingulate cortex (ACC), these results provide further evidence for an important role of NR2B in pain-related neuroplasticity.

Acknowledgements

This work was supported by National Institute of Neurological Disorders and Stroke Grants NS-38261 and NS-11255 and by Gedeon Richter Ltd, Budapest, Hungary.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing financial interests. Horvath Csilla is employed by Gedeon Richter Ltd, Budapest, Hungary. The company provided the compound (Ro-256981) and partially supported the work as a reference study. The compound is commercially available from Sigma, St Louis, Missouri, USA, and was synthesized at Gedeon Richter Ltd. solely for research purposes. The company has no financial interest in this compound.

Authors' contributions

GJ performed the electrophysiological recordings, analyzed data, and provided figures and the first draft of the manuscript. CH conceived and initiated the study and helped finalize the manuscript. CH and VN conceptualized the hypothesis. VN designed and supervised the experiments, directed the data analysis, and finalized the manuscript. All authors read and approved the manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Mayer ML, Armstrong N: Structure and function of glutamate receptor ion channels. Annu Rev Physiol 2004, 66: 161–181.CrossRef Mayer ML, Armstrong N: Structure and function of glutamate receptor ion channels. Annu Rev Physiol 2004, 66: 161–181.CrossRef
2.
Zurück zum Zitat Mayer ML: Glutamate receptor ion channels. Current Opinion in Neurobiology 2005, 15: 282–288.CrossRef Mayer ML: Glutamate receptor ion channels. Current Opinion in Neurobiology 2005, 15: 282–288.CrossRef
3.
Zurück zum Zitat Michaelis EK: Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Progress in Neurobiology 1998, 54: 369–415.CrossRef Michaelis EK: Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Progress in Neurobiology 1998, 54: 369–415.CrossRef
4.
Zurück zum Zitat Dingledine R, Borges K, Bowie D, Traynelis SF: The glutamate receptor ion channels. Pharmacol Rev 1999, 51: 7–61. Dingledine R, Borges K, Bowie D, Traynelis SF: The glutamate receptor ion channels. Pharmacol Rev 1999, 51: 7–61.
5.
Zurück zum Zitat Wollmuth LP, Sobolevsky AI: Structure and gating of the glutamate receptor ion channel. Trends in Neurosciences 2004, 27: 321–328.CrossRef Wollmuth LP, Sobolevsky AI: Structure and gating of the glutamate receptor ion channel. Trends in Neurosciences 2004, 27: 321–328.CrossRef
6.
Zurück zum Zitat Neugebauer V: Glutamate receptor ligands. Handb Exp Pharmacol 2007, 177: 217–249.CrossRef Neugebauer V: Glutamate receptor ligands. Handb Exp Pharmacol 2007, 177: 217–249.CrossRef
7.
Zurück zum Zitat Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS: Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 2003, 43: 335–358.CrossRef Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS: Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 2003, 43: 335–358.CrossRef
8.
Zurück zum Zitat Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR: Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J Neurophysiol 1998, 79: 555–566. Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR: Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J Neurophysiol 1998, 79: 555–566.
9.
Zurück zum Zitat Lopez de Armentia M, Sah P: Development and Subunit Composition of Synaptic NMDA Receptors in the Amygdala: NR2B Synapses in the Adult Central Amygdala. J Neurosci 2003, 23: 6876–6883. Lopez de Armentia M, Sah P: Development and Subunit Composition of Synaptic NMDA Receptors in the Amygdala: NR2B Synapses in the Adult Central Amygdala. J Neurosci 2003, 23: 6876–6883.
11.
Zurück zum Zitat Li W, Neugebauer V: Block of NMDA and non-NMDA receptor activation results in reduced background and evoked activity of central amygdala neurons in a model of arthritic pain. Pain 2004, 110: 112–122.CrossRef Li W, Neugebauer V: Block of NMDA and non-NMDA receptor activation results in reduced background and evoked activity of central amygdala neurons in a model of arthritic pain. Pain 2004, 110: 112–122.CrossRef
12.
Zurück zum Zitat Bird GC, Lash LL, Han JS, Zou X, Willis WD, Neugebauer V: Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neurones. J Physiol 2005, 564: 907–921.PubMedCentralCrossRef Bird GC, Lash LL, Han JS, Zou X, Willis WD, Neugebauer V: Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neurones. J Physiol 2005, 564: 907–921.PubMedCentralCrossRef
13.
Zurück zum Zitat Slack SE, Pezet S, McMahon SB, Thompson SW, Malcangio M: Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci 2004, 20: 1769–1778.CrossRef Slack SE, Pezet S, McMahon SB, Thompson SW, Malcangio M: Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci 2004, 20: 1769–1778.CrossRef
14.
Zurück zum Zitat Chen BS, Braud S, Badger JD, Isaac JT, Roche KW: Regulation of NR1/NR2C N-methyl-D-aspartate (NMDA) receptors by phosphorylation. J Biol Chem 2006, 281: 16583–16590.CrossRef Chen BS, Braud S, Badger JD, Isaac JT, Roche KW: Regulation of NR1/NR2C N-methyl-D-aspartate (NMDA) receptors by phosphorylation. J Biol Chem 2006, 281: 16583–16590.CrossRef
15.
Zurück zum Zitat Bi R, Broutman G, Foy MR, Thompson RF, Baudry M: The tyrosine kinase and mitogen-activated protein kinase pathways mediate multiple effects of estrogen in hippocampus. Proc Natl Acad Sci USA 2000, 97: 3602–3607.PubMedCentralCrossRef Bi R, Broutman G, Foy MR, Thompson RF, Baudry M: The tyrosine kinase and mitogen-activated protein kinase pathways mediate multiple effects of estrogen in hippocampus. Proc Natl Acad Sci USA 2000, 97: 3602–3607.PubMedCentralCrossRef
16.
Zurück zum Zitat Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD: Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 1999, 285: 93–96.CrossRef Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD: Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 1999, 285: 93–96.CrossRef
17.
Zurück zum Zitat Tingley WG, Ehlers MD, Kameyama K, Doherty C, Ptak JB, Riley CT, Huganir RL: Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 1997, 272: 5157–5166.CrossRef Tingley WG, Ehlers MD, Kameyama K, Doherty C, Ptak JB, Riley CT, Huganir RL: Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 1997, 272: 5157–5166.CrossRef
18.
Zurück zum Zitat Fu Y, Han J, Ishola T, Scerbo M, Adwanikar H, Ramsey C, Neugebauer V: PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior. Mol Pain 2008, 4: 26.PubMedCentralCrossRef Fu Y, Han J, Ishola T, Scerbo M, Adwanikar H, Ramsey C, Neugebauer V: PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior. Mol Pain 2008, 4: 26.PubMedCentralCrossRef
19.
Zurück zum Zitat Han JS, Li W, Neugebauer V: Critical role of calcitonin gene-related peptide 1 receptors in the amygdala in synaptic plasticity and pain behavior. J Neurosci 2005, 25: 10717–10728.CrossRef Han JS, Li W, Neugebauer V: Critical role of calcitonin gene-related peptide 1 receptors in the amygdala in synaptic plasticity and pain behavior. J Neurosci 2005, 25: 10717–10728.CrossRef
20.
