Skip to main content
Erschienen in: Brain Topography 4/2016

11.02.2016 | Short Communication

On the Differentiation of Foveal and Peripheral Early Visual Evoked Potentials

verfasst von: Bruce C. Hansen, Andrew M. Haun, Aaron P. Johnson, Dave Ellemberg

Erschienen in: Brain Topography | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

The C1 is one of the earliest visual evoked potentials observed following the onset of a patterned stimulus. The polarity of its peak is dependent on whether stimuli are presented in the upper or lower regions of the peripheral visual field, but has been argued to be negative for stimuli presented to the fovea. However, there has yet to be a systematic investigation into the extent to which the peripheral C1 (pC1) and foveal C1 (fC1) can be differentiated on the basis of response characteristics to different stimuli. The current study employed checkerboard patterns (Exp 1) and sinusoidal gratings of different spatial frequency (Exp 2) presented to the fovea or within one of the four quadrants of the peripheral visual field. The checkerboard stimuli yielded a sizable difference in peak component latency, with the fC1 peaking ~32 ms after the pC1. Further, the pC1 showed a band-pass response magnitude profile that peaked at 4 cycles per degree (cpd), whereas the fC1 was high-pass for spatial frequency, with a cut-off around 4 cpd. Finally, the scalp topographies of the pC1 and fC1 in both experiments differed greatly, with the fC1 being more posterior than the pC1. The results reported here call into question recent attempts to characterize general C1 processes without regard to whether stimuli are placed in the fovea or in the periphery.
Fußnoten
1
We also ran the analyses using the electrodes traditionally targeted for measuring the C1 (i.e., those located along the central occipito-parietal scalp region), and obtained results similar to using the optimized electrode selection approach.
 
Literatur
Zurück zum Zitat Ales JM, Yates JL, Norcia AM (2010) V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli. Neuroimage 52:1401–1409CrossRefPubMedPubMedCentral Ales JM, Yates JL, Norcia AM (2010) V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli. Neuroimage 52:1401–1409CrossRefPubMedPubMedCentral
Zurück zum Zitat Ales J, Yates JL, Norcia AM et al (2013) On determining the intracranial sources of visual evoked potentials from scalp topography: a reply to Kelly et al. (this issue). Neuroimage 64:703–711CrossRefPubMed Ales J, Yates JL, Norcia AM et al (2013) On determining the intracranial sources of visual evoked potentials from scalp topography: a reply to Kelly et al. (this issue). Neuroimage 64:703–711CrossRefPubMed
Zurück zum Zitat Brady N, Field DJ (1995) What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns. Vis Res 35:739–756CrossRefPubMed Brady N, Field DJ (1995) What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns. Vis Res 35:739–756CrossRefPubMed
Zurück zum Zitat Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: Cartool. Comput Intell Neurosci 2011:1–15CrossRef Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: Cartool. Comput Intell Neurosci 2011:1–15CrossRef
Zurück zum Zitat Clark VP, Fan S, Hillyard SA (1995) Identification of early visual evoked potential generators by retinotopic and topographic analysis. Hum Brain Mapp 2:170–187CrossRef Clark VP, Fan S, Hillyard SA (1995) Identification of early visual evoked potential generators by retinotopic and topographic analysis. Hum Brain Mapp 2:170–187CrossRef
Zurück zum Zitat De Valois R, Albrecht D, Thorell L (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vis Res 22:545–559CrossRefPubMed De Valois R, Albrecht D, Thorell L (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vis Res 22:545–559CrossRefPubMed
Zurück zum Zitat Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRefPubMed Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRefPubMed
Zurück zum Zitat Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2001) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111CrossRef Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2001) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111CrossRef
Zurück zum Zitat Ellemberg D, Hammarrenger B, Lepore F, Roy MS, Guillemot JP (2001) Contrast dependency of VEPs as a function of spatial frequency: the parvocellular and magnocellular contributions to human VEPs. Spat Vis 15(1):99–111CrossRefPubMed Ellemberg D, Hammarrenger B, Lepore F, Roy MS, Guillemot JP (2001) Contrast dependency of VEPs as a function of spatial frequency: the parvocellular and magnocellular contributions to human VEPs. Spat Vis 15(1):99–111CrossRefPubMed
Zurück zum Zitat Foster KH, Gaska JP, Nagler M, Pollen DA (1985) Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. J Physiol 365:331–363CrossRefPubMedPubMedCentral Foster KH, Gaska JP, Nagler M, Pollen DA (1985) Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. J Physiol 365:331–363CrossRefPubMedPubMedCentral
Zurück zum Zitat Foxe JJ, Strugstad EC, Sehatpour P, Molholm S, Pasieka W, Schroeder CE, McCourt ME (2008) Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the “C1” component. Brain Topogr 21(1):11–21CrossRefPubMed Foxe JJ, Strugstad EC, Sehatpour P, Molholm S, Pasieka W, Schroeder CE, McCourt ME (2008) Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the “C1” component. Brain Topogr 21(1):11–21CrossRefPubMed
Zurück zum Zitat Hansen BC, Jacques T, Johnson AP, Ellemberg D (2011) From spatial frequency contrast to edge preponderance: the differential modulation of early visual evoked potentials by natural scene stimuli. Vis Neurosci 28(3):221–237CrossRefPubMed Hansen BC, Jacques T, Johnson AP, Ellemberg D (2011) From spatial frequency contrast to edge preponderance: the differential modulation of early visual evoked potentials by natural scene stimuli. Vis Neurosci 28(3):221–237CrossRefPubMed
Zurück zum Zitat Hansen BC, Johnson AP, Ellemberg D (2012) Different spatial frequency bands selectively signal for natural image statistics in the early visual system. J Neurophysiol 108:2160–2172CrossRefPubMed Hansen BC, Johnson AP, Ellemberg D (2012) Different spatial frequency bands selectively signal for natural image statistics in the early visual system. J Neurophysiol 108:2160–2172CrossRefPubMed
Zurück zum Zitat James AC (2003) The pattern-pulse multifocal visual evoked potential. Invest Ophthalmol Vis Sci 44(2):879–890CrossRefPubMed James AC (2003) The pattern-pulse multifocal visual evoked potential. Invest Ophthalmol Vis Sci 44(2):879–890CrossRefPubMed
Zurück zum Zitat Jeffreys DA, Axford JG (1972a) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21PubMed Jeffreys DA, Axford JG (1972a) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21PubMed
Zurück zum Zitat Jeffreys DA, Axford JG (1972b) Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp Brain Res 16:22–40PubMed Jeffreys DA, Axford JG (1972b) Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp Brain Res 16:22–40PubMed
Zurück zum Zitat Kelly SP, Schroeder CE, Lalor EC et al (2013a) What does polarity inversion of extrastriate activity tell us about striate contributions to the early VEP? A comment on Ales et al. (2010). Neuroimage 76:442–445CrossRefPubMed Kelly SP, Schroeder CE, Lalor EC et al (2013a) What does polarity inversion of extrastriate activity tell us about striate contributions to the early VEP? A comment on Ales et al. (2010). Neuroimage 76:442–445CrossRefPubMed
