Skip to main content
Erschienen in: Lasers in Medical Science 3/2014

01.05.2014 | Original Article

Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability

verfasst von: Isabela Bueno Rosseti, Luciene Reginato Chagas, Maricilia Silva Costa

Erschienen in: Lasers in Medical Science | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

The opportunistic fungal Candida albicans is able to produce both superficial and systemic infections in immunocompromised patients. Photodynamic antimicrobial chemotherapy (PACT) is a process that combines visible light and a photosensitizer, producing reactive oxygen species (ROS) that can kill the treated cells and has been presented as a potential antimicrobial therapy. In this work, we study the effects of PACT, using toluidine blue (TB) as a photosensitizer drug, on ROS production and cell damage and the ability of C. albicans to form biofilm. A significant decrease was observed in the cell growth after PACT in a TB concentration-dependent manner. This effect was dependent on the incubation time after PACT. In addition, an increase in both the ROS production and cell permeability, after PACT, in a TB concentration-dependent manner was observed. PACT, using 0.1 mg/ml TB was able to reduce biofilm formation in 30, 50, and 62 %, in cells submitted to incubation times of 1, 2, and 3 h, respectively. These results suggested that PACT, using TB, is able to decrease both growth and biofilm formation by C. albicans, possibly by a mechanism evolving both ROS production and the increase in the cell permeability.
Literatur
2.
Zurück zum Zitat Saghrouni F, Abdeljelil JB, Boukadida J, Said MB (2013) Molecular methods for strain typing of Candida albicans: a review. J Appl Microbiol 114(6):1559–1574PubMedCrossRef Saghrouni F, Abdeljelil JB, Boukadida J, Said MB (2013) Molecular methods for strain typing of Candida albicans: a review. J Appl Microbiol 114(6):1559–1574PubMedCrossRef
4.
Zurück zum Zitat Fraser VJ, Jones M, Dunkel J, Storfer S, Medoff G, Dunagan WC (1992) Candidemia in a tertiary care hospital: epidemiology, risk factors, and predictors of mortality. Clin Infect Dis 15:415–421CrossRef Fraser VJ, Jones M, Dunkel J, Storfer S, Medoff G, Dunagan WC (1992) Candidemia in a tertiary care hospital: epidemiology, risk factors, and predictors of mortality. Clin Infect Dis 15:415–421CrossRef
5.
Zurück zum Zitat Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D (2003) Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37:1172–1177PubMedCrossRef Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D (2003) Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37:1172–1177PubMedCrossRef
6.
Zurück zum Zitat Morgan J, Meltzer MI, Plikaytis BD, Sofair AN, Huie-White S, Wilcox S, Harrison LH, Seaberg EC, Hajjeh RA, Teutsch SM (2005) Excess mortality, hospital stay, and cost due to candidemia: a case–control study using data from population-based candidemia surveillance. Infect Control Hosp Epidemiol 26:540–547PubMedCrossRef Morgan J, Meltzer MI, Plikaytis BD, Sofair AN, Huie-White S, Wilcox S, Harrison LH, Seaberg EC, Hajjeh RA, Teutsch SM (2005) Excess mortality, hospital stay, and cost due to candidemia: a case–control study using data from population-based candidemia surveillance. Infect Control Hosp Epidemiol 26:540–547PubMedCrossRef
7.
Zurück zum Zitat Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP (1999) Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29:239–244PubMedCrossRef Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP (1999) Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29:239–244PubMedCrossRef
8.
Zurück zum Zitat Bustamante CI (2005) Treatment of Candida infection: a view from the trenches. Curr Opin Infect Dis 18:490–495PubMedCrossRef Bustamante CI (2005) Treatment of Candida infection: a view from the trenches. Curr Opin Infect Dis 18:490–495PubMedCrossRef
9.
Zurück zum Zitat Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53PubMedCrossRef Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53PubMedCrossRef
10.
Zurück zum Zitat White TC, Marr KA, Bowden RA (1998) Clinical cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMedCentralPubMed White TC, Marr KA, Bowden RA (1998) Clinical cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMedCentralPubMed
11.
Zurück zum Zitat Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC (2007) Candida albicans drug resistance—another way to cope with stress. Microbiology 153:3211–3217PubMedCrossRef Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC (2007) Candida albicans drug resistance—another way to cope with stress. Microbiology 153:3211–3217PubMedCrossRef
12.
Zurück zum Zitat Wainwright M (1998) Photodynamic antimicrobial chemotherapy. J Antimicrob Chemother 42:13–28PubMedCrossRef Wainwright M (1998) Photodynamic antimicrobial chemotherapy. J Antimicrob Chemother 42:13–28PubMedCrossRef
13.
Zurück zum Zitat Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22(2):83–91PubMedCrossRef Maisch T (2007) Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22(2):83–91PubMedCrossRef
14.
Zurück zum Zitat MacDonald I, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:105–129CrossRef MacDonald I, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:105–129CrossRef
15.
16.
Zurück zum Zitat Vera DM, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP (2012) Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 88(3):499–511PubMedCentralPubMedCrossRef Vera DM, Haynes MH, Ball AR, Dai T, Astrakas C, Kelso MJ, Hamblin MR, Tegos GP (2012) Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem Photobiol 88(3):499–511PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Harris F, Chatfield LK, Phoenix DA (2005) Review phenothiazinium based photosensitisers—photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr Drug Targets 6(5):615–627PubMedCrossRef Harris F, Chatfield LK, Phoenix DA (2005) Review phenothiazinium based photosensitisers—photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr Drug Targets 6(5):615–627PubMedCrossRef
19.
Zurück zum Zitat Huang L, Huang YY, Mroz P, Tegos GP, Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T, Krayer M, Ruzié C, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2010) Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers. Antimicrob Agents Chemother 54(9):3834–3841PubMedCentralPubMedCrossRef Huang L, Huang YY, Mroz P, Tegos GP, Zhiyentayev T, Sharma SK, Lu Z, Balasubramanian T, Krayer M, Ruzié C, Yang E, Kee HL, Kirmaier C, Diers JR, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2010) Stable synthetic cationic bacteriochlorins as selective antimicrobial photosensitizers. Antimicrob Agents Chemother 54(9):3834–3841PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Calzavara-Pinton P, Rossi MT, Sala R, Venturini M (2012) Photodynamic antifungal chemotherapy. Photochem Photobiol 88(3):512–522PubMedCrossRef Calzavara-Pinton P, Rossi MT, Sala R, Venturini M (2012) Photodynamic antifungal chemotherapy. Photochem Photobiol 88(3):512–522PubMedCrossRef
21.
Zurück zum Zitat Bliss JM, Bigelow CE, Foster TH, Haidaris CG (2004) Susceptibility of Candida species to photodynamic effects of Photofrin. Antimicrob Agents Chemother 48:2000–2006PubMedCentralPubMedCrossRef Bliss JM, Bigelow CE, Foster TH, Haidaris CG (2004) Susceptibility of Candida species to photodynamic effects of Photofrin. Antimicrob Agents Chemother 48:2000–2006PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Chabrier-Roselló Y, Foster TH, Pérez-Nazario N, Mitra S, Haidaris CG (2005) Sensitivity of Candida albicans germ tubes and biofilms to Photofrin-mediated phototoxicity. Antimicrob Agents Chemother 49:4288–4295PubMedCentralPubMedCrossRef Chabrier-Roselló Y, Foster TH, Pérez-Nazario N, Mitra S, Haidaris CG (2005) Sensitivity of Candida albicans germ tubes and biofilms to Photofrin-mediated phototoxicity. Antimicrob Agents Chemother 49:4288–4295PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Demidova TN, Hamblin MR (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17(3):245–254PubMedCentralPubMed Demidova TN, Hamblin MR (2004) Photodynamic therapy targeted to pathogens. Int J Immunopathol Pharmacol 17(3):245–254PubMedCentralPubMed
24.