Zurück zum Zitat Fu Y, Neugebauer V: Differential mechanisms of CRF1 and CRF2 receptor functions in the amygdala in pain-related synaptic facilitation and behavior. J Neurosci 2008, 28: 3861–3876.PubMedCentralCrossRef Fu Y, Neugebauer V: Differential mechanisms of CRF1 and CRF2 receptor functions in the amygdala in pain-related synaptic facilitation and behavior. J Neurosci 2008, 28: 3861–3876.PubMedCentralCrossRef
21.
Zurück zum Zitat Ji G, Neugebauer V: Pro- and Anti-Nociceptive Effects of Corticotropin-Releasing Factor (CRF) in Central Amygdala Neurons Are Mediated Through Different Receptors. J Neurophysiol 2008, 99: 1201–1212.CrossRef Ji G, Neugebauer V: Pro- and Anti-Nociceptive Effects of Corticotropin-Releasing Factor (CRF) in Central Amygdala Neurons Are Mediated Through Different Receptors. J Neurophysiol 2008, 99: 1201–1212.CrossRef
22.
Zurück zum Zitat Ji G, Neugebauer V: Differential effects of CRF1 and CRF2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. J Neurophysiol 2007, 97: 3893–3904.CrossRef Ji G, Neugebauer V: Differential effects of CRF1 and CRF2 receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. J Neurophysiol 2007, 97: 3893–3904.CrossRef
23.
Zurück zum Zitat Paxinos G, Watson C: The rat brain in stereotaxic coordinates. New York: Academic Press; 1998. Paxinos G, Watson C: The rat brain in stereotaxic coordinates. New York: Academic Press; 1998.
24.
Zurück zum Zitat Neugebauer V, Han JS, Adwanikar H, Fu Y, Ji G: Techniques for assessing knee joint pain in arthritis. Mol Pain 2007, 3: 8–20.PubMedCentralCrossRef Neugebauer V, Han JS, Adwanikar H, Fu Y, Ji G: Techniques for assessing knee joint pain in arthritis. Mol Pain 2007, 3: 8–20.PubMedCentralCrossRef
25.
Zurück zum Zitat Han JS, Bird GC, Li W, Neugebauer V: Computerized analysis of audible and ultrasonic vocalizations of rats as a standardized measure of pain-related behavior. J Neurosci Methods. 2005,141(2):261–269.CrossRef Han JS, Bird GC, Li W, Neugebauer V: Computerized analysis of audible and ultrasonic vocalizations of rats as a standardized measure of pain-related behavior. J Neurosci Methods. 2005,141(2):261–269.CrossRef
26.
Zurück zum Zitat Neugebauer V, Li W: Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol 2003, 89: 716–727.CrossRef Neugebauer V, Li W: Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol 2003, 89: 716–727.CrossRef
27.
Zurück zum Zitat Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, Mohacsi E, Heitz MP, Kemp JA: Ro 25–6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 1997, 283: 1285–1292. Fischer G, Mutel V, Trube G, Malherbe P, Kew JN, Mohacsi E, Heitz MP, Kemp JA: Ro 25–6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther 1997, 283: 1285–1292.
28.
Zurück zum Zitat Parsons CG: NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol 2001, 429: 71–78.CrossRef Parsons CG: NMDA receptors as targets for drug action in neuropathic pain. Eur J Pharmacol 2001, 429: 71–78.CrossRef
29.
Zurück zum Zitat Han JS, Neugebauer V: mGluR1 and mGluR5 antagonists in the amygdala inhibit different components of audible and ultrasonic vocalizations in a model of arthritic pain. Pain 2005, 113: 211–222.CrossRef Han JS, Neugebauer V: mGluR1 and mGluR5 antagonists in the amygdala inhibit different components of audible and ultrasonic vocalizations in a model of arthritic pain. Pain 2005, 113: 211–222.CrossRef
30.
