Skip to main content
Erschienen in: Herzschrittmachertherapie + Elektrophysiologie 2/2017

31.05.2017 | Schwerpunkt

Pathophysiology of ventricular tachyarrhythmias

From automaticity to reentry

verfasst von: Andres Enriquez, MD, David S. Frankel, MD, Prof. Adrian Baranchuk, MD FACC FRCPC FCCS

Erschienen in: Herzschrittmachertherapie + Elektrophysiologie | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Ventricular arrhythmias are a heterogeneous group of arrhythmias and may arise in patients with cardiomyopathy or structurally normal hearts. The electrophysiologic mechanisms responsible for the initiation and maintenance of ventricular tachycardia include enhanced automaticity, triggered activity, and reentry. Differentiating between these three mechanisms can be challenging and usually requires an invasive electrophysiology study. Establishing the underlying mechanism in a particular patient is helpful to define the optimal therapeutic approach, including the selection of pharmacologic agents or delineation of an ablation strategy.
Literatur
1.
Zurück zum Zitat Issa Z, Miller J, Zipes D (2012) Electrophysiological mechanisms of cardiac arrhythmias. In: Clinical arrhythmology and electrophysiology: a complement to Braunwald’s heart disease, 2nd edn. Saunders, Philadelphia, pp 36–61CrossRef Issa Z, Miller J, Zipes D (2012) Electrophysiological mechanisms of cardiac arrhythmias. In: Clinical arrhythmology and electrophysiology: a complement to Braunwald’s heart disease, 2nd edn. Saunders, Philadelphia, pp 36–61CrossRef
3.
Zurück zum Zitat Ceremuzyński L, Staszewska-Barczak J, Herbaczynska-Cedro K (1969) Cardiac rhythm disturbances and the release of catecholamines after acute coronary occlusion in dogs. Cardiovasc Res 3(2):190–197CrossRefPubMed Ceremuzyński L, Staszewska-Barczak J, Herbaczynska-Cedro K (1969) Cardiac rhythm disturbances and the release of catecholamines after acute coronary occlusion in dogs. Cardiovasc Res 3(2):190–197CrossRefPubMed
4.
Zurück zum Zitat Dhamoon AS, Jalife J (2005) The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2(3):316–324CrossRefPubMed Dhamoon AS, Jalife J (2005) The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2(3):316–324CrossRefPubMed
5.
Zurück zum Zitat Gadsby DC, Cranefield PF (1979) Electrogenic sodium extrusion in cardiac Purkinje fibers. J Gen Physiol 73(6):819–837CrossRefPubMed Gadsby DC, Cranefield PF (1979) Electrogenic sodium extrusion in cardiac Purkinje fibers. J Gen Physiol 73(6):819–837CrossRefPubMed
6.
Zurück zum Zitat Zipes DP (2003) Mechanisms of clinical arrhythmias. J Cardiovasc Electrophysiol 14(8):902–912CrossRefPubMed Zipes DP (2003) Mechanisms of clinical arrhythmias. J Cardiovasc Electrophysiol 14(8):902–912CrossRefPubMed
8.
Zurück zum Zitat Maruyama M, Lin SF, Xie Y, Chua SK, Joung B, Han S, Shinohara T, Shen MJ, Qu Z, Weiss JN, Chen PS (2011) Genesis of phase 3 early afterdepolarizations and triggered activity in acquired long-QT syndrome. Circ Arrhythm Electrophysiol 4(1):103–111CrossRefPubMed Maruyama M, Lin SF, Xie Y, Chua SK, Joung B, Han S, Shinohara T, Shen MJ, Qu Z, Weiss JN, Chen PS (2011) Genesis of phase 3 early afterdepolarizations and triggered activity in acquired long-QT syndrome. Circ Arrhythm Electrophysiol 4(1):103–111CrossRefPubMed
9.
Zurück zum Zitat Belardinelli L, Giles WR, Rajamani S, Karagueuzian HS, Shryock JC (2015) Cardiac late Na+ current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm 12(2):440–448CrossRefPubMed Belardinelli L, Giles WR, Rajamani S, Karagueuzian HS, Shryock JC (2015) Cardiac late Na+ current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm 12(2):440–448CrossRefPubMed
10.
Zurück zum Zitat January CT, Riddle JM (1989) Early afterdepolarizations: mechanism of induction and block. A role for L‑type Ca2+ current. Circ Res 64(5):977–990CrossRefPubMed January CT, Riddle JM (1989) Early afterdepolarizations: mechanism of induction and block. A role for L‑type Ca2+ current. Circ Res 64(5):977–990CrossRefPubMed
11.
Zurück zum Zitat Szabo B, Sweidan R, Rajagopalan CV, Lazzara R (1994) Role of Na+:Ca2+ exchange current in Cs(+)-induced early afterdepolarizations in Purkinje fibers. J Cardiovasc Electrophysiol 5(11):933–944CrossRefPubMed Szabo B, Sweidan R, Rajagopalan CV, Lazzara R (1994) Role of Na+:Ca2+ exchange current in Cs(+)-induced early afterdepolarizations in Purkinje fibers. J Cardiovasc Electrophysiol 5(11):933–944CrossRefPubMed
12.
Zurück zum Zitat Lerman BB (2015) Ventricular tachycardia: mechanistic insights derived from adenosine. Circ Arrhythm Electrophysiol 8(2):483–491CrossRefPubMed Lerman BB (2015) Ventricular tachycardia: mechanistic insights derived from adenosine. Circ Arrhythm Electrophysiol 8(2):483–491CrossRefPubMed
13.
Zurück zum Zitat Schlotthauer K, Bers DM (2000) Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 87:774–780CrossRefPubMed Schlotthauer K, Bers DM (2000) Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 87:774–780CrossRefPubMed
14.
Zurück zum Zitat Katra RP, Laurita KR (2005) Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 96:535–542CrossRefPubMed Katra RP, Laurita KR (2005) Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 96:535–542CrossRefPubMed
15.
Zurück zum Zitat Shiferaw Y, Aistrup GL, Wasserstrom JA (2012) Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc Res 95:265–268CrossRefPubMedPubMedCentral Shiferaw Y, Aistrup GL, Wasserstrom JA (2012) Intracellular Ca2+ waves, afterdepolarizations, and triggered arrhythmias. Cardiovasc Res 95:265–268CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Rosen MR, Gelband H, Merker C, Hoffman BF (1973) Mechanisms of digitalis toxicity. Effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation 47(4):681–689CrossRefPubMed Rosen MR, Gelband H, Merker C, Hoffman BF (1973) Mechanisms of digitalis toxicity. Effects of ouabain on phase four of canine Purkinje fiber transmembrane potentials. Circulation 47(4):681–689CrossRefPubMed
17.
Zurück zum Zitat Saunders JH, Ferrier GR, Lerman BB (2007) Mechanism of outflow tract tachycardia. Heart Rhythm 4:973–976CrossRef Saunders JH, Ferrier GR, Lerman BB (2007) Mechanism of outflow tract tachycardia. Heart Rhythm 4:973–976CrossRef
18.
Zurück zum Zitat Lerman BB (2015) Mechanism, diagnosis, and treatment of outflow tract tachycardia. Nat Rev Cardiol 12(10):597–608CrossRefPubMed Lerman BB (2015) Mechanism, diagnosis, and treatment of outflow tract tachycardia. Nat Rev Cardiol 12(10):597–608CrossRefPubMed
19.
Zurück zum Zitat Lerman BB, Ip JE, Shah BK, Thomas G, Liu CF, Ciaccio EJ, Wit AL, Cheung JW, Markowitz SM (2014) Mechanism-specific effects of adenosine on ventricular tachycardia. J Cardiovasc Electrophysiol 25(12):1350–1358PubMed Lerman BB, Ip JE, Shah BK, Thomas G, Liu CF, Ciaccio EJ, Wit AL, Cheung JW, Markowitz SM (2014) Mechanism-specific effects of adenosine on ventricular tachycardia. J Cardiovasc Electrophysiol 25(12):1350–1358PubMed
21.
Zurück zum Zitat Mines GR (1914) On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can 8:43–52 Mines GR (1914) On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans R Soc Can 8:43–52
22.
Zurück zum Zitat Gough WB, Mehra R, Restivo M, Zeiler RH, el-Sherif N (1985) Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog. 13. Correlation of activation and refractory maps. Circ Res 57(3):432–442CrossRefPubMed Gough WB, Mehra R, Restivo M, Zeiler RH, el-Sherif N (1985) Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog. 13. Correlation of activation and refractory maps. Circ Res 57(3):432–442CrossRefPubMed
