Skip to main content
Erschienen in: Insights into Imaging 1/2016

Open Access 01.02.2016 | Pictorial Review

Orbital tumours and tumour-like lesions: exploring the armamentarium of multiparametric imaging

verfasst von: Bela S. Purohit, Maria Isabel Vargas, Angeliki Ailianou, Laura Merlini, Pierre-Alexandre Poletti, Alexandra Platon, Bénédicte M. Delattre, Olivier Rager, Karim Burkhardt, Minerva Becker

Erschienen in: Insights into Imaging | Ausgabe 1/2016

Abstract

Although the orbit is a small anatomical space, the wide range of structures present within it are often the site of origin of various tumours and tumour-like conditions, both in adults and children. Cross-sectional imaging is mandatory for the detection, characterization, and mapping of these lesions. This review focuses on multiparametric imaging of orbital tumours. Each tumour is reviewed in relation to its clinical presentation, compartmental location, imaging characteristics, and its histological features. We herein describe orbital tumours as lesions of the globe (retinoblastoma, uveal melanoma), optic nerve sheath complex (meningioma, optic nerve glioma), conal-intraconal compartment (hemangioma), extraconal compartment (dermoid/epidermoid, lacrimal gland tumours, lymphoma, rhabdomysarcoma), and bone and sinus compartment (fibrous dysplasia). Lesions without any typical compartmental localization and those with multi-compartment involvement (veno-lymphatic malformation, plexiform neurofibroma, idiopathic orbital pseudotumour, IgG4 related disease, metastases) are also reviewed. We discuss the role of advanced imaging techniques, such as MR diffusion-weighted imaging (DWI), diffusion tensor imaging, fluoro-2-deoxy-D-glucose positron emission tomography CT (FDG-PET CT), and positron emission tomography MRI (MRI PET) as problem-solving tools in the evaluation of those orbital masses that present with non-specific morphologic imaging findings.
Main messages/Teaching points
A compartment-based approach is essential for the diagnosis of orbital tumours.
CT and MRI play a key role in the work-up of orbital tumours.
DWI, PET CT, and MRI PET are complementary tools to solve diagnostic dilemmas.
Awareness of salient imaging pearls and diagnostic pitfalls avoids interpretation errors.
Abkürzungen
ACC
Adenoid cystic carcinoma
ADC
Apparent diffusion coefficient
BMT
Benign mixed tumour
CECT
Contrast-enhanced CT
CEMRI
Contrast-enhanced MRI
DTI
Diffusion tensor imaging
DWI
Diffusion-weighted imaging
FA
Fractional anisotropy
FD
Fibrous dysplasia
FDG
Fluoro-2-deoxy-D-glucose
PET CT
positron emission tomography CT
MRI PET
positron emission tomography MRI
FS
Fat saturated
FT
Full echo train
HR
High resolution
H&E stain
Haematoxylin-eosin stain
IHC
Immunohistochemistry
IgG4-RD
Immunoglobulin G4-related disease
IOP
Inflammatory orbital pseudotumour
MALT
Mucosa associated lymphoid tissue
NECT
Non contrast-enhanced CT
NF
Neurofibromatosis
NHL
Non-Hodgkin’s lymphoma
ONG
Optic nerve glioma
ONSM
Optic nerve sheath meningioma
OLPD
Orbital lympoproliferative disorders
OPNF
Orbital plexiform neurofibroma
RMS
Rhabomyosarcoma
RT
Radiotherapy
SCC
Squamous cell carcinoma
SUV
Standardised uptake value
US
Ultrasound
VLM
Veno-lymphatic malformation

Introduction

The orbit is a small anatomical space with a wide range of important structures within. Tumours and tumour-like lesions often arise from these orbital contents and are a common indication for the radiological evaluation of the orbit in both adults and children. Cross-sectional imaging plays a vital role in the diagnosis and management of these lesions. Knowledge of the clinical presentation and patient’s age helps to limit the differential diagnosis and to determine the appropriate imaging modality. Certain orbital pathologies such as retinoblastoma and rhabdomyosarcoma (RMS) are typically found in children, whereas malignant uveal melanoma, lymphoma, and inflammatory orbital pseudotumour (IOP) are seen in adults. Clinical symptoms such as extraocular muscle palsies, diplopia, visual impairment, exophthalmos, and eye pain can serve as useful pointers to the likely pathology. However, a biopsy may be needed to provide tissue diagnosis [14].
The purpose of this review is to discuss the clinical, imaging, and histopathological features of commonly encountered orbital tumours and tumour-like conditions. We highlight the role of cross-sectional imaging in the evaluation of indeterminate orbital masses with emphasis on advanced imaging techniques such as MR diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography CT (PET CT), and positron emission tomography MRI (PET MRI or MRI PET, the European Congress of Radiology uses MRI PET as the abbreviation to emphasize its imaging value). We discuss their impact on the differential diagnosis of those lesions, where conventional morphologic cross-sectional imaging is non-specific.

Imaging techniques

Evaluation of suspected orbital masses can be done with magnetic resonance imaging (MRI), computed tomography (CT), ultrasound (US), fluoro-2-deoxy-D-glucose positron emission tomography/CT (FDG-PET CT), and, recently, MRI PET. Most investigators agree that MRI is the imaging modality of choice, whereas CT should be reserved for cases with suspected bony pathology and whenever MRI cannot be performed. As shown by several investigators, high resolution MRI (HR MRI) shows superior soft tissue contrast than CT and allows more accurate depiction of the different orbital compartments [13]. MRI examinations can either be performed on a 1.5 T or on a 3 T scanner using a combination of head and surface coils. The standard MRI protocol in most institutions consists of axial SE T1W and TSE T2W sequences, coronal STIR sequences, and axial and coronal SE T1W sequences with fat saturation obtained after intravenous administration of gadolinium chelates. The recommended slice thickness is 2–3 mm with a 512 × 512 matrix. 3D FT heavily T2W sequences (CISS, FIESTA, or DRIVE) and 3DFT T1W sequences with 0.6-1 mm thin slices (VIBE, THRIVE) after intravenous contrast material administration are additionally used by some investigators including ourselves, as these volumetric data sets allow multiplanar reconstructions in any given plane, thereby facilitating the evaluation of subtle findings.
In patients with suspected orbital masses, CT is the modality of choice for evaluating calcifications and osseous orbital lesions and in patients with possible metallic foreign bodies [13]. CT examinations are usually performed using 0.6–1 mm thin slices after intravenous injection of iodinated contrast material. Thin-slice HR multidetector CT provides quick volumetric acquisitions and precise depiction of the globe, optic nerve, intraconal, and extraconal spaces. Standard coronal and sagittal reconstructions are routinely obtained with bone and soft tissue settings.
Because of the superficial location of the globe and its cystic nature, ultrasound (US) with Doppler allows accurate depiction of a variety of pathologic conditions of the globe and orbit, and enables non-invasive and cost-effective follow-up. The technique is well tolerated, easy to perform, and has a high accuracy for the characterization of vascular lesions in skilled hands.

Role of advanced imaging

In recent years, advanced imaging techniques such as DWI, DTI, FDG-PET CT, and MRI PET are being increasingly used in the pre-therapeutic work-up and post-therapeutic monitoring of patients with head and neck tumours [515]. These modalities are also making significant inroads in ophthalmologic imaging. The physiological and functional information obtained by these techniques can be used to complement morphological findings obtained from conventional imaging, thereby aiding non-invasive tissue characterization [4, 823]. Although DWI sequences are widely used to assess primary or recurrent head and neck tumours, their applications in the orbit are still limited in clinical routine due to geometric distortion caused by the adjacent bone, air, and soft tissue interfaces. Nevertheless, the development of newer, robust single shot echo-planar DWI or multishot echo-planar DWI (such as the RESOLVE sequence) holds promise for the evaluation of orbital tumours and optic nerve pathology. DWI produces contrast on the basis of diffusivity of water molecules in different tissues and can thus be a source of information for assessing pathological tissue. Echo-planar DWI can help to differentiate between benign and malignant orbital masses based on apparent diffusion coefficient (ADC) values. DWI is more useful in characterizing infiltrative orbital masses, which appear hypointense on T2W images as compared to well-defined hyperintense lesions. Malignant masses especially orbital lymphomas show visually and quantitatively lower ADC values as compared to benign masses. Restricted diffusion is attributed to the higher cellularity and higher nuclear: cytoplasmic ratios in malignant lesions. Sepahdari et al have reported that an ADC value of 1.0 – 1.15 × 10−3 mm2/s represents an optimal threshold for predicting malignancy with a reported sensitivity of 95 %, specificity of 91 % and accuracy of 93 % [9, 10]. Visual assessment of benign and malignant lesions may not reveal significant differences on just DW images because of the T2-shine through effect. However, ADC maps are only affected by diffusivity changes. DWI can help to localize malignant masses in a background of non-specific inflammation and guide biopsy or intervention [913].
DTI is a novel MRI technique, which allows anatomic mapping and quantitative characterization of white matter architecture by measuring molecular diffusion [24]. DTI tractography is a computational procedure, which reconstructs white matter tracts in 3D-space based on their anisotropy characteristics. Tractography is used to provide a roadmap for the pre-surgical assessment of white matter tracts involved by tumours. Advances in MR data acquisition and post-processing now permit high-resolution DTI of cranial nerves in a clinical setting. The antero-posterior orientation and fairly large size of the optic nerve and tracts provide favourable parameters for tractography. DTI can be used to map optic nerve fibres when involved by tumourous conditions such as gliomas or meningiomas. Depending on whether the tumour displaces or infiltrates the nerve fibres, appropriate function-saving nerve surgery can be planned [3, 1416]. However, DTI images of the optic nerve may show severe geometric distortion, in particular in the region of the orbital apex, and fibre tracking of the optic nerve is still part of ongoing clinical research protocols.
FDG-PET CT has recently emerged as a problem-solving tool in ophthalmologic oncology. It provides functional information regarding tumour metabolism based on FDG uptake. The level of FDG uptake depends upon tumour type and grade, size, surrounding metabolic activity, and blood glucose levels. For most primary orbital lesions, PET CT does not seem to provide any significant advantage over clinical evaluation and CT/MR imaging, other than detecting distant and metastatic lesions missed by conventional imaging. However, PET CT is now part of standard protocol in the initial staging work-up and post treatment assessment of orbital/ocular adnexal lymphomas. PET/CT also seems appropriate for metastatic tumours to the orbit and ocular adnexae from other primary sites. In these cases, one single comprehensive study may be preferable to performing multiple CT scans with contrast. The potential pitfalls in FDG-PET CT imaging of the orbit include background physiological uptake in extra-ocular muscles, poor uptake in very small lesions, and the likelihood of missing subtle uptake due to being at the edge of the field of view in standard skull to upper thigh PET CT scans [21]. Comparing standardized uptake values (SUV) between malignant and benign lesions and lesion to surrounding tissue helps in increasing diagnostic accuracy [1721].
MRI PET leverages the superior soft-tissue contrast and functional sequences of MRI with the molecular information of PET in a single hybrid imaging technique. MRI PET is still a clinical research tool, however, recent publications have shown that MRI PET has an equivalent performance with respect to lesion detection as PET CT in the evaluation of head-neck cancers [7, 23]. Although large-scale data and studies on the role of MRI PET in orbital conditions are still awaited, it can be a considered as a potential future tool in refining orbital imaging. Paediatric and pregnant patients may benefit from MRI PET because of reduced radiation burden as compared to PET CT. MRI PET may play a valuable role in the evaluation of paediatric lymphomas, neuroblastomas. and soft tissue sarcomas [22, 23].

Compartment-based approach to orbital masses

The orbit can be anatomically divided into some well-defined compartments (Fig. 1). The muscle cone comprising the four rectus muscles divides the orbit into the intraconal and extraconal compartments. The intraconal compartment contains the globe, the optic nerve-sheath complex, orbital vessels. and nerves (Fig. 1). The extraconal compartment consists of the bony orbital walls, fat. and the lacrimal gland. The orbital septum and lid form the anterior or preseptal compartment. Localizing orbital lesions to these specific compartments helps to simplify the diagnostic approach and narrow down the list of differentials [1].
In this review, we will describe tumours of the globe and optic nerve first, followed by the conal-intraconal tumours, extraconal tumours, and finally tumours of the bones/sinuses (Table 1). Examples of multi-compartmental masses will also be discussed (Table 1).
Table 1
Overview of orbital tumours and tumour-like lesions using a compartment based approach. Asterisks indicate possible, however, rare disease manifestations in the respective compartment
Intraconal and conal masses
Extraconal masses
Multi-compartment masses
Globe
Optic nerve sheath complex
Muscle cone and retrobulbar fat
Orbital appendages (lacrimal gland and sac)
Other extraconal structures, bones, and sinuses
Eyelid
 
Retinoblastoma
Optic nerve glioma
Cavernous hemangioma
Epithelial lacrimal gland tumours (benign mixed tumour, adenoid cystic carcinoma, adenocarcinoma, undifferentiated carcinoma)
Dermoid/epidermoid
Eyelid tumours (squamous cell carcinoma, basal cell carcinoma, melanoma, lymphoma)
Vascular malformations
Hemangioblastoma
Optic nerve sheath meningoma
Pseudotumour
Lymphoma, leukemia
Rhabdomyosarcoma
Lymphoma
Uveal melanoma
Lymphoma*, leukemia*
Schwannoma*of cranial nerves III, IV, VI
Sarcoidosis
Schwannoma and perineural spread V1 and V2
Rhabdomyosarcoma
Chorioid metastases
Pseudotumour
Fibrous dysplasia, osteoma, metastases, myeloma
Plexiform neurofibroma
Metastases
Pseudotumour
Ig-G4 related disease

Globe

Retinoblastoma

Retinoblastoma is a malignant, primary retinal neoplasm and the most common intraocular tumour of childhood. About 90 % of cases occur under 5 years of age. Retinoblastoma can occur in a hereditary form (40 %) or in a sporadic form (60 %). In both cases, patients have mutations of the retinoblastoma tumour suppressor gene on chromosome 13q14 [1, 3, 4, 25, 26]. Hereditary retinoblastoma is associated with early onset disease; screening ultrasound (US) and MRI have been recently recommended for the management of fetuses at high risk of developing this tumour [27]. The higher incidence of retinoblastoma seen in developing countries has been partly attributed to the presence of human papilloma virus in tumour tissue [28]. About 50 % of cases present with leukocoria and 40 % show bilateral disease. Although the initial diagnosis is based on ophthalmoscopy and US, cross-sectional imaging is mandatory to assess disease extent and prognosis. Extra-ocular extension occurs in less than 10 % cases and portends poor prognosis. When a pinealoblastoma is associated with bilateral retinoblastomas, the term trilateral retinoblastoma is applied. Low-grade intra-ocular retinoblastomas are treated with chemotherapy while advanced tumours require enucleation and/or radiotherapy (RT) [1, 3, 4, 25, 26].
Retinoblastoma arises from precursor cells of the retinal neuroepithelium. Histologically, undifferentiated areas of the tumour show characteristic "small blue cells" with scant cytoplasm and large hyperchromatic nuclei. Differentiated structures called Flexner-Wintersteiner rosettes are commonly seen. Because of rapid growth of the tumour, necrosis and calcifications are common; these features account for the characteristic radiologic appearances on CT and MRI [25, 26]. Non-contrast-enhanced CT (NECT) demonstrates intra-tumoural calcifications in about 90 % cases. Marked enhancement of the tumour is seen on contrast-enhanced CT (CECT). MRI of the orbits and brain is usually performed together to determine extraocular and intracranial extension as well as to rule out an associated pinealoblastoma. The tumour is slightly hyperintense on T1W images, hypointense on T2W images, and shows marked post contrast enhancement on contrast-enhanced MRI (CEMRI) (Fig. 2) [1, 4, 25, 29]. Although CT is superior in calcium detection, MRI may allow equally accurate identification of calcifications by revealing spots of low signal intensity on very thin T2 TSE and T2* weighted sequences [30]. Retinoblastoma may exhibit variable hyperintensities on DWI resulting in varying values on ADC maps, depending on cellularity and histology. De Graaf et al have reported statistically significant differences in ADC values in viable enhancing tumour tissue (1.03 × 10 −3 mm 2/s) as compared to non-viable necrotic tissue (1.47 × 10 −3 mm 2/s). Thus ADC values can be used for monitoring treatment response in retinoblastoma [31].
Other diseases causing leukocoria can be differentiated from retinoblastoma based on clinical presentation and imaging characteristics. Coat’s disease, persistent primary hyperplastic vitreous and toxocariasis lack calcifications. Retinopathy of prematurity rarely shows calcifications, it may be bilateral and history of prematurity is usually elicited [4, 25, 26].
Unlike in adult cancers, the role of PET CT in paediatric patients is still not widely established. As intraocular retinoblastomas may not be FDG avid, it appears that PET CT does not have a role in their evaluation. Nevertheless, it has been suggested that increased optic nerve uptake on baseline PET CT may be a predictor of lower event free survival and lower overall survival as compared to patients without optic nerve FDG uptake [32].

Malignant uveal melanoma

Malignant uveal melanoma is the most common primary intraocular tumour in adults. The incidence is highest amongst Caucasians with peak incidence at 53 years. Malignant melanoma arises from the choroid in 85 % of cases. The diagnosis is usually made on ophthalmoscopy and US; however, cross-sectional imaging is necessary in case of opaque lens or significant subretinal effusion. Poor prognostic factors include age > 60 years, large tumour size, anterior uveal location and heavy tumour pigmentation. Photocoagulation, radiotherapy (RT), and globe sparing surgery are treatment options for smaller tumours while enucleation is necessary for larger tumours. Systemic metastases to the liver, lungs, and brain are often the cause of mortality [18, 26, 33].
The current WHO classification of choroidal tumours consists of three histological types, i.e. mixed, epitheloid, and necrotic melanomas. Spindle cell A tumours are now classified as benign choroidal nevi. The mixed type includes spindle B and epitheloid cells. The prognosis of spindle cell tumours is better as compared to mixed or purely epitheloid melanomas. Metastatic potential is determined by maximum tumour dimensions, number of epithelioid cells, vascular patterns, and nucleolar size and activity [26, 33, 34].
NECT shows a well-circumscribed, hyperdense, mushroom-shaped tumour with a broad choroidal base. Calcification is rare. CECT and CEMRI show marked post contrast enhancement (Fig. 3). The melanin content causes characteristic hyperintense signal on T1W and hypointense signal on T2W MR images. Thin-section MRI enables accurate prediction of the degree of melanomatous pigmentation based on quantitative evaluation of T1W images. More pronounced pigmentation is associated with poorer prognosis. Fat-saturated, high-resolution CEMRI is ideal for demonstrating small enhancing tumours, associated retinal detachment as well as extraocular disease. Imaging differentials include choroidal hemangioma, choroidal detachment, and uveal metastases [33]. False positive or false negative assessments for ocular melanoma and other ocular tumours may be caused by retinal detachment and highly myopic patients. In highly myopic patients, the globe can be elongated and the resulting chemical shift artefact can lead to asymmetric thickening of the outline of the globe mimicking the presence of a tumour while, on the contrary, retinal detachment may mask small tumours. Erb-Eigner et al have reported that ocular melanomas show marked restricted diffusion with a mean ADC value of 0.891 × 10−3mm2/s. Also, the mean ADC of ocular melanoma appears to be statistically significant from the mean ADC of retinal detachment [35] thereby facilitating diagnosis.
FDG-PET CT has the potential to provide substantial benefit in the surveillance of uveal melanomas. Reddy et al found that PET CT was able to detect metabolic activity of choroidal melanomas, especially T3 and larger lesions. A positive correlation was found between SUV and the size of the melanoma. However, PET CT is unable to differentiate between small melanomas and suspicious choroidal nevi [36]. Whole body PET CT has been shown to play a valuable role in detecting regional and distant metastases from choroidal melanoma. Kurli et al have reported 100 % sensitivity and specificity of PET CT in the identification of hepatic metastases of choroidal melanomas [37].

Optic nerve-sheath complex

Optic nerve glioma (ONG)

ONG is the most common primary optic nerve tumour. The low-grade form is commonly seen in children with 75 % of cases presenting before the age of 10 years. The less common aggressive form is seen in adults and is often fatal. About 38 % of paediatric patients with ONG have neurofibromatosis (NF)-1, and about 50 % of patients with NF1 harbour ONG. Bilateral disease is pathognomonic of NF-1 (Fig. 4). Most paediatric ONG cases involve the intraorbital and intracranial portions of the optic nerve; about 20 % may extend up to the chiasm, hypothalamus, and optic tracts. Involvement of the chiasm is common in adult ONG. Patients typically present with decreased vision and painless proptosis. Hypothalamic lesions can cause hydrocephalus. Benign ONG are slow growing tumours that do not metastasize. Imaging is mandatory to guide management and to document disease progression. The role of chemotherapy and radiotherapy (RT) in the treatment is still controversial. Long-term prognosis is excellent if the tumour is confined to the optic nerve; however, intracranial extension is associated with poorer survival rates [1, 4, 8, 25, 26].
Most ONG are low-grade pilocytic astrocytomas (WHO grade1). Histologically, these tumours are biphasic and consist of bipolar cells and multipolar cells. Bipolar cells show pilocytic processes, whereas multipolar cells may show eosinophilic granular bodies. In addition, Rosenthal fibres, microcysts, and neovascularity are commonly seen. Adult forms are usually aggressive anaplastic astrocytoma (WHO grade 3) or glioblastoma multiforme (WHO grade 4) [25, 26].
On CT and MRI, ONG show fusiform or tubular enlargement often with kinking of the optic nerve and ectasia of the optic sheath (Fig. 4). Calcification is rare. Widening of the optic canal and cystic degeneration may be seen. ONG are usually hypointense on T1W images, slightly hyperintense on T2W images and show variable enhancement (Fig. 4). MRI is the imaging modality of choice as it detects small tumours and elegantly maps out intraorbital as well as intracranial extensions. ONG can be differentiated from optic nerve sheath meningioma (ONSM) as the latter are commoner in adults, dark on T2W images, surround the optic nerve, and show avid post-contrast enhancement [1, 4, 8, 25, 26].
ONG show increased diffusion on DWI; they exhibit high ADC and low fractional anisotropy (FA) values. This is attributed to their low cellularity and low proliferative indices [11, 13, 38, 39]. Jost et al have reported on the use of DWI and dynamic contrast-enhanced imaging to calculate the diffusivity and permeability of ONG. Similar to other pilocytic astrocytomas, ONG show ADC values in the range of 1.2-2.09 × 10 -3 mm2/s. ADC values cannot distinguish between clinically stable and clinically aggressive ONG. On the other hand, clinically aggressive ONG are seen to show significantly higher permeability values than clinically stable tumours [38]. DTI tractography can be used in the presurgical evaluation of ONG by demonstrating integrity of the optic nerve in patients with resectable lesions. Tractography can demonstrate divergence or disruption of nerve fibres. This allows for minimal post-surgical morbidity and minimal vision loss [1416, 39]. Fillipi et al found that DTI may offer increased sensitivity over conventional imaging in evaluating the optic pathways in NF-1 patients. These patients showed statistically significant decrease in FA values and elevated mean diffusivity values as compared to age-matched controls [40]. Currently, no reliable factors have yet been identified to predict future vision loss in patients with ONG. Nevertheless, de Blank et al found that decreased FA of the optic radiations in patients with ONG was predictive of visual acuity loss during the following year and, therefore, suggested that DTI may be used as a non-invasive tool to prospectively identify those patients who will require therapy [41].
Although PET CT is not used routinely for paediatric patients, Miyamoto et al have reported very high FDG uptake in an adult patient with ONG, which turned out to be an anaplastic astrocytoma on histology. They also reported an adult patient with fibrillary astrocytoma of the optic nerve showing isointense FDG uptake. Thus, PET CT may potentially play a role in the histological grading of ONG, especially in adult patients [19].