Zurück zum Zitat Boyce S, Wyatt A, Webb JK, O'Donnell R, Mason G, Rigby M, Sirinathsinghji D, Hill RG, Rupniak NMJ: Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology 1999, 38: 611–623.CrossRef Boyce S, Wyatt A, Webb JK, O'Donnell R, Mason G, Rigby M, Sirinathsinghji D, Hill RG, Rupniak NMJ: Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology 1999, 38: 611–623.CrossRef
31.
Zurück zum Zitat Taniguchi K, Shinjo K, Mizutani M, Shimada K, Ishikawa T, Menniti FS, Nagahisa A: Antinociceptive activity of CP-101,606, an NMDA receptor NR2B subunit antagonist. Br J Pharmacol 1997, 122: 809–812.PubMedCentralCrossRef Taniguchi K, Shinjo K, Mizutani M, Shimada K, Ishikawa T, Menniti FS, Nagahisa A: Antinociceptive activity of CP-101,606, an NMDA receptor NR2B subunit antagonist. Br J Pharmacol 1997, 122: 809–812.PubMedCentralCrossRef
32.
Zurück zum Zitat Wu LJ, Toyoda H, Zhao MG, Lee YS, Tang J, Ko SW, Jia YH, Shum FWF, Zerbinatti CV, Bu G, et al.: Upregulation of Forebrain NMDA NR2B Receptors Contributes to Behavioral Sensitization after Inflammation. J Neurosci 2005, 25: 11107–11116.CrossRef Wu LJ, Toyoda H, Zhao MG, Lee YS, Tang J, Ko SW, Jia YH, Shum FWF, Zerbinatti CV, Bu G, et al.: Upregulation of Forebrain NMDA NR2B Receptors Contributes to Behavioral Sensitization after Inflammation. J Neurosci 2005, 25: 11107–11116.CrossRef
33.
Zurück zum Zitat Pedersen LM, Gjerstad J: Spinal cord long-term potentiation is attenuated by the NMDA-2B receptor antagonist Ro 25–6981. Acta Physiol (Oxf) 2008, 192: 421–427.CrossRef Pedersen LM, Gjerstad J: Spinal cord long-term potentiation is attenuated by the NMDA-2B receptor antagonist Ro 25–6981. Acta Physiol (Oxf) 2008, 192: 421–427.CrossRef
34.
Zurück zum Zitat Guo W, Zou S, Guan Y, Ikeda T, Tal M, Dubner R, Ren K: Tyrosine Phosphorylation of the NR2B Subunit of the NMDA Receptor in the Spinal Cord during the Development and Maintenance of Inflammatory Hyperalgesia. J Neurosci 2002, 22: 6208–6217. Guo W, Zou S, Guan Y, Ikeda T, Tal M, Dubner R, Ren K: Tyrosine Phosphorylation of the NR2B Subunit of the NMDA Receptor in the Spinal Cord during the Development and Maintenance of Inflammatory Hyperalgesia. J Neurosci 2002, 22: 6208–6217.
35.
Zurück zum Zitat Guo W, Wei F, Zou S, Robbins MT, Sugiyo S, Ikeda T, Tu JC, Worley PF, Dubner R, Ren K: Group I Metabotropic Glutamate Receptor NMDA Receptor Coupling and Signaling Cascade Mediate Spinal Dorsal Horn NMDA Receptor 2B Tyrosine Phosphorylation Associated with Inflammatory Hyperalgesia. J Neurosci 2004, 24: 9161–9173.CrossRef Guo W, Wei F, Zou S, Robbins MT, Sugiyo S, Ikeda T, Tu JC, Worley PF, Dubner R, Ren K: Group I Metabotropic Glutamate Receptor NMDA Receptor Coupling and Signaling Cascade Mediate Spinal Dorsal Horn NMDA Receptor 2B Tyrosine Phosphorylation Associated with Inflammatory Hyperalgesia. J Neurosci 2004, 24: 9161–9173.CrossRef
36.
Zurück zum Zitat Wei F, Wang GD, Kerchner GA, Kim SJ, Xu HM, Chen ZF, Zhuo M: Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 2001, 4: 164–169.CrossRef Wei F, Wang GD, Kerchner GA, Kim SJ, Xu HM, Chen ZF, Zhuo M: Genetic enhancement of inflammatory pain by forebrain NR2B overexpression. Nat Neurosci 2001, 4: 164–169.CrossRef
Metadaten
Titel
NR2B receptor blockade inhibits pain-related sensitization of amygdala neurons
verfasst von
Guangchen Ji
Csilla Horváth
Volker Neugebauer
Publikationsdatum
01.12.2009
Verlag
BioMed Central
Erschienen in
Molecular Pain / Ausgabe 1/2009
Elektronische ISSN: 1744-8069
DOI
https://doi.org/10.1186/1744-8069-5-21

Weitere Artikel der Ausgabe 1/2009

Molecular Pain 1/2009 Zur Ausgabe

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.