Zurück zum Zitat Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329–2335PubMedCentralPubMedCrossRef Demidova TN, Hamblin MR (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49:2329–2335PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Lambrechts SAG, Aalders MCG, Van Marle J (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 49:2026–2034PubMedCentralPubMedCrossRef Lambrechts SAG, Aalders MCG, Van Marle J (2005) Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents Chemother 49:2026–2034PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK, Oleinick NL, Ghannoum MA, Cooper KD, Baron ED (2011) Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol 87(4):904–909PubMedCentralPubMedCrossRef Lam M, Jou PC, Lattif AA, Lee Y, Malbasa CL, Mukherjee PK, Oleinick NL, Ghannoum MA, Cooper KD, Baron ED (2011) Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans. Photochem Photobiol 87(4):904–909PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AOC (2006) Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 83:34–38PubMedCrossRef Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AOC (2006) Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 83:34–38PubMedCrossRef
28.
Zurück zum Zitat Munin E, Giroldo LM, Alves LP, Costa MS (2007) Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 88(1):16–20PubMedCrossRef Munin E, Giroldo LM, Alves LP, Costa MS (2007) Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 88(1):16–20PubMedCrossRef
29.
Zurück zum Zitat Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47(5):619–623PubMedCrossRef Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47(5):619–623PubMedCrossRef
30.
Zurück zum Zitat Giroldo LM, Felipe MP, de Oliveira MA, Munin E, Alves LP, Costa MS (2009) Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 24(1):109–112PubMedCrossRef Giroldo LM, Felipe MP, de Oliveira MA, Munin E, Alves LP, Costa MS (2009) Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 24(1):109–112PubMedCrossRef
31.
Zurück zum Zitat Dai T, Bil de Arce VJ, Tegos GP, Hamblin MR (2011) Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother 55(12):5710–5717PubMedCentralPubMedCrossRef Dai T, Bil de Arce VJ, Tegos GP, Hamblin MR (2011) Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother 55(12):5710–5717PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Prates RA, Kato IT, Ribeiro MS, Tegos GP, Hamblin MR (2011) Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother 66(7):1525–1532PubMedCentralPubMedCrossRef Prates RA, Kato IT, Ribeiro MS, Tegos GP, Hamblin MR (2011) Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother 66(7):1525–1532PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Whiteway M, Bachewich C (2007) Morphogenesis in Candida albicans. Annu Rev Microbiol 61:529–553PubMedCrossRef Whiteway M, Bachewich C (2007) Morphogenesis in Candida albicans. Annu Rev Microbiol 61:529–553PubMedCrossRef
34.
Zurück zum Zitat Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75(2):213–267PubMedCentralPubMedCrossRef Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75(2):213–267PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Ha KC, White TC (1999) Effects of azole antifungal drugs on the transition from yeast cells to hyphae in susceptible and resistant isolates of the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 43:763–768PubMedCentralPubMed Ha KC, White TC (1999) Effects of azole antifungal drugs on the transition from yeast cells to hyphae in susceptible and resistant isolates of the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 43:763–768PubMedCentralPubMed
37.
Zurück zum Zitat Rosenthal I, Ben-Hur E (1995) Role of oxygen in the phototoxicity of phthalocyanines. Int J Radiat Biol 67:85–91PubMedCrossRef Rosenthal I, Ben-Hur E (1995) Role of oxygen in the phototoxicity of phthalocyanines. Int J Radiat Biol 67:85–91PubMedCrossRef
38.
Zurück zum Zitat Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Pend Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905PubMedCrossRef Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Pend Q (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905PubMedCrossRef
Metadaten
Titel
Photodynamic antimicrobial chemotherapy (PACT) inhibits biofilm formation by Candida albicans, increasing both ROS production and membrane permeability
verfasst von
Isabela Bueno Rosseti
Luciene Reginato Chagas
Maricilia Silva Costa
Publikationsdatum
01.05.2014
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 3/2014
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-013-1473-4

Weitere Artikel der Ausgabe 3/2014

Lasers in Medical Science 3/2014 Zur Ausgabe