Optic nerve sheath meningioma (ONSM)

ONSM is the most common primary tumour arising from the optic nerve sheath. It is a benign, slow-growing tumour, which accounts for 5 % of primary orbital tumours and 2 % of all meningiomas. It commonly occurs in females between 30-70 years of age. Hormonal factors, radiation exposure, and hereditary predisposition (abnormalities of chromosome 22) have been implicated in the aetiology. It is rare in children except in cases of neurofibromatosis (NF)-2. Primary ONSM arise from the intraorbital and intracanalicular segments of the optic nerve while secondary ONSM are intraorbital extensions of intracranial tumours. A primary ONSM may extend intracranially to involve the contralateral optic nerve. ONSM typically presents with slowly progressive painless loss of vision (with preservation of central visual field) and progressive proptosis. Although benign, these tumours have a tendency to recur. Because of their slow progression, small ONSM are often managed just by conservative follow-up imaging. Fractionated stereotactic RT is the treatment of choice for patients with preservable vision [1, 8].
ONSM arises from the arachnoid cap cells within the optic nerve sheath. Histologically, an ONSM reveals various subtypes of which the meningothelial (lobules of tumour cells), fibrous (bundles of spindle cells), and transitional types (whorls, psammoma bodies) are most common. All these are WHO grade 1 benign tumours. In benign meningiomas, tumour cells are uniform, mitoses are rare and necrosis is absent. Atypical meningiomas (WHO grade 2) have increased mitotic activity and cellularity, prominent nucleoli, and necrosis; some are of clear cell subtype. Anaplastic meningiomas (WHO grade 3) include rhabdoid/papillary subtypes and histological features of frank malignancy like extensive mitoses and necrosis [26, 42].
The diagnosis of ONSM depends on cross-sectional imaging. NECT commonly shows tubular thickening and calcification of the optic nerve sheath complex. An enlarged optic nerve canal and hyperostosis may be seen. Although MRI is less sensitive than CT for detection of calcifications, it is ideal for assessing the intracanalicular and intracranial extension of ONSM. ONSM demonstrates similar intensity as the optic nerve on T1W and T2W images. Fat-saturated, thin-section CEMRI images show a tubular enhancing mass around the isointense optic nerve (tram track sign on axial images/target sign on coronal images) (Fig. 5). ONG is the closest imaging differential; however, ONG is more common in children, does not calcify, expands the optic nerve, often associated with other stigmata of NF-1, and may extend intracranially along the optic pathways [1, 8]. Abnormal enhancement of the optic nerve sheath causing the tram track sign or the target sign appearance on cross-sectional imaging may also be seen in the setting of lymphoma, leukemia, and inflammatory pseudotumour or can be caused by tumour seeding into the subarachnoid space (as the optic nerve sheath communicates with the intracranial subarachnoid space).
Because of its hypercellular nature, ONSM often shows restricted diffusion with low ADC values on DWI [912] (Fig. 5). Sepahdari et al have reported ADC values in the range of 0.79-1.04 × 10−3 mm2/s for ONSM [9]. Zang et al have illustrated a case of tractography demonstrating optic nerve displacement and atrophy due to an invasive orbital meningioma [15].
It has been reported that WHO grades 2 and 3 dural meningiomas show higher FDG uptake than grade 1 tumours. Thus, FDG uptake correlates with the proliferative activity of meningiomas [43, 44].

Conal-intraconal compartment

Cavernous hemangioma

Cavernous hemangioma is the most common benign orbital tumour-like condition in adults. According to the classification of vascular malformations by the International Society for the Study of Vascular Anomalies (ISSVA), cavernous hemangioma is a venous or low flow malformation [14, 8]. It is more common in women and usually seen in the 2nd–4th decades. It is typically intraconal and presents with slowly progressive, unilateral proptosis, and/or diplopia. Occasionally, compression of the optic nerve may result in mild visual deficit. Unlike childhood capillary hemagiomas, cavernous hemangiomas do not show cellular proliferation nor do they have a prominent arterial supply. In fact, they are isolated from the orbital vascular system. Asymptomatic tumours are usually observed conservatively. Surgical resection is performed to correct visual disturbance and cosmetic problems. Visual prognosis is excellent in most cases [1, 2, 45, 46].
Histologically, cavernous hemangiomas consist of large blood-filled spaces lined by flattened endothelial cells and separated by scant fibrous tissue. Stagnant circulation may result in venous thrombosis. Dystrophic calcification is common [26, 45]. Cavernous hemangiomas can coexist with other vascular malformations of the orbit like venous varix and lymphangioma [47].
On NECT, a cavernous hemangioma is seen as a well-circumscribed, dense intraconal mass. It is usually seen separately from the optic nerve and extraocular muscles CECT may show patchy or uniform enhancement (Fig. 6). Phleboliths, if present, help to confirm the diagnosis (Fig. 6). On MRI, the lesion typically appears iso- to hypointense on T1W images and hyperintense on T2W images, although some hemangiomas may display moderately high/low signal intensity. Some scattered hyperintense areas on T1W images may indicate thrombosis. Fat-suppressed, dynamic CEMRI shows initial patchy enhancement followed by homogeneous enhancement in the delayed phase (Fig. 7). Imaging differentials include venous varix and, less often, schwannoma. A venous varix shows intermittent intralesional flow and exophthalmos on Valsalva manoeuvre [1, 2, 45, 46]. Schwannomas also appear well-circumscribed, iso-hypointense on T1W images, and hyperintense on T2W images. However, the spread pattern on dynamic CEMRI can help to distinguish between schwannoma and cavernous hemangioma. In the early phase, enhancement in hemangiomas starts at one point, whereas it starts from a wide area in schwannomas [48, 49].
Cavernous hemangiomas appear bright on DW images with mean ADC values ranging from 1.23 × 10−3 mm2/s to 1.39 × 10−3 mm2/s [9, 10, 12] (Fig. 7). Razek et al have reported that schwannomas have mean ADC value of 1.92 × 10−3 mm2/s, which is statistically different from that of cavernous hemangiomas [12].
Scinitigraphy using technetium 99 m-labelled red blood cells can help in the differential diagnosis of cavernous hemangioma from other imaging mimics [50]. Miyamoto et al have described two cases of adult orbital cavernous hemangiomas showing isointense FDG uptake on PET/CT [19].

Extraconal compartment

Dermoid

Dermoids are the most common congenital orbital lesions, accounting for about 25 % of all orbital biopsies. They arise from epithelial sequestration, usually at the zygomaticofrontal and frontoethmoidal sutures. They are typically seen in the extraconal region, superolaterally, between the globe and the orbital periosteum. They are slow growing lesions; however, they may occasionally rupture and mimic acute inflammation. Small dermoids do not require immediate treatment and are usually removed within the 2nd or 3rd year of life. Complete excision without rupturing is necessary in order to avoid inflammatory reactions or local recurrences [1, 26, 51].
Macroscopically, orbital dermoids are round or oval-shaped, encapsulated tumours, containing various skin appendages and fatty material. Histologically, a dermoid is lined by squamous epithelium and may contain hair follicles, sebaceous glands as well as keratinous debris [26, 51].
In addition to clinical examination, which is sufficient for most superficial dermoids, US scans help to demonstrate a sharply outlined lesion with a capsule and low-reflectivity contents. CT or MRI are rarely necessary. NECT shows a well circumscribed, cystic tumour of low or fat density. Fat-fluid levels and calcifications may be seen. Bony scalloping of the lacrimal fossa may occur due to pressure effect. On MRI, dermoids typically appear hyperintense on T1W and T2W and hypointense on STIR (Fig. 8). Rim enhancement is rare [1, 26, 51]. Diffusion in dermoids may be variable depending upon their contents. Lope et al and Sepahdari et al have described restricted diffusion in orbital dermoids [9, 13], whereas Razek et al have described ADC values in the range of 1.68-1.95 × 10−3 mm2/s for head-neck dermoids [52]. Most often, the detection of macroscopic fat in dermoids is diagnostic and DWI adds no additional value (Fig. 8).
Cephalocoeles can occur in the fronto-orbital region near the midline and can mimic dermoids. Cephalocoeles show a track leading to the anterior cranial fossa, contain cerebrospinal fluid and show no fat content [51].

Lacrimal gland tumours

Lacrimal gland tumours are classified as epithelial and non-epithelial lesions. Lacrimal gland epithelial tumours are similar to salivary gland tumours and constitute 40–50 % of all lacrimal masses. Half of these are benign mixed tumours (BMT), while the other half are malignant masses. Adenoid cystic carcinoma (ACC) is the most common lacrimal gland malignancy, followed by carcinoma ex-pleomorphic adenoma, adenocarcinoma, and mucoepidermoid carcinoma. Lymphoma, inflammatory conditions, and non-carcinomatous metastases constitute the non-epithelial lesions.

Benign mixed tumour (BMT)

BMT or pleomorphic adenoma originates mainly from the orbital lobe of the lacrimal gland. It is seen in middle-aged patients (40-50 years) without gender predilection. Clinical signs include a painless, slow-growing mass in the lateral orbit, usually persisting for more than 12 months. Proptosis may be seen. Although benign, these tumours can show recurrence and malignant transformation (carcinoma ex-pleomorphic adenoma), primarily in cases where only a biopsy or incomplete excision were performed. Hence, meticulous surgical excision and careful pathological examination for capsular invasion is mandatory [53, 54].
BMT arise from the ductal system of the gland. These encapsulated tumours contain interspersed epithelial and stromal components. Necrosis, hyalinization, myxoid, and mucinous degeneration may be seen [26, 53, 54]. Pseudopodia and satellite tumours have been described histologically in more than 50 % of BMT arising in the parotid gland, these histological features being associated with a higher risk of recurrence [55]. Pseudopodia, satellite lesions, and bony remodelling can equally be seen in BMTs arising in the lacrimal glands; they should not be misinterpreted as a feature of malignancy (Fig. 9). On CT, BMT are seen as well-circumscribed, round-oval masses with varying attenuation depending upon their composition and cellularity. Highly cellular masses appear homogeneous. Cystic degeneration may give rise to hypodense/inhomogeneous appearance. Lacrimal fossa deformation and calcifications may be seen on bone-window CT. On MRI, a heterogeneous signal is identified, especially on T2W images with moderate/heterogeneous or homogenous contrast enhancement (Fig. 9). Infiltration of the adjacent orbital tissue and poorly defined margins suggest malignant transformation [53, 54]. Motoori et al proposed that the detection of myxomatous tissue on T2W, inversion recovery, DWI, and dynamic contrast-enhanced sequences help to differentiate BMT from other malignant tumours [56].
Similar to salivary gland BMT, lacrimal gland BMT do not show restricted diffusion (Fig. 9) [5658]. Sepahdari et al have reported a single BMT of the lacrimal gland with ADC value of 1.37 × 10 −3 mm 2/s [9], Razek et al have reported ADC ranges in BMT between 1.62-1.76 × 10 −3 mm2/s [12], whereas Elkhamary et al have reported ADC ranges between 1.18-1.23 × 10 −3 mm2 /s [58]. These ADC values are significantly higher than the malignancy threshold value of 1.0 × 10−3 mm2/s [9, 10, 12, 5658]. Thus, ADC values appear to be highly sensitive and specific in differentiating BMT from malignant tumours of the lacrimal gland.

Malignant epithelial lacrimal gland tumours

Approximately 50 % of epithelial lacrimal gland tumours are malignant. Malignant tumours of epithelial origin include adenoid cystic carcinoma (ACC), mucoepidermoid carcinoma, adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma types, such as the mammary analog secretory carcinoma of salivary origin (Fig. 10). Overall, these tumours are quite rare, accounting for less than 5 % of all lacrimal gland lesions. Nevertheless, malignant lacrimal gland tumours need to be recognized at an early stage, as they tend to have a high morbidity and mortality. ACC is a high-grade malignancy accounting for 29 % of all epithelial lacrimal gland tumours and as many as 50 % of all malignant epithelial lacrimal gland neoplasms. Its incidence peaks in the 4th decade. Patients present with a hard mass in the upper lateral orbit, often with pain caused by perineural spread or bony invasion. Perineural spread indicates poorer prognosis. Radical resection with wide margins is performed for small, low-grade tumours. Survival rates vary from 5 years in 40 % of patients to 15 years in 58 % of patients [1, 2, 53, 54]. Histologically, these tumours are characterized by absence of a mesenchymal matrix. They show different histological types like tubular, comedo-carcinoma, basaloid, or cribriform patterns. The cribriform pattern consists of sheets of basaloid epithelial cells and surrounding spaces of varying shapes giving rise to a characteristic Swiss cheese appearance [26, 53, 54].
CT shows non-specific findings; often a well or poorly circumscribed mass involving the lacrimal gland with associated bony destruction in 70 % cases (Fig. 11). Low-grade tumours may exactly mimic BMT with a well-circumscribed margin and no bony destruction. Intratumoural calcifications are more common in ACC, in adenocarcinoma and in undifferentiated epithelial tumours (Fig. 10) than in a BMT and should not be misinterpreted as phleboliths. ACC often appears hypointense on T1W images, hypo- or hyperintense on T2W images and shows prominent post-contrast enhancement (Fig. 11). Fat-saturated CEMRI is ideal for local tumour staging and for evaluating perineural spread [1, 2, 53, 54]. In general, most ACC will show perineural spread at microscopic examination; however, radiologically, perineural spread may remain undetected unless involvement of major nerve trunks, such as where the supraorbital nerve occurs (Fig. 11).
Elkhamary SM et al have reported 0.8 × 10 −3 mm2 /s as the mean ADC value for ACC (which is significantly lower than BMT and other benign lesions), but significantly higher than lymphomas (0.6 × 10 −3 mm2/s) [58]. ADC values can help to differentiate between carcinomas, lymphomas, metastases, and inflammatory disorders (described in subsequent sections) [1, 912, 53, 54, 58]. Nevertheless, ACC is often indistinguishable from other malignant epithelial tumours of the lacrimal gland on MRI with DWI (Fig. 10) unless perineural spread, which is more common in ACC, is detected (Fig. 11). Occasionally, mucoepidermoid carcinomas may show high T1 signal due to their mucin content.
ACC is commonly hypermetabolic on PET CT. Baek et al have reported that PET CT was successful in detecting both the primary lesion and distant metastases of lacrimal gland ACC [1719, 59].

