Skip to main content
main-content

06.04.2018 | Neuro | Ausgabe 9/2018

European Radiology 9/2018

Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach

Zeitschrift:
European Radiology > Ausgabe 9/2018
Autoren:
Hie Bum Suh, Yoon Seong Choi, Sohi Bae, Sung Soo Ahn, Jong Hee Chang, Seok-Gu Kang, Eui Hyun Kim, Se Hoon Kim, Seung-Koo Lee
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00330-018-5368-4) contains supplementary material, which is available to authorized users.

Abstract

Objectives

To evaluate the diagnostic performance of magnetic resonance (MR) radiomics-based machine-learning algorithms in differentiating primary central nervous system lymphoma (PCNSL) from non-necrotic atypical glioblastoma (GBM).

Methods

Seventy-seven patients (54 individuals with PCNSL and 23 with non-necrotic atypical GBM), diagnosed from January 2009 to April 2017, were enrolled in this retrospective study. A total of 6,366 radiomics features, including shape, volume, first-order, texture, and wavelet-transformed features, were extracted from multi-parametric (post-contrast T1- and T2-weighted, and fluid attenuation inversion recovery images) and multiregional (enhanced and non-enhanced) tumour volumes. These features were subjected to recursive feature elimination and random forest (RF) analysis with nested cross-validation. The diagnostic abilities of a radiomics machine-learning classifier, apparent diffusion coefficient (ADC), and three readers, who independently classified the tumours based on conventional MR sequences, were evaluated using receiver operating characteristic (ROC) analysis. Areas under the ROC curves (AUC) of the radiomics classifier, ADC value, and the radiologists were compared.

Results

The mean AUC of the radiomics classifier was 0.921 (95 % CI 0.825–0.990). The AUCs of the three readers and ADC were 0.707 (95 % CI 0.622–0.793), 0.759 (95 %CI 0.656–0.861), 0.695 (95 % CI 0.590–0.800) and 0.684 (95 % CI0.560–0.809), respectively. The AUC of the radiomics-based classifier was significantly higher than those of the three readers and ADC (p< 0.001 for all).

Conclusions

Large-scale radiomics with a machine-learning algorithm can be useful for differentiating PCNSL from atypical GBM, and yields a better diagnostic performance than human radiologists and ADC values.

Key Points

• Machine-learning algorithm radiomics can help to differentiate primary central PCNSL from GBM.
• This approach yields a higher diagnostic accuracy than visual analysis by radiologists.
• Radiomics can strengthen radiologists’ diagnostic decisions whenever conventional MRI sequences are available.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Zusatzmaterial
ESM 1 (DOCX 2057 kb)
330_2018_5368_MOESM1_ESM.docx
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2018

European Radiology 9/2018 Zur Ausgabe
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise