Skip to main content
Erschienen in: Current Osteoporosis Reports 2/2018

27.02.2018 | Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)

Progress of Regenerative Therapy in Orthopedics

verfasst von: Pearlin, Sunita Nayak, Geetha Manivasagam, Dwaipayan Sen

Erschienen in: Current Osteoporosis Reports | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

To conduct a thorough appraisal of recent and inventive advances in the field of bone tissue engineering using biomaterials, cell-based research, along with the incorporation of biomimetic properties using surface modification of scaffolds.

Recent Findings

This paper will provide an overview on different biomaterials and emerging techniques involved in the fabrication of scaffolds, brief description of signaling pathways involved in osteogenesis, and the effect of surface modification on the fate of progenitor cells.

Summary

The current strategies used for regenerative medicine like cell therapy, gene transfer, and tissue engineering have opened numerous therapeutic avenues for the treatment of various disabling orthopedic disorders. Precise strategy utilized for the reconstruction, restoration, or repair of the bone-related tissues exploits cells, biomaterials, morphogenetic signals, and appropriate mechanical environment to provide the basic constituents required for creating new tissue. Combining all the above strategies in clinical trials would pave the way for successful “bench to bedside” transformation in bone healing.
Literatur
3.
Zurück zum Zitat Mackie E, Ahmed Y, Tatarczuch L, Chen K-S, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46–62.PubMedCrossRef Mackie E, Ahmed Y, Tatarczuch L, Chen K-S, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46–62.PubMedCrossRef
4.
Zurück zum Zitat Soltanoff CS, Chen W, Yang S, Li Y-P. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr. 2009;19(1):1–46.PubMedPubMedCentralCrossRef Soltanoff CS, Chen W, Yang S, Li Y-P. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr. 2009;19(1):1–46.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.CrossRef O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.CrossRef
7.
8.
Zurück zum Zitat Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–200.PubMedCrossRef Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–200.PubMedCrossRef
9.
Zurück zum Zitat Titorencu I, Georgiana Albu M, Nemecz M, Jinga V. Natural polymer-cell bioconstructs for bone tissue engineering. Curr Stem Cell Res Ther. 2017;12(2):165–74.PubMedCrossRef Titorencu I, Georgiana Albu M, Nemecz M, Jinga V. Natural polymer-cell bioconstructs for bone tissue engineering. Curr Stem Cell Res Ther. 2017;12(2):165–74.PubMedCrossRef
10.
Zurück zum Zitat Liu X, Ma PX. Polymeric scaffolds for bone Tissue Eng 2004. Liu X, Ma PX. Polymeric scaffolds for bone Tissue Eng 2004.
13.
Zurück zum Zitat Matassi F, Nistri L, Paez DC, Innocenti M. New biomaterials for bone regeneration. Clinical cases in mineral and bone. Metabolism. 2011;8(1):21. Matassi F, Nistri L, Paez DC, Innocenti M. New biomaterials for bone regeneration. Clinical cases in mineral and bone. Metabolism. 2011;8(1):21.
14.
Zurück zum Zitat Tanner K. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H J Eng Med. 2010;224(12):1359–72.CrossRef Tanner K. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H J Eng Med. 2010;224(12):1359–72.CrossRef
15.
Zurück zum Zitat Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices. 2005;2(3):303–17.PubMedCrossRef Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices. 2005;2(3):303–17.PubMedCrossRef
16.
Zurück zum Zitat Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol. 2004;64(6):789–817.CrossRef Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol. 2004;64(6):789–817.CrossRef
17.
Zurück zum Zitat Wang M. Composite scaffolds for bone tissue engineering. Am J Biochem Biotechnol 2006. Wang M. Composite scaffolds for bone tissue engineering. Am J Biochem Biotechnol 2006.
18.
Zurück zum Zitat Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress Biomater. 2012;1(1):2.CrossRef Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress Biomater. 2012;1(1):2.CrossRef
20.
Zurück zum Zitat Coombes A, Meikle M. Resorbable synthetic polymers s replacements for bone graft. Clin Mater. 1994;17(1):35–67.PubMedCrossRef Coombes A, Meikle M. Resorbable synthetic polymers s replacements for bone graft. Clin Mater. 1994;17(1):35–67.PubMedCrossRef
21.
Zurück zum Zitat Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–45.PubMedCrossRef Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–45.PubMedCrossRef
22.
Zurück zum Zitat Srinivasan K, Naula DP, Mijares DQ, Janal MN, LeGeros RZ, Zhang Y. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats. J Biomed Mater Res A. 2016;104(7):1622–32.PubMedPubMedCentralCrossRef Srinivasan K, Naula DP, Mijares DQ, Janal MN, LeGeros RZ, Zhang Y. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats. J Biomed Mater Res A. 2016;104(7):1622–32.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications—a review. J Magnes Alloys. 2017;5:286–312.CrossRef Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications—a review. J Magnes Alloys. 2017;5:286–312.CrossRef
24.
Zurück zum Zitat Prasad A, Sankar MR, Katiyar V. State of art on solvent casting particulate leaching method for orthopedic scaffoldsfabrication. Materials Today: Proceedings. 2017;4(2):898–907.CrossRef Prasad A, Sankar MR, Katiyar V. State of art on solvent casting particulate leaching method for orthopedic scaffoldsfabrication. Materials Today: Proceedings. 2017;4(2):898–907.CrossRef
25.
Zurück zum Zitat Lv Q, Feng Q. Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J Mater Sci Mater Med. 2006;17(12):1349–56.PubMedCrossRef Lv Q, Feng Q. Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J Mater Sci Mater Med. 2006;17(12):1349–56.PubMedCrossRef
26.
Zurück zum Zitat Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C. 2017;78:1246–62.CrossRef Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C. 2017;78:1246–62.CrossRef
27.
Zurück zum Zitat