Rhabdomyosarcoma (RMS)

RMS is the most common malignant mesenchymal tumour of childhood. The orbit is the most common location in the head-neck with 40 % of tumours appearing there. The incidence peaks between 5-10 years of age, as shown by positron emission tomography, with a slight predilection for boys. RMS typically arises in the extraconal compartment; however, intraconal extension is known. It presents with rapidly progressive proptosis, ptosis, or signs of inflammation often prompting urgent imaging. It is an aggressive tumour and commonly infiltrates into the adjacent sinuses, orbital fissures, cavernous sinus, and middle cranial fossa. Hematogenous spread can occur to the lungs. Surgery and chemotherapy used in combination may achieve good survival rates. RT is avoided because of the potential risk of cataract, encephalopathy, and radiation-induced sarcomas [1, 2, 4, 26, 60].
RMS is believed to arise from primitive mesenchymal cells. RMS can be divided histopathologically into embryonal, pleomorphic, alveolar, and botryoid subtypes. The alveolar subtype is the most anaplastic variant characterized by tumour cells spreading along soft-tissue septa. The rhabdomyoblast is the diagnostic cell in all types which shows granular eosinophilic cytoplasm with thick and thin filaments. Conventional H&E staining is complimented with immunohistochemistry to detect myoglobin and desmin which support the diagnosis [26, 60].
CT and MR are often used in combination to assess tumour size, extraorbital extension, bony destruction and intracranial involvement. RMS appears isodense to muscle on NECT and usually shows significant enhancement on CECT. It appears iso-intense to muscle on T1W images, hypo or hyperintense on T2W images and shows marked enhancement on CEMRI (Fig. 12). Necrosis and calcification is uncommon [1, 2, 4, 26, 60].
Many benign and malignant entities may mimic the imaging features of RMS; however, the presence of unilateral, rapidly progressive proptosis in a child must always raise concern for RMS. Orbital cellulitis may show similar clinical features. On imaging, both conditions may show an orbital mass with adjacent paranasal sinus involvement. Fever, leukocytosis, and orbital fat stranding/abscess formation suggest infection. Although capillary hemangiomas manifest in a younger age-group (12-18 months), they may mimic a very vascular RMS. Capillary hemangiomas often show multiple flow-voids, avid contrast enhancement, and high flow on time-resolved MR angiography. Associated cutaneous hemangiomas are seen in one third of cases. In cases with equivocal clinical and imaging findings, a biopsy is necessary to reach the diagnosis. Langerhans cell histiocytosis may present with orbital involvement in 23 % cases. It can appear as an aggressive soft tissue mass with bony invasion, similar to RMS. It may be associated with diabetes insipidus. Again, a biopsy may be necessary to differentiate between the two. Neuroblastoma metastases to the orbit can mimic RMS on imaging. The finding of a primary tumour in the retroperitoneum or posterior mediastinum helps to arrive at the correct diagnosis [60]. Lymphoma is rare in children accounting for less than 5-10 % of orbital lesions. Unlike RMS, it commonly involves the lacrimal gland, appears hypointense on T2W images, encases rather than distorts the globe and shows even lower ADC values than RMS [4, 13, 60] .
Sepahdari et al have reported 0.72 × 10 −3 mm2/s as the mean ADC value in a cohort of 12 cases of orbital RMS [10] (Fig. 12). Lope et al have stated that the low ADC values of RMS can help to differentiate them from haemangiomas which usually show high ADC values [13]. Hassold et al have reported a case of orbital RMS where low ADC value within the recurrent tumour (0.62 × 10 −3 mm2/s) helped to differentiate it from post-therapeutic changes [61].
PET CT is a valuable adjunct for the grading and staging of paediatric sarcomas [62]. FDG uptake is known to correlate with the tumour grade of mesenchymal sarcomas [62, 63] (Fig. 12). PET CT has been deemed superior at detecting osseous and nodal metastases of RMS than conventional imaging [62, 64]. Whole-body MRI has shown comparable results as PET CT, and more accuracy as compared to skeletal scintigraphy in the detection of osseous metastases of RMS [65]. MRI PET may potentially improve the staging, follow-up and post-treatment assessment of RMS [22].

Lymphoma

Lymphoma of the ocular adnexa is the most common orbital malignancy accounting for 55 % of adult malignant orbital tumours. This is a heterogeneous group of tumours composing approximately 1-2 % of non-Hodgkin’s lymphomas (NHL) and 8 % of extranodal mucosa-associated lymphoid tissue (MALT) lymphomas. Highest incidence is seen in the 6th–7th decade. Lymphoma can be primary to the orbit or secondary to systemic disease. Secondary ocular involvement occurs in 2-5 % of patients with advanced systemic NHL. About 75 % of patients with primary orbital lymphoma eventually develop systemic disease. Patients with Sjögren’s syndrome have a higher risk of developing extranodal NHL as compared to age-, race-, and sex-matched controls. Sjögren’s syndrome, either primary or secondary (due to rheumatoid arthritis, systemic lupus erythematosus, or progressive systemic sclerosis), is an autoimmune disease of the exocrine glands characterized by lymphocytic infiltration of the affected glands. About 6 % of patients with Sjögren’s syndrome show clinically evident NHL manifestations. Most NHL seen in patients with Sjögren’s syndrome are of B cell lineage and can occur in the salivary glands, lacrimal glands, lymph nodes, lung, and thyroid. In the orbit, NHL can be unilateral or bilateral. In the orbit, the anterior extraconal space and lacrimal gland are most commonly involved. Involvement of the lacrimal gland is seen in about 7 % of all NHL cases associated with Sjögren’s syndrome and manifests clinically with lacrimal gland enlargement. Other clinical manifestations of orbital lymphoma include painless proptosis and motility disturbances. Whole-body staging is necessary when orbital lymphoma is diagnosed and is most often done with FDG PET CT. Low-grade tumours respond well to RT while chemotherapy is necessary for high-grade or systemic disease [1, 4, 18, 66, 67].
Histologically, ocular adnexal MALT lymphomas are characterized by a heterogeneous cell population, consisting of monocytoid, plasmacytoid, and centrocyte-like cells, with occasional blasts in the marginal zone surrounding lymphoid follicles. Pathognomonic histological features include “follicular colonization” and the formation of “lymphoepithelial lesions” through the invasion of neighbouring epithelial structures by nests of MALT lymphoma cells. Immunophenotypically, orbital MALT lymphomas show dense CD 20+, CD 10and CD 23 B-cell lymphocytic infiltrates which helps to differentiate them from benign lymphoproliferative disorders and other small B-cell lymphomas. MALT lymphomas are typically negative for CD5, which helps to differentiate them from mantle-cell lymphomas [26, 67].
NECT typically shows a hyperdense mass involving the lacrimal gland. The tumour usually molds to encase surrounding orbital structures. Significant enhancement may be seen on CECT. Bony destruction or perineural spread suggests an aggressive histology. High-cellularity tumours appear moderately hypointense on T1W and T2W MR images (Figs. 13 and 14). CEMRI usually shows avid enhancement (Fig. 14). At times, isolated involvement of the extraocular muscles or diffuse ill-defined orbital infiltration may be seen (Fig. 14) [1, 4, 66, 67].
Other infiltrative T2 moderately hypointense lesions namely benign orbital lympoproliferative disorders (OLPD), inflammatory orbital pseudotumour (IOP), and granulomatous diseases such as sarcoidosis and metastases (described subsequently) are common imaging differentials [1, 9, 68, 69].
Orbital lymphomas typically show very low ADC values, usually between 0.44-0.92 × 10 −3 mm2/s (Figs. 13 and 14). Studies have proven that orbital lymphoma can be differentiated from IOP (ADC range 1.02 - 2.28 × 10 −3 mm2/s) with 100 % accuracy using an ADC threshold of 1.0 × 10−3mm2/s and an ADC ratio of less than 1.2 × 10−3mm2/s [912, 68]. Similarly, lymphomas show significantly lower ADC values as compared to Ig-G4 related disease (mean ADC 1.67 × 10 −3 mm2/s) [69] as well as metastases (ADC range 0.9-1.6 × 10 −3 mm2/s) [9, 10, 12]. In a study by Haradome et al, the mean ADC and contrast-enhancement ratio of orbital lymphomas was found to be significantly lower than that of benign OLPD, thereby aiding in their differential diagnosis [70].
Sarcoidosis may mimic lymphoma at clinical presentation and at cross-sectional imaging. Sarcoidosis is a chronic, multisystemic, granulomatous disorder which commonly involves the orbit. It can cause mass-like lacrimal gland and muscle infiltration (often bilateral), optic nerve thickening and enhancement or pseudotumoural intra-orbital masses. There may be associated intracranial extension. The imaging findings may be exactly similar to lymphoma, even on DWI [12]. Bilateral hilar adenopathy, lung lesions, and elevated serum angiotensin-converting enzyme levels point to sarcoidosis. Often, a biopsy is required to demonstrate the non-caseating granulomas of sarcoidosis.
Lymphomas commonly show high FDG uptake (Figs. 13 and 14). Whole body PET CT has become part of standard staging of orbital lymphomas and is probably used more widely for this disease than any other orbital tumour Although, low-grade MALT lymphomas may show relatively low FDG uptake, PET CT has shown very good results in the detection of systemic metastases of even low-grade orbital lymphomas, which were not detected by conventional imaging [18, 20, 71, 72]. MRI PET holds promise in evaluating post-treatment response of lymphomas, especially in children [22, 73].

Bone and sinus compartment

Fibrous dysplasia (FD)

FD is a developmental disorder of the bone in which normal bone marrow is replaced by fibro-osseous tissue with expansion of the medullary cavity. Cranio-facial fibrous dysplasia is commonly involves the frontal, ethmoid or sphenoid bones. It is typically seen in children and adolescents with slight female predilection. FD is monoostotic in 70-80 % cases and polyostotic in the rest. Orbital bony involvement leads to hypertelorism, exophthalmos, visual impairment and blindness. Surgery is needed to correct facial deformity or severe optic nerve compression [1, 26, 51].
FD shows replacement of lamellar bone with abnormal metaplastic immature woven bone, forming irregular curvilinear trabeculae on histology; this appearance has been described as “Chinese characters” or alphabet soup. The fibrous portion contains bland spindle cells without significant mitotic activity. Haemorrhage and cystic changes may be seen [26, 51].
Radiographs and CT shows bony expansion with “ground glass” appearance (Fig. 15). There may be consequent narrowing of the optic nerve canal and impingement of the optic nerve (Figs. 15 and 16). The fibrous stroma and osteoid material typically appears hypointense on T1W images (Fig. 16). On T2W images the signal intensity may be low (18-38 % cases), intermediate (18 %) or high (62–64 %) (Fig. 16). Marked enhancement may be seen on CEMRI [1, 51] (Fig. 16), as well as fluid-fluid levels. Similar to benign lesions elsewhere in the head and neck, FD shows significantly higher ADC values compared to malignant bone tumours [74, 75] (Fig. 16).
FD can appear hypermetabolic on PET CT with high SUV values thereby simulating malignancy [76, 77]. Nevertheless, the high ADC values and the characteristic CT aspect help to avoid this pitfall.

Multi-compartmental tumours

Venolymphatic malformation (VLM)

VLM, also called lymphangioma, is a congential, hamartomous vascular malformation with variable lymphoid and venous vascular elements. It is hemodynamically isolated from systemic drainage. VLM accounts for 5 % of paediatric orbital tumours; about 60 % cases are diagnosed by 16-20 years of age. It is commonly extraconal; however, it can be intraconal or multicompartmental. Proptosis, diplopia, and optic neuropathy are common presenting symptoms. Sudden increase in proptosis indicates haemorrhage within the lesion. Unlike capillary hemangiomas, which involute over time, VLM grow with the patient, especially in puberty. Treatment is usually conservative. Percutaneous sclerotherapy is performed in select cases. Surgery is difficult due to the transpatial nature and also due to risk of recurrence [2, 4, 26, 45, 60].
VLM typically contain irregular shaped venous and lymphatic channels lines by flattened endothelial cells and interspersed connective tissue. The cystic spaces may show blood products or lymphatic fluid within [26, 45, 60]. VLM are usually seen on CT and MRI as poorly circumscribed, lobulated, transpatial lesions. Hemorrhagic and proteinaceous contents may appear hyperdense on NECT. Fluid-fluid levels are commonly seen. Calcification and bony erosions are uncommon. The lesion shows variable signal on T1W and T2W MR images (Fig. 17). As against capillary hemangiomas, flow voids are absent. Fat-saturated CEMRI images are ideal for mapping the lesion. Rim enhancement is commonly seen (Fig. 17) [2, 4, 26, 45, 60]. VLM show increased diffusion [13]. Their ADC values have been reported in the range of 1.44–1.53 × 10 −3 mm2/s and 1.75-2.2 × 10 −3 mm2/s [9, 12]. On FDG PET CT, there is no focal uptake.

Orbital plexiform neurofibroma (OPNF)

OPNF is a hamartoma of neuroectodermal origin accounting for 1-2 % of all orbital tumours, typically arising in the first decade of life. OPNF is diagnostic of NF-1. OPNF can involve any peripheral nerve, but the sensory nerves of the orbit are commonly involved. It is usually associated with other findings of NF-1 such as ONG, sphenoid wing dysplasia, and buphthalmos. OPNF usually presents with nodular periorbital masses, loss of vision, and proptosis. The infiltrative serpentine masses extend in both the intraconal and extraconal compartments. Progressive glaucoma, optic nerve atrophy, and blindness are eventual complications. The risk of malignant sarcomatous degeneration is about 10 %. ONSF are usually not amenable to surgery; however, debulking may be necessary for preservation of vision or cosmetics [4, 26, 78].
Unlike schwannomas, it is not possible to distinguish host nerve fibres separately from OPNF. The host nerve fascicles are irregularly expanded by myxoid accumulation, tumourous Schwann cells, fibroblasts, and collagen fibres [26]. Plain radiography may detect a classical defect in the greater wing of sphenoid called “Harlequin eye” appearance. Both CT and MRI show the characteristic orbital and periorbital infiltrative soft tissue masses, associated OPNF, and sphenoid wing dysplasia (Fig. 18). On T2W MRI, the nodular masses typically appear hyperintense with central low signal called the “target sign”. The nodular masses show variable post contrast enhancement (Fig. 18). MRI is ideal for evaluation of the associated intracranial abnormalities. Infantile/capillary hemangioma, VLM, and RMS may mimic OPNF on imaging; however, the other associated stigmata of NFI are absent in these cases [4, 78].
OPNF show mixed or increased diffusion [13]. DTI with tractography reconstruction is increasingly being used for the pre-operative mapping of neurogenic tumours originating in the head and neck (typically from the brachial plexus), such as schwannomas and neurofibromas [7981]. DTI with tractography reconstruction can accurately detect alterations of involved nerve fascicles, such as displacement, stretching, bowing, or rupture (Fig. 18). FDG-PET CT and more recently MRI PET are sensitive and specific tools to detect sarcomatous transformation in OPNF [82, 83].

Inflammatory orbital pseudotumour (IOP)

IOP is the most common cause of a painful orbital mass in adults and the third most common orbital disease after thyroid ophthalmopathy and lymphoproliferative disorders. IOP is a benign, non-infective, inflammatory condition without identifiable local or systemic causes and is typically seen in the 4th-6th decade. The disease may present as scleritis, uveitis, lacrimal adenitis, myositis, perineuritis, or diffuse orbital inflammation. The classic clinical triad consists of unilateral orbital pain, proptosis, and impaired ocular movement. There may be associated fibrosing mediastinitis or retroperitoneal fibrosis. The diagnosis of IOP is made after exclusion of other pathologies like thyroid ophthalmopathy, lymphoma, Wegener’s granulomatosis, and sarcoidosis. Treatment with steroids shows dramatic response, which helps to confirm the diagnosis [1, 2, 68, 84, 85].
IOP is characterized histologically by a mixed inflammatory infiltrate, which consists of lymphocytes, plasma cells, macrophages, and eosinophilia. Fibrosis may also be seen [84, 85]. Imaging findings may be non-specific. CT and MRI may show mass-like enhancing soft tissue within the orbit, streaky fat stranding, lacrimal gland enhancement, and optic nerve sheath enhancement (Fig. 19). The extraocular muscles are commonly enlarged and show enhancement. These inflammatory masses are usually hypointense to fat on T1W images and iso-hypointense on T2W images (Fig. 19). They can extend to involve the pterygopalatine fossa, nasopharynx, and cavernous sinus [1, 2, 68, 84, 85].
IOP is a great imaging mimic of several other pathologies. These include other causes of myositis (thyroid ophthalmopathy, infective cellulitis) and other T2-hypointense infiltrative lesions (lymphoma, IgG4-RD, and granulomatous diseases). Thyroid ophthalmopathy causes bilateral inflammation of the extra-ocular muscles, commonly involves the inferior and medial rectus muscles, often spares the myo-tendinous junctions, and is associated with elevated thyroid-stimulating hormone levels. IgG4-RD can show similar features as thyroid ophthalmopathy, however, with normal thyroid stimulating hormone levels. Infective cellulitis is commonly associated with fever, leukocytosis, and abscess formation. Clinical features such as pain, conjunctival congestion, and eyelid oedema help to distinguish IOP from lymphoma, which commonly presents with a painless palpable mass [1, 2, 68, 8488]. As described previously, ADC values help to accurately differentiate between IOP and lymphoma (Fig. 19) [912, 68]. IOP has been reported to show very high FDG uptake mimicking malignancy (Fig. 19) [89, 90].

IgG4-RD

Immunoglobulin G4-related disease (IgG4-RD) is a chronic, systemic autoimmune, fibro-inflammatory condition. Its most common manifestation is autoimmune pancreatitis; however, retroperitoneal fibrosis, sclerosing cholangitis, interstitial nephritis, periarteritis, Riedel’s thyroiditis, chronic dacryoadenitis, Mikulicz disease, and certain orbital inflammatory pseudotumours may frequently be encountered. As with IOP, IgG4-RD shows a dramatic response to corticosteroid therapy, although spontaneous resolution has been described [8588]. Practically any part of the orbit can be involved, and the typical histological features, regardless of the affected site, are dense lympho-plasmacytic infiltration with abundant IgG4-positive plasma cells, storiform-type fibrosis with obliterative phlebitis [8688].
On MRI, IgG4-RD typically demonstrates significant hypointensity on T1 and T2W images with marked enhancement after contrast administration. Lymphoma shows similar MRI features on conventional sequences (Fig. 20) [8688]. As described previously, DWI with ADC mapping may help to differentiate between the two pathologies (Fig. 20) [69]. PET CT can help to detect extra-pancreatic involvement in IgG4-RD [91].

Metastases

Metastases represent the most common orbital malignancy. Common sources for orbital metastases include melanomas, breast and lung cancers in adults, and neuroblastomas in children. Metastases commonly involve the orbital bones and extraconal compartment; however, they may also involve the choroid. Painful proptosis is the most common presentation, the exception being cirrhotic breast carcinoma metastases, where enophthalmos is a typical finding due to rectus muscle infiltration and contraction [1, 2, 4].
Orbital metastases show histology typical to the primary tumour. High mitoses and necrosis may be seen (Fig. 21). When the primary tumour is unknown, immunohistochemistry may aid in diagnosis.
CT and MRI may show an enhancing infiltrative extraconal mass (Fig. 21). There can be associated bony destruction. Choroidal metastases from melanoma may appear hyperdense on NECT and hyperintense on T1W MR images. CEMRI also helps to detect associated intracranial metastases [1, 2, 4]. As described previously, metastases can mimic lymphomas on conventional CT/MR sequences. DWI can help to differentiate between the two [9, 10, 12]. An orbital metastatic deposit may be incidentally diagnosed for the first time on a PET CT. PET CT can also help to detect the primary tumour site and metastatic deposits to other organs [1719].

Lid tumours with orbital extension

Common malignant tumours of the eyelid include squamous cell carcinoma (SCC), basal cell carcinoma, melanoma, sebaceous cell carcinoma, and lymphoma. These tumours are often highly aggressive and show contiguous invasion of orbital structures. About 43 % of SCC of the eyelid show orbital involvement (Fig. 22). Perineural spread along the branches of the trigeminal nerve is also common. Orbital exenteration is required for controlling local disease spread which may be relentless and potentially fatal. Cross-sectional imaging helps in the local staging of the disease [18, 92, 93]. PET CT plays a valuable role in detecting local nodal and distant metastases from eyelid carcinomas [18, 59].

Conclusion

Evaluation of orbital masses requires a multimodality approach to balance the strength and weaknesses of each modality. Combining accurate clinical information with appropriate imaging modalities and being aware of potential diagnostic pearls and pitfalls helps to obtain the best results. Future advances in functional imaging are likely to make a significant impact on ophthalmological cancer imaging. We hope that this review has satisfactorily served the purpose of highlighting these points.