Zurück zum Zitat Kelly SP, Vanegas MI, Schroeder CE, Lalor EC et al (2013b) The cruciform model of striate generation of the early VEP, re-illustrated, not revoked: a reply to Ales et al. (2013). Neuroimage 82:154–159CrossRefPubMedPubMedCentral Kelly SP, Vanegas MI, Schroeder CE, Lalor EC et al (2013b) The cruciform model of striate generation of the early VEP, re-illustrated, not revoked: a reply to Ales et al. (2013). Neuroimage 82:154–159CrossRefPubMedPubMedCentral
Zurück zum Zitat Lalor EC, Kelly SP, Foxe JJ (2012) Generation of the VESPA response to rapid contrast fluctuations is dominated by striate cortex: evidence from retinotopic mapping. Neuroscience 218:226–234CrossRefPubMedPubMedCentral Lalor EC, Kelly SP, Foxe JJ (2012) Generation of the VESPA response to rapid contrast fluctuations is dominated by striate cortex: evidence from retinotopic mapping. Neuroscience 218:226–234CrossRefPubMedPubMedCentral
Zurück zum Zitat Miller CE, Shapiro KL, Luck SJ (2015) Electrophysiological measurement of the effect of interstimulus competition on early cortical stages. NeuroImage 105:229–237CrossRefPubMedPubMedCentral Miller CE, Shapiro KL, Luck SJ (2015) Electrophysiological measurement of the effect of interstimulus competition on early cortical stages. NeuroImage 105:229–237CrossRefPubMedPubMedCentral
Zurück zum Zitat Murray IJ, Parry NRA, Carden D (1987) Human visual evoked potentials to chromatic and achromatic gratings. Clin Vis Sci 1:231–244 Murray IJ, Parry NRA, Carden D (1987) Human visual evoked potentials to chromatic and achromatic gratings. Clin Vis Sci 1:231–244
Zurück zum Zitat Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20:249–264CrossRefPubMed Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20:249–264CrossRefPubMed
Zurück zum Zitat Musselwhite MJ, Jeffreys DA (1982) Pattern-evoked potentials and bloch’s law. Vision Res 22:897–903CrossRefPubMed Musselwhite MJ, Jeffreys DA (1982) Pattern-evoked potentials and bloch’s law. Vision Res 22:897–903CrossRefPubMed
Zurück zum Zitat Musselwhite MJ, Jeffreys DA (1985) The influence of spatial frequency on the reaction times and evoked potentials recorded to grating pattern stimuli. Vis Res 25:1545–1555CrossRefPubMed Musselwhite MJ, Jeffreys DA (1985) The influence of spatial frequency on the reaction times and evoked potentials recorded to grating pattern stimuli. Vis Res 25:1545–1555CrossRefPubMed
Zurück zum Zitat Parker DM, Salzen EA (1977) Latency changes in the human visual evoked response to sinusoidal gratings. Vis Res 17:1201–1204CrossRefPubMed Parker DM, Salzen EA (1977) Latency changes in the human visual evoked response to sinusoidal gratings. Vis Res 17:1201–1204CrossRefPubMed
Zurück zum Zitat Parker DM, Salzen EA, Lishman JR (1982) The early wave of the visual evoked potential to sinusoidal gratings: Responses to quadrant stimulation as a function of spatial frequency. Electroencephalogr Clin Neurophysiol 53:427–435CrossRefPubMed Parker DM, Salzen EA, Lishman JR (1982) The early wave of the visual evoked potential to sinusoidal gratings: Responses to quadrant stimulation as a function of spatial frequency. Electroencephalogr Clin Neurophysiol 53:427–435CrossRefPubMed
Zurück zum Zitat Pernet CR, Chauveau N, Gaspar C, Rousselet GA (2011) LIMO EEG: a toolbox for hierarchical linear modeling of electroencephalographic data. Comput Intell Neurosci 2011:831409CrossRefPubMedPubMedCentral Pernet CR, Chauveau N, Gaspar C, Rousselet GA (2011) LIMO EEG: a toolbox for hierarchical linear modeling of electroencephalographic data. Comput Intell Neurosci 2011:831409CrossRefPubMedPubMedCentral
Zurück zum Zitat Reed JL, Marx MS, May JG (1984) Spatial frequency tuning in the visual evoked potential elicited by sine-wave gratings. Vis Res 9:1057–1062CrossRef Reed JL, Marx MS, May JG (1984) Spatial frequency tuning in the visual evoked potential elicited by sine-wave gratings. Vis Res 9:1057–1062CrossRef
Zurück zum Zitat Tobimatsu S, Tomoda H, Kato M (1995) Magnocellular and parvocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion. J Neurol Sci 134:73–82CrossRefPubMed Tobimatsu S, Tomoda H, Kato M (1995) Magnocellular and parvocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion. J Neurol Sci 134:73–82CrossRefPubMed
Zurück zum Zitat Vassilev A, Mihaylova M, Bonnet C (2002) On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation. Vis Res 42(7):851–864CrossRefPubMed Vassilev A, Mihaylova M, Bonnet C (2002) On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation. Vis Res 42(7):851–864CrossRefPubMed
Zurück zum Zitat Whittingstall K, Wilson D, Matthias S, Gerhard S (2008) Correspondence of visual evoked potentials with fmri signals in human visual cortex. Brain Topogr 21:86–92CrossRefPubMed Whittingstall K, Wilson D, Matthias S, Gerhard S (2008) Correspondence of visual evoked potentials with fmri signals in human visual cortex. Brain Topogr 21:86–92CrossRefPubMed
Metadaten
Titel
On the Differentiation of Foveal and Peripheral Early Visual Evoked Potentials
verfasst von
Bruce C. Hansen
Andrew M. Haun
Aaron P. Johnson
Dave Ellemberg
Publikationsdatum
11.02.2016
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 4/2016
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-016-0475-5

Weitere Artikel der Ausgabe 4/2016

Brain Topography 4/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.