23.
Zurück zum Zitat Gaztañaga L, Marchlinski FE, Betensky BP (2012) Mechanisms of cardiac arrhythmias. Rev Esp Cardiol (Engl Ed) 65(2):174–185CrossRef Gaztañaga L, Marchlinski FE, Betensky BP (2012) Mechanisms of cardiac arrhythmias. Rev Esp Cardiol (Engl Ed) 65(2):174–185CrossRef
24.
Zurück zum Zitat Allessie MA, Bonke FI, Schopman FJ (1977) Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 41(1):9–18CrossRefPubMed Allessie MA, Bonke FI, Schopman FJ (1977) Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ Res 41(1):9–18CrossRefPubMed
25.
Zurück zum Zitat Comtois P, Kneller J, Nattel S (2005) Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 7(Suppl 2):10–20CrossRefPubMed Comtois P, Kneller J, Nattel S (2005) Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 7(Suppl 2):10–20CrossRefPubMed
26.
Zurück zum Zitat El-Sherif N, Smith RA, Evans K (1981) Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res 49(1):255–265CrossRefPubMed El-Sherif N, Smith RA, Evans K (1981) Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res 49(1):255–265CrossRefPubMed
27.
Zurück zum Zitat Spach MS, Josephson ME (1994) Initiating reentry: the role of nonuniform anisotropy in small circuits. J Cardiovasc Electrophysiol 5(2):182–209CrossRefPubMed Spach MS, Josephson ME (1994) Initiating reentry: the role of nonuniform anisotropy in small circuits. J Cardiovasc Electrophysiol 5(2):182–209CrossRefPubMed
28.
Zurück zum Zitat Valderrábano M (2007) Influence of anisotropic conduction properties in the propagation of the cardiac action potential. Prog Biophys Mol Biol 94(1–2):144–168CrossRefPubMedPubMedCentral Valderrábano M (2007) Influence of anisotropic conduction properties in the propagation of the cardiac action potential. Prog Biophys Mol Biol 94(1–2):144–168CrossRefPubMedPubMedCentral
30.
31.
Zurück zum Zitat Lukas A, Antzelevitch C (1996) Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. Cardiovasc Res 32(3):593–603CrossRefPubMed Lukas A, Antzelevitch C (1996) Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. Cardiovasc Res 32(3):593–603CrossRefPubMed
33.
Zurück zum Zitat Josephson M (2016) Recurrent ventricular tachycardia. In: Clinical cardiac electrophysiology. Techniques and interpretation, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 441–633 Josephson M (2016) Recurrent ventricular tachycardia. In: Clinical cardiac electrophysiology. Techniques and interpretation, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 441–633
34.
Zurück zum Zitat Benito B, Josephson ME (2012) Ventricular tachycardia in coronary artery disease. Rev Esp Cardiol (Engl Ed) 65(10):939–955CrossRef Benito B, Josephson ME (2012) Ventricular tachycardia in coronary artery disease. Rev Esp Cardiol (Engl Ed) 65(10):939–955CrossRef
35.
Zurück zum Zitat Waldo AL, MacLean WA, Karp RB, Kouchoukos NT, James TN (1977) Entrainment and interruption of atrial flutter with atrial pacing: studies in man following open heart surgery. Circulation 56(5):737–745CrossRefPubMed Waldo AL, MacLean WA, Karp RB, Kouchoukos NT, James TN (1977) Entrainment and interruption of atrial flutter with atrial pacing: studies in man following open heart surgery. Circulation 56(5):737–745CrossRefPubMed
Metadaten
Titel
Pathophysiology of ventricular tachyarrhythmias
From automaticity to reentry
verfasst von
Andres Enriquez, MD
David S. Frankel, MD
Prof. Adrian Baranchuk, MD FACC FRCPC FCCS
Publikationsdatum
31.05.2017
Verlag
Springer Medizin
Erschienen in
Herzschrittmachertherapie + Elektrophysiologie / Ausgabe 2/2017
Print ISSN: 0938-7412
Elektronische ISSN: 1435-1544
DOI
https://doi.org/10.1007/s00399-017-0512-4

Weitere Artikel der Ausgabe 2/2017

Herzschrittmachertherapie + Elektrophysiologie 2/2017 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.