Grants and conflict of interest information

No conflicts of interest
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
1.
Zurück zum Zitat Goh PS, Gi MT, Charlton A, Tan C, Gangadhara Sundar JK, Amrith S (2008) Review of orbital imaging. Eur J Radiol 66:387–395CrossRefPubMed Goh PS, Gi MT, Charlton A, Tan C, Gangadhara Sundar JK, Amrith S (2008) Review of orbital imaging. Eur J Radiol 66:387–395CrossRefPubMed
2.
Zurück zum Zitat Heran F, Berges O, Blustajn J et al (2014) Tumor pathology of the orbit. Diagn Interv Imaging 95:933–944CrossRefPubMed Heran F, Berges O, Blustajn J et al (2014) Tumor pathology of the orbit. Diagn Interv Imaging 95:933–944CrossRefPubMed
3.
Zurück zum Zitat Lee AG, Johnson MC, Policeni BA, Smoker WR (2009) Imaging for neuro-ophthalmic and orbital disease - a review. Clin Exp Ophthalmol 37:30–53CrossRef Lee AG, Johnson MC, Policeni BA, Smoker WR (2009) Imaging for neuro-ophthalmic and orbital disease - a review. Clin Exp Ophthalmol 37:30–53CrossRef
4.
Zurück zum Zitat Rao AA, Naheedy JH, Chen JY, Robbins SL, Ramkumar HL (2013) A clinical update and radiologic review of pediatric orbital and ocular tumors. J Oncol 2013:975908PubMedCentralCrossRefPubMed Rao AA, Naheedy JH, Chen JY, Robbins SL, Ramkumar HL (2013) A clinical update and radiologic review of pediatric orbital and ocular tumors. J Oncol 2013:975908PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Varoquaux A, Rager O, Lovblad KO et al (2013) Functional imaging of head and neck squamous cell carcinoma with diffusion-weighted MRI and FDG PET/CT: quantitative analysis of ADC and SUV. Eur J Nucl Med Mol Imaging 40:842–852PubMedCentralCrossRefPubMed Varoquaux A, Rager O, Lovblad KO et al (2013) Functional imaging of head and neck squamous cell carcinoma with diffusion-weighted MRI and FDG PET/CT: quantitative analysis of ADC and SUV. Eur J Nucl Med Mol Imaging 40:842–852PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Varoquaux A, Rager O, Dulguerov P, Burkhardt K, Ailianou A, Becker M (2015) Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant Head and Neck Tumors. Radiographics 35(5):1502–1527CrossRefPubMed Varoquaux A, Rager O, Dulguerov P, Burkhardt K, Ailianou A, Becker M (2015) Diffusion-weighted and PET/MR Imaging after Radiation Therapy for Malignant Head and Neck Tumors. Radiographics 35(5):1502–1527CrossRefPubMed
8.
Zurück zum Zitat Becker M, Masterson K, Delavelle J, Viallon M, Vargas MI, Becker CD (2010) Imaging of the optic nerve. Eur J Radiol 74:299–313CrossRefPubMed Becker M, Masterson K, Delavelle J, Viallon M, Vargas MI, Becker CD (2010) Imaging of the optic nerve. Eur J Radiol 74:299–313CrossRefPubMed
9.
Zurück zum Zitat Sepahdari AR, Aakalu VK, Setabutr P, Shiehmorteza M, Naheedy JH, Mafee MF (2010) Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy. Radiology 256:554–564CrossRefPubMed Sepahdari AR, Aakalu VK, Setabutr P, Shiehmorteza M, Naheedy JH, Mafee MF (2010) Indeterminate orbital masses: restricted diffusion at MR imaging with echo-planar diffusion-weighted imaging predicts malignancy. Radiology 256:554–564CrossRefPubMed
10.
Zurück zum Zitat Sepahdari AR, Politi LS, Aakalu VK, Kim HJ, Razek AA (2014) Diffusion-weighted imaging of orbital masses: multi-institutional data support a 2-ADC threshold model to categorize lesions as benign, malignant, or indeterminate. AJNR Am J Neuroradiol 35:170–175PubMedCentralCrossRefPubMed Sepahdari AR, Politi LS, Aakalu VK, Kim HJ, Razek AA (2014) Diffusion-weighted imaging of orbital masses: multi-institutional data support a 2-ADC threshold model to categorize lesions as benign, malignant, or indeterminate. AJNR Am J Neuroradiol 35:170–175PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Fatima Z, Ichikawa T, Ishigame K et al (2014) Orbital masses: the usefulness of diffusion-weighted imaging in lesion categorization. Clin Neuroradiol 24:129–134CrossRefPubMed Fatima Z, Ichikawa T, Ishigame K et al (2014) Orbital masses: the usefulness of diffusion-weighted imaging in lesion categorization. Clin Neuroradiol 24:129–134CrossRefPubMed
12.
Zurück zum Zitat Lope LA, Hutcheson KA, Khademian ZP (2010) Magnetic resonance imaging in the analysis of pediatric orbital tumors: utility of diffusion-weighted imaging. J AAPOS 14:257–262CrossRefPubMed Lope LA, Hutcheson KA, Khademian ZP (2010) Magnetic resonance imaging in the analysis of pediatric orbital tumors: utility of diffusion-weighted imaging. J AAPOS 14:257–262CrossRefPubMed
13.
Zurück zum Zitat Razek AA, Elkhamary S, Mousa A (2011) Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging. Neuroradiology 53:517–522CrossRefPubMed Razek AA, Elkhamary S, Mousa A (2011) Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging. Neuroradiology 53:517–522CrossRefPubMed
14.
Zurück zum Zitat Lober RM, Guzman R, Cheshier SH, Fredrick DR, Edwards MS, Yeom KW (2012) Application of diffusion tensor tractography in pediatric optic pathway glioma. J Neurosurg Pediatr 10:273–280CrossRefPubMed Lober RM, Guzman R, Cheshier SH, Fredrick DR, Edwards MS, Yeom KW (2012) Application of diffusion tensor tractography in pediatric optic pathway glioma. J Neurosurg Pediatr 10:273–280CrossRefPubMed
15.
Zurück zum Zitat Zhang Y, Wan SH, Wu GJ, Zhang XL (2012) Magnetic resonance diffusion tensor imaging and diffusion tensor tractography of human visual pathway. Int J Ophthalmol 5:452–458PubMedCentralPubMed Zhang Y, Wan SH, Wu GJ, Zhang XL (2012) Magnetic resonance diffusion tensor imaging and diffusion tensor tractography of human visual pathway. Int J Ophthalmol 5:452–458PubMedCentralPubMed
16.
Zurück zum Zitat Cauley KA, Filippi CG (2013) Diffusion-tensor imaging of small nerve bundles: cranial nerves, peripheral nerves, distal spinal cord, and lumbar nerve roots--clinical applications. AJR Am J Roentgenol 201:W326–W335CrossRefPubMed Cauley KA, Filippi CG (2013) Diffusion-tensor imaging of small nerve bundles: cranial nerves, peripheral nerves, distal spinal cord, and lumbar nerve roots--clinical applications. AJR Am J Roentgenol 201:W326–W335CrossRefPubMed
17.
18.
Zurück zum Zitat Hui KH, Pfeiffer ML, Esmaeli B (2012) Value of positron emission tomography/computed tomography in diagnosis and staging of primary ocular and orbital tumors. Saudi J Ophthalmol 26:365–371PubMedCentralCrossRefPubMed Hui KH, Pfeiffer ML, Esmaeli B (2012) Value of positron emission tomography/computed tomography in diagnosis and staging of primary ocular and orbital tumors. Saudi J Ophthalmol 26:365–371PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Miyamoto J, Tatsuzawa K, Owada K, Kawabe T, Sasajima H, Mineura K (2008) Usefulness and limitations of fluorine-18-fluorodeoxyglucose positron emission tomography for the detection of malignancy of orbital tumors. Neurol Med Chir (Tokyo) 48:495–499, discussion 499 CrossRef Miyamoto J, Tatsuzawa K, Owada K, Kawabe T, Sasajima H, Mineura K (2008) Usefulness and limitations of fluorine-18-fluorodeoxyglucose positron emission tomography for the detection of malignancy of orbital tumors. Neurol Med Chir (Tokyo) 48:495–499, discussion 499 CrossRef
20.
Zurück zum Zitat Roe RH, Finger PT, Kurli M, Tena LB, Iacob CE (2006) Whole-body positron emission tomography/computed tomography imaging and staging of orbital lymphoma. Ophthalmology 113:1854–1858CrossRefPubMed Roe RH, Finger PT, Kurli M, Tena LB, Iacob CE (2006) Whole-body positron emission tomography/computed tomography imaging and staging of orbital lymphoma. Ophthalmology 113:1854–1858CrossRefPubMed
21.
Zurück zum Zitat Purohit BS, Ailianou A, Dulguerov N, Becker CD, Ratib O, Becker M (2014) FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging 5:585–602PubMedCentralCrossRefPubMed Purohit BS, Ailianou A, Dulguerov N, Becker CD, Ratib O, Becker M (2014) FDG-PET/CT pitfalls in oncological head and neck imaging. Insights Imaging 5:585–602PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Teixeira SR, Martinez-Rios C, Hu L, Bangert BA (2014) Clinical applications of pediatric positron emission tomography-magnetic resonance imaging. Semin Roentgenol 49:353–366CrossRefPubMed Teixeira SR, Martinez-Rios C, Hu L, Bangert BA (2014) Clinical applications of pediatric positron emission tomography-magnetic resonance imaging. Semin Roentgenol 49:353–366CrossRefPubMed
23.
Zurück zum Zitat Varoquaux A, Rager O, Poncet A et al (2014) Detection and quantification of focal uptake in head and neck tumours: (18)F-FDG PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 41:462–475PubMedCentralCrossRefPubMed Varoquaux A, Rager O, Poncet A et al (2014) Detection and quantification of focal uptake in head and neck tumours: (18)F-FDG PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 41:462–475PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Viallon M, Cuvinciuc V, Delattre B et al (2015) State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications. Neuroradiology 57:441–467CrossRefPubMed Viallon M, Cuvinciuc V, Delattre B et al (2015) State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications. Neuroradiology 57:441–467CrossRefPubMed
25.
Zurück zum Zitat Chung EM, Specht CS, Schroeder JW (2007) From the archives of the AFIP: Pediatric orbit tumors and tumorlike lesions: neuroepithelial lesions of the ocular globe and optic nerve. Radiographics 27:1159–1186CrossRefPubMed Chung EM, Specht CS, Schroeder JW (2007) From the archives of the AFIP: Pediatric orbit tumors and tumorlike lesions: neuroepithelial lesions of the ocular globe and optic nerve. Radiographics 27:1159–1186CrossRefPubMed
26.
Zurück zum Zitat Kumar V, Abbas AK, Aster JC (2014) Robbins and Cotran Pathologic Basis of Disease, 9th edn. Elsevier Saunders, Philadelphia Kumar V, Abbas AK, Aster JC (2014) Robbins and Cotran Pathologic Basis of Disease, 9th edn. Elsevier Saunders, Philadelphia
27.
Zurück zum Zitat Staffieri SE, McGillivray G, Elder JE et al (2015) Managing fetuses at high risk of retinoblastoma: lesion detection on screening MRI. Prenat Diagn 35:174–178CrossRefPubMed Staffieri SE, McGillivray G, Elder JE et al (2015) Managing fetuses at high risk of retinoblastoma: lesion detection on screening MRI. Prenat Diagn 35:174–178CrossRefPubMed
28.
Zurück zum Zitat Orjuela M, Castaneda VP, Ridaura C et al (2000) Presence of human papilloma virus in tumor tissue from children with retinoblastoma: an alternative mechanism for tumor development. Clin Cancer Res 6:4010–4016PubMed Orjuela M, Castaneda VP, Ridaura C et al (2000) Presence of human papilloma virus in tumor tissue from children with retinoblastoma: an alternative mechanism for tumor development. Clin Cancer Res 6:4010–4016PubMed
29.
30.
Zurück zum Zitat Galluzzi P, Hadjistilianou T, Cerase A, De Francesco S, Toti P, Venturi C (2009) Is CT still useful in the study protocol of retinoblastoma? AJNR Am J Neuroradiol 30:1760–1765CrossRefPubMed Galluzzi P, Hadjistilianou T, Cerase A, De Francesco S, Toti P, Venturi C (2009) Is CT still useful in the study protocol of retinoblastoma? AJNR Am J Neuroradiol 30:1760–1765CrossRefPubMed
31.
Zurück zum Zitat de Graaf P, Pouwels PJ, Rodjan F et al (2012) Single-shot turbo spin-echo diffusion-weighted imaging for retinoblastoma: initial experience. AJNR Am J Neuroradiol 33:110–118CrossRefPubMed de Graaf P, Pouwels PJ, Rodjan F et al (2012) Single-shot turbo spin-echo diffusion-weighted imaging for retinoblastoma: initial experience. AJNR Am J Neuroradiol 33:110–118CrossRefPubMed
32.
Zurück zum Zitat Radhakrishnan V, Kumar R, Malhotra A, Bakhshi S (2012) Role of PET/CT in staging and evaluation of treatment response after 3 cycles of chemotherapy in locally advanced retinoblastoma: a prospective study. J Nucl Med 53:191–198CrossRefPubMed Radhakrishnan V, Kumar R, Malhotra A, Bakhshi S (2012) Role of PET/CT in staging and evaluation of treatment response after 3 cycles of chemotherapy in locally advanced retinoblastoma: a prospective study. J Nucl Med 53:191–198CrossRefPubMed
33.
Zurück zum Zitat Lemke AJ, Hosten N, Bornfeld N et al (1999) Uveal melanoma: correlation of histopathologic and radiologic findings by using thin-section MR imaging with a surface coil. Radiology 210:775–783CrossRefPubMed Lemke AJ, Hosten N, Bornfeld N et al (1999) Uveal melanoma: correlation of histopathologic and radiologic findings by using thin-section MR imaging with a surface coil. Radiology 210:775–783CrossRefPubMed
34.
Zurück zum Zitat McCartney AC (1995) Pathology of ocular melanomas. Br Med Bull 51:678–693PubMed McCartney AC (1995) Pathology of ocular melanomas. Br Med Bull 51:678–693PubMed
35.
Zurück zum Zitat Erb-Eigner K, Willerding G, Taupitz M, Hamm B, Asbach P (2013) Diffusion-weighted imaging of ocular melanoma. Investig Radiol 48:702–707CrossRef Erb-Eigner K, Willerding G, Taupitz M, Hamm B, Asbach P (2013) Diffusion-weighted imaging of ocular melanoma. Investig Radiol 48:702–707CrossRef
37.
Zurück zum Zitat Kurli M, Reddy S, Tena LB, Pavlick AC, Finger PT (2005) Whole body positron emission tomography/computed tomography staging of metastatic choroidal melanoma. Am J Ophthalmol 140:193–199CrossRefPubMed Kurli M, Reddy S, Tena LB, Pavlick AC, Finger PT (2005) Whole body positron emission tomography/computed tomography staging of metastatic choroidal melanoma. Am J Ophthalmol 140:193–199CrossRefPubMed
38.
Zurück zum Zitat Jost SC, Ackerman JW, Garbow JR, Manwaring LP, Gutmann DH, McKinstry RC (2008) Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma. Pediatr Radiol 38:1293–1299CrossRefPubMed Jost SC, Ackerman JW, Garbow JR, Manwaring LP, Gutmann DH, McKinstry RC (2008) Diffusion-weighted and dynamic contrast-enhanced imaging as markers of clinical behavior in children with optic pathway glioma. Pediatr Radiol 38:1293–1299CrossRefPubMed
39.
Zurück zum Zitat Nickerson JP, Salmela MB, Koski CJ, Andrews T, Filippi CG (2010) Diffusion tensor imaging of the pediatric optic nerve: intrinsic and extrinsic pathology compared to normal controls. J Magn Reson Imaging 32:76–81CrossRefPubMed Nickerson JP, Salmela MB, Koski CJ, Andrews T, Filippi CG (2010) Diffusion tensor imaging of the pediatric optic nerve: intrinsic and extrinsic pathology compared to normal controls. J Magn Reson Imaging 32:76–81CrossRefPubMed
40.
Zurück zum Zitat Filippi CG, Bos A, Nickerson JP, Salmela MB, Koski CJ, Cauley KA (2012) Magnetic resonance diffusion tensor imaging (MRDTI) of the optic nerve and optic radiations at 3T in children with neurofibromatosis type I (NF-1). Pediatr Radiol 42:168–174CrossRefPubMed Filippi CG, Bos A, Nickerson JP, Salmela MB, Koski CJ, Cauley KA (2012) Magnetic resonance diffusion tensor imaging (MRDTI) of the optic nerve and optic radiations at 3T in children with neurofibromatosis type I (NF-1). Pediatr Radiol 42:168–174CrossRefPubMed
41.
Zurück zum Zitat de Blank PM, Berman JI, Liu GT, Roberts TP, Fisher MJ (2013) Fractional anisotropy of the optic radiations is associated with visual acuity loss in optic pathway gliomas of neurofibromatosis type 1. Neuro Oncol 15:1088–1095PubMedCentralCrossRefPubMed de Blank PM, Berman JI, Liu GT, Roberts TP, Fisher MJ (2013) Fractional anisotropy of the optic radiations is associated with visual acuity loss in optic pathway gliomas of neurofibromatosis type 1. Neuro Oncol 15:1088–1095PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Backer-Grondahl T, Moen BH, Torp SH (2012) The histopathological spectrum of human meningiomas. Int J Clin Exp Pathol 5:231–242PubMedCentralPubMed Backer-Grondahl T, Moen BH, Torp SH (2012) The histopathological spectrum of human meningiomas. Int J Clin Exp Pathol 5:231–242PubMedCentralPubMed
43.
Zurück zum Zitat Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michele DJ (1987) Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 164:521–526CrossRefPubMed Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michele DJ (1987) Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 164:521–526CrossRefPubMed
44.
45.
Zurück zum Zitat Bilaniuk LT (1999) Orbital vascular lesions. Role of imaging. Radiol Clin N Am 37(1):169–183, xi Bilaniuk LT (1999) Orbital vascular lesions. Role of imaging. Radiol Clin N Am 37(1):169–183, xi
46.
Zurück zum Zitat Thorn-Kany M, Arrue P, Delisle MB, Lacroix F, Lagarrigue J, Manelfe C (1999) Cavernous hemangiomas of the orbit: MR imaging. J Neuroradiol 26:79–86PubMed Thorn-Kany M, Arrue P, Delisle MB, Lacroix F, Lagarrigue J, Manelfe C (1999) Cavernous hemangiomas of the orbit: MR imaging. J Neuroradiol 26:79–86PubMed
47.
Zurück zum Zitat Strianese D, Napoli M, Russo C et al (2014) Coexistence of cavernous hemangioma and other vascular malformations of the orbit. A report of three cases. Neuroradiol J 27:223–231CrossRefPubMed Strianese D, Napoli M, Russo C et al (2014) Coexistence of cavernous hemangioma and other vascular malformations of the orbit. A report of three cases. Neuroradiol J 27:223–231CrossRefPubMed
48.
Zurück zum Zitat Tanaka A, Mihara F, Yoshiura T et al (2004) Differentiation of cavernous hemangioma from schwannoma of the orbit: a dynamic MRI study. AJR Am J Roentgenol 183:1799–1804CrossRefPubMed Tanaka A, Mihara F, Yoshiura T et al (2004) Differentiation of cavernous hemangioma from schwannoma of the orbit: a dynamic MRI study. AJR Am J Roentgenol 183:1799–1804CrossRefPubMed
49.
Zurück zum Zitat Xian J, Zhang Z, Wang Z et al (2010) Evaluation of MR imaging findings differentiating cavernous haemangiomas from schwannomas in the orbit. Eur Radiol 20:2221–2228PubMedCentralCrossRefPubMed Xian J, Zhang Z, Wang Z et al (2010) Evaluation of MR imaging findings differentiating cavernous haemangiomas from schwannomas in the orbit. Eur Radiol 20:2221–2228PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Polito E, Burroni L, Pichierri P, Loffredo A, Vattimo AG (2005) Technetium tc 99m-labeled red blood cells in the preoperative diagnosis of cavernous hemangioma and other vascular orbital tumors. Arch Ophthalmol 123:1678–1683CrossRefPubMed Polito E, Burroni L, Pichierri P, Loffredo A, Vattimo AG (2005) Technetium tc 99m-labeled red blood cells in the preoperative diagnosis of cavernous hemangioma and other vascular orbital tumors. Arch Ophthalmol 123:1678–1683CrossRefPubMed
51.
Zurück zum Zitat Chung EM, Murphey MD, Specht CS, Cube R, Smirniotopoulos JG (2008) From the Archives of the AFIP. Pediatric orbit tumors and tumorlike lesions: osseous lesions of the orbit. Radiographics 28:1193–1214CrossRefPubMed Chung EM, Murphey MD, Specht CS, Cube R, Smirniotopoulos JG (2008) From the Archives of the AFIP. Pediatric orbit tumors and tumorlike lesions: osseous lesions of the orbit. Radiographics 28:1193–1214CrossRefPubMed
52.
Zurück zum Zitat Abdel Razek AA, Gaballa G, Elhawarey G, Megahed AS, Hafez M, Nada N (2009) Characterization of pediatric head and neck masses with diffusion-weighted MR imaging. Eur Radiol 19:201–208CrossRefPubMed Abdel Razek AA, Gaballa G, Elhawarey G, Megahed AS, Hafez M, Nada N (2009) Characterization of pediatric head and neck masses with diffusion-weighted MR imaging. Eur Radiol 19:201–208CrossRefPubMed
53.
Zurück zum Zitat Jung WS, Ahn KJ, Park MR et al (2007) The radiological spectrum of orbital pathologies that involve the lacrimal gland and the lacrimal fossa. Korean J Radiol 8:336–342PubMedCentralCrossRefPubMed Jung WS, Ahn KJ, Park MR et al (2007) The radiological spectrum of orbital pathologies that involve the lacrimal gland and the lacrimal fossa. Korean J Radiol 8:336–342PubMedCentralCrossRefPubMed
54.
Zurück zum Zitat Mafee MF, Edward DP, Koeller KK, Dorodi S (1999) Lacrimal gland tumors and simulating lesions. Clinicopathologic and MR imaging features. Radiol Clin N Am 37:219–239, xii CrossRefPubMed Mafee MF, Edward DP, Koeller KK, Dorodi S (1999) Lacrimal gland tumors and simulating lesions. Clinicopathologic and MR imaging features. Radiol Clin N Am 37:219–239, xii CrossRefPubMed
55.
Zurück zum Zitat Zbaren P, Stauffer E (2007) Pleomorphic adenoma of the parotid gland: histopathologic analysis of the capsular characteristics of 218 tumors. Head Neck 29:751–757CrossRefPubMed Zbaren P, Stauffer E (2007) Pleomorphic adenoma of the parotid gland: histopathologic analysis of the capsular characteristics of 218 tumors. Head Neck 29:751–757CrossRefPubMed
56.
Zurück zum Zitat Motoori K, Yamamoto S, Ueda T et al (2004) Inter- and intratumoral variability in magnetic resonance imaging of pleomorphic adenoma: an attempt to interpret the variable magnetic resonance findings. J Comput Assist Tomogr 28:233–246CrossRefPubMed Motoori K, Yamamoto S, Ueda T et al (2004) Inter- and intratumoral variability in magnetic resonance imaging of pleomorphic adenoma: an attempt to interpret the variable magnetic resonance findings. J Comput Assist Tomogr 28:233–246CrossRefPubMed
57.
Zurück zum Zitat Habermann CR, Arndt C, Graessner J et al (2009) Diffusion-weighted echo-planar MR imaging of primary parotid gland tumors: is a prediction of different histologic subtypes possible? AJNR Am J Neuroradiol 30:591–596CrossRefPubMed Habermann CR, Arndt C, Graessner J et al (2009) Diffusion-weighted echo-planar MR imaging of primary parotid gland tumors: is a prediction of different histologic subtypes possible? AJNR Am J Neuroradiol 30:591–596CrossRefPubMed
58.
Zurück zum Zitat Elkhamary SM (2012) Lacrimal gland lesions: Can addition of diffusion-weighted MR imaging improve diagnostic accuracy in characterization? Egypt J Radiol Nucl Med 43:165–172CrossRef Elkhamary SM (2012) Lacrimal gland lesions: Can addition of diffusion-weighted MR imaging improve diagnostic accuracy in characterization? Egypt J Radiol Nucl Med 43:165–172CrossRef
59.
Zurück zum Zitat Baek CH, Chung MK, Jeong HS et al (2009) The clinical usefulness of (18)F-FDG PET/CT for the evaluation of lymph node metastasis in periorbital malignancies. Korean J Radiol 10:1–7PubMedCentralCrossRefPubMed Baek CH, Chung MK, Jeong HS et al (2009) The clinical usefulness of (18)F-FDG PET/CT for the evaluation of lymph node metastasis in periorbital malignancies. Korean J Radiol 10:1–7PubMedCentralCrossRefPubMed
60.
Zurück zum Zitat Chung EM, Smirniotopoulos JG, Specht CS, Schroeder JW, Cube R (2007) From the archives of the AFIP: Pediatric orbit tumors and tumorlike lesions: nonosseous lesions of the extraocular orbit. Radiographics 27:1777–1799CrossRefPubMed Chung EM, Smirniotopoulos JG, Specht CS, Schroeder JW, Cube R (2007) From the archives of the AFIP: Pediatric orbit tumors and tumorlike lesions: nonosseous lesions of the extraocular orbit. Radiographics 27:1777–1799CrossRefPubMed
61.
Zurück zum Zitat Hassold N, Warmuth-Metz M, Winkler B et al (2014) Hit the mark with diffusion-weighted imaging: metastases of rhabdomyosarcoma to the extraocular eye muscles. BMC Pediatr 14:57PubMedCentralCrossRefPubMed Hassold N, Warmuth-Metz M, Winkler B et al (2014) Hit the mark with diffusion-weighted imaging: metastases of rhabdomyosarcoma to the extraocular eye muscles. BMC Pediatr 14:57PubMedCentralCrossRefPubMed
62.
Zurück zum Zitat Gavane S, Cistaro A, Schoder H (2013) Utility of 18 F-FDG-PET/CT in Soft Tissue Sarcomas. In: Cistaro A (ed) Atlas of PET/CT in Pediatric Patients. Springer, Milan, pp 87–92 Gavane S, Cistaro A, Schoder H (2013) Utility of 18 F-FDG-PET/CT in Soft Tissue Sarcomas. In: Cistaro A (ed) Atlas of PET/CT in Pediatric Patients. Springer, Milan, pp 87–92
63.
Zurück zum Zitat Purohit BS, Dulguerov P, Burkhardt K, Becker M (2014) Dedifferentiated laryngeal chondrosarcoma: Combined morphologic and functional imaging with positron-emission tomography/magnetic resonance imaging. Laryngoscope 124:E274–E277CrossRefPubMed Purohit BS, Dulguerov P, Burkhardt K, Becker M (2014) Dedifferentiated laryngeal chondrosarcoma: Combined morphologic and functional imaging with positron-emission tomography/magnetic resonance imaging. Laryngoscope 124:E274–E277CrossRefPubMed
64.
Zurück zum Zitat Tateishi U, Hosono A, Makimoto A et al (2009) Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann Nucl Med 23:155–161CrossRefPubMed Tateishi U, Hosono A, Makimoto A et al (2009) Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann Nucl Med 23:155–161CrossRefPubMed
65.
Zurück zum Zitat Kumar J, Seith A, Kumar A et al (2008) Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol 38:953–962CrossRefPubMed Kumar J, Seith A, Kumar A et al (2008) Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT. Pediatr Radiol 38:953–962CrossRefPubMed
66.
68.
Zurück zum Zitat Kapur R, Sepahdari AR, Mafee MF et al (2009) MR imaging of orbital inflammatory syndrome, orbital cellulitis, and orbital lymphoid lesions: the role of diffusion-weighted imaging. AJNR Am J Neuroradiol 30:64–70PubMedCentralCrossRefPubMed Kapur R, Sepahdari AR, Mafee MF et al (2009) MR imaging of orbital inflammatory syndrome, orbital cellulitis, and orbital lymphoid lesions: the role of diffusion-weighted imaging. AJNR Am J Neuroradiol 30:64–70PubMedCentralCrossRefPubMed
69.
Zurück zum Zitat Hiwatashi A, Yoshiura T, Togao O et al (2014) Diffusivity of intraorbital lymphoma vs. IgG4-related DISEASE: 3D turbo field echo with diffusion-sensitised driven-equilibrium preparation technique. Eur Radiol 24:581–586CrossRefPubMed Hiwatashi A, Yoshiura T, Togao O et al (2014) Diffusivity of intraorbital lymphoma vs. IgG4-related DISEASE: 3D turbo field echo with diffusion-sensitised driven-equilibrium preparation technique. Eur Radiol 24:581–586CrossRefPubMed
70.
Zurück zum Zitat Haradome K, Haradome H, Usui Y et al (2014) Orbital lymphoproliferative disorders (OLPDs): value of MR imaging for differentiating orbital lymphoma from benign OPLDs. AJNR Am J Neuroradiol 35:1976–1982CrossRefPubMed Haradome K, Haradome H, Usui Y et al (2014) Orbital lymphoproliferative disorders (OLPDs): value of MR imaging for differentiating orbital lymphoma from benign OPLDs. AJNR Am J Neuroradiol 35:1976–1982CrossRefPubMed
71.
Zurück zum Zitat Valenzuela AA, Allen C, Grimes D, Wong D, Sullivan TJ (2006) Positron emission tomography in the detection and staging of ocular adnexal lymphoproliferative disease. Ophthalmology 113:2331–2337CrossRefPubMed Valenzuela AA, Allen C, Grimes D, Wong D, Sullivan TJ (2006) Positron emission tomography in the detection and staging of ocular adnexal lymphoproliferative disease. Ophthalmology 113:2331–2337CrossRefPubMed
72.
Zurück zum Zitat Gayed I, Eskandari MF, McLaughlin P, Pro B, Diba R, Esmaeli B (2007) Value of positron emission tomography in staging ocular adnexal lymphomas and evaluating their response to therapy. Ophthalmic Surg Lasers Imaging 38:319–325PubMed Gayed I, Eskandari MF, McLaughlin P, Pro B, Diba R, Esmaeli B (2007) Value of positron emission tomography in staging ocular adnexal lymphomas and evaluating their response to therapy. Ophthalmic Surg Lasers Imaging 38:319–325PubMed
73.
Zurück zum Zitat Platzek I, Beuthien-Baumann B, Langner J et al (2013) PET/MR for therapy response evaluation in malignant lymphoma: initial experience. MAGMA 26:49–55PubMedCentralCrossRefPubMed Platzek I, Beuthien-Baumann B, Langner J et al (2013) PET/MR for therapy response evaluation in malignant lymphoma: initial experience. MAGMA 26:49–55PubMedCentralCrossRefPubMed
74.
Zurück zum Zitat Ginat DT, Mangla R, Yeaney G, Johnson M, Ekholm S (2012) Diffusion-weighted imaging for differentiating benign from malignant skull lesions and correlation with cell density. AJR Am J Roentgenol 198:W597–W601CrossRefPubMed Ginat DT, Mangla R, Yeaney G, Johnson M, Ekholm S (2012) Diffusion-weighted imaging for differentiating benign from malignant skull lesions and correlation with cell density. AJR Am J Roentgenol 198:W597–W601CrossRefPubMed
75.
Zurück zum Zitat Neubauer H, Evangelista L, Hassold N et al (2012) Diffusion-weighted MRI for detection and differentiation of musculoskeletal tumorous and tumor-like lesions in pediatric patients. World J Pediatr 8:342–349CrossRefPubMed Neubauer H, Evangelista L, Hassold N et al (2012) Diffusion-weighted MRI for detection and differentiation of musculoskeletal tumorous and tumor-like lesions in pediatric patients. World J Pediatr 8:342–349CrossRefPubMed
76.
Zurück zum Zitat Su MG, Tian R, Fan QP et al (2011) Recognition of fibrous dysplasia of bone mimicking skeletal metastasis on 18F-FDG PET/CT imaging. Skelet Radiol 40:295–302CrossRef Su MG, Tian R, Fan QP et al (2011) Recognition of fibrous dysplasia of bone mimicking skeletal metastasis on 18F-FDG PET/CT imaging. Skelet Radiol 40:295–302CrossRef
77.
Zurück zum Zitat Stegger L, Juergens KU, Kliesch S, Wormanns D, Weckesser M (2007) Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT. Eur Radiol 17:1784–1786CrossRefPubMed Stegger L, Juergens KU, Kliesch S, Wormanns D, Weckesser M (2007) Unexpected finding of elevated glucose uptake in fibrous dysplasia mimicking malignancy: contradicting metabolism and morphology in combined PET/CT. Eur Radiol 17:1784–1786CrossRefPubMed
78.
Zurück zum Zitat Jacquemin C, Bosley TM, Svedberg H (2003) Orbit deformities in craniofacial neurofibromatosis type 1. AJNR Am J Neuroradiol 24:1678–1682PubMed Jacquemin C, Bosley TM, Svedberg H (2003) Orbit deformities in craniofacial neurofibromatosis type 1. AJNR Am J Neuroradiol 24:1678–1682PubMed
79.
Zurück zum Zitat Vargas MI, Gariani J, Delattre BA, Dietemann JL, Lovblad K, Becker M (2015) Three-dimensional MR imaging of the brachial plexus. Semin Musculoskelet Radiol 19:137–148CrossRefPubMed Vargas MI, Gariani J, Delattre BA, Dietemann JL, Lovblad K, Becker M (2015) Three-dimensional MR imaging of the brachial plexus. Semin Musculoskelet Radiol 19:137–148CrossRefPubMed
80.
Zurück zum Zitat Vargas MI, Viallon M, Nguyen D, Delavelle J, Becker M (2010) Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions. Neuroradiology 52:237–245CrossRefPubMed Vargas MI, Viallon M, Nguyen D, Delavelle J, Becker M (2010) Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions. Neuroradiology 52:237–245CrossRefPubMed
81.
Zurück zum Zitat Vargas MI, Viallon M, Nguyen D, Beaulieu JY, Delavelle J, Becker M (2010) New approaches in imaging of the brachial plexus. Eur J Radiol 74:403–410CrossRefPubMed Vargas MI, Viallon M, Nguyen D, Beaulieu JY, Delavelle J, Becker M (2010) New approaches in imaging of the brachial plexus. Eur J Radiol 74:403–410CrossRefPubMed
82.
Zurück zum Zitat Ferner RE, Golding JF, Smith M et al (2008) [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 19:390–394CrossRefPubMed Ferner RE, Golding JF, Smith M et al (2008) [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 19:390–394CrossRefPubMed
83.
Zurück zum Zitat Tsai LL, Drubach L, Fahey F, Irons M, Voss S, Ullrich NJ (2012) [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J Neurooncol 108:469–475CrossRefPubMed Tsai LL, Drubach L, Fahey F, Irons M, Voss S, Ullrich NJ (2012) [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J Neurooncol 108:469–475CrossRefPubMed
84.
Zurück zum Zitat Patnana M, Sevrukov AB, Elsayes KM, Viswanathan C, Lubner M, Menias CO (2012) Inflammatory pseudotumor: the great mimicker. AJR Am J Roentgenol 198:W217–W227CrossRefPubMed Patnana M, Sevrukov AB, Elsayes KM, Viswanathan C, Lubner M, Menias CO (2012) Inflammatory pseudotumor: the great mimicker. AJR Am J Roentgenol 198:W217–W227CrossRefPubMed
85.
Zurück zum Zitat Pakdaman MN, Sepahdari AR, Elkhamary SM (2014) Orbital inflammatory disease: Pictorial review and differential diagnosis. World J Radiol 6:106–115PubMedCentralCrossRefPubMed Pakdaman MN, Sepahdari AR, Elkhamary SM (2014) Orbital inflammatory disease: Pictorial review and differential diagnosis. World J Radiol 6:106–115PubMedCentralCrossRefPubMed
86.
Zurück zum Zitat Tan TJ, Ng YL, Tan D, Fong WS, Low AS (2014) Extrapancreatic findings of IgG4-related disease. Clin Radiol 69:209–218CrossRefPubMed Tan TJ, Ng YL, Tan D, Fong WS, Low AS (2014) Extrapancreatic findings of IgG4-related disease. Clin Radiol 69:209–218CrossRefPubMed
87.
Zurück zum Zitat Kalapesi FB, Garrott HM, Moldovan C, Williams M, Ramanan A, Herbert HM (2013) IgG4 orbital inflammation in a 5-year-old child presenting as an orbital mass. Orbit 32:137–140CrossRefPubMed Kalapesi FB, Garrott HM, Moldovan C, Williams M, Ramanan A, Herbert HM (2013) IgG4 orbital inflammation in a 5-year-old child presenting as an orbital mass. Orbit 32:137–140CrossRefPubMed
88.
Zurück zum Zitat Sato Y, Ohshima K, Takata K et al (2012) Ocular adnexal IgG4-producing mucosa-associated lymphoid tissue lymphoma mimicking IgG4-related disease. J Clin Exp Hematop 52:51–55CrossRefPubMed Sato Y, Ohshima K, Takata K et al (2012) Ocular adnexal IgG4-producing mucosa-associated lymphoid tissue lymphoma mimicking IgG4-related disease. J Clin Exp Hematop 52:51–55CrossRefPubMed
89.
Zurück zum Zitat Huellner MW, Schwizer B, Burger I et al (2010) Inflammatory pseudotumor of the lung with high FDG uptake. Clin Nucl Med 35:722–723CrossRefPubMed Huellner MW, Schwizer B, Burger I et al (2010) Inflammatory pseudotumor of the lung with high FDG uptake. Clin Nucl Med 35:722–723CrossRefPubMed
90.
Zurück zum Zitat Alongi F, Bolognesi A, Samanes Gajate AM et al (2010) Inflammatory pseudotumor of mediastinum treated with tomotherapy and monitored with FDG-PET/CT: case report and literature review. Tumori 96:322–326PubMed Alongi F, Bolognesi A, Samanes Gajate AM et al (2010) Inflammatory pseudotumor of mediastinum treated with tomotherapy and monitored with FDG-PET/CT: case report and literature review. Tumori 96:322–326PubMed
91.
Zurück zum Zitat Nguyen VX, De Petris G, Nguyen BD (2011) Usefulness of PET/CT imaging in systemic IgG4-related sclerosing disease. A report of three cases. JOP 12:297–305PubMed Nguyen VX, De Petris G, Nguyen BD (2011) Usefulness of PET/CT imaging in systemic IgG4-related sclerosing disease. A report of three cases. JOP 12:297–305PubMed
93.
Zurück zum Zitat Tyers AG (2006) Orbital exenteration for invasive skin tumours. Eye (Lond) 20:1165–1170CrossRef Tyers AG (2006) Orbital exenteration for invasive skin tumours. Eye (Lond) 20:1165–1170CrossRef
Metadaten
Titel
Orbital tumours and tumour-like lesions: exploring the armamentarium of multiparametric imaging
verfasst von
Bela S. Purohit
Maria Isabel Vargas
Angeliki Ailianou
Laura Merlini
Pierre-Alexandre Poletti
Alexandra Platon
Bénédicte M. Delattre
Olivier Rager
Karim Burkhardt
Minerva Becker
Publikationsdatum
01.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Insights into Imaging / Ausgabe 1/2016
Elektronische ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-015-0443-8

Weitere Artikel der Ausgabe 1/2016

Insights into Imaging 1/2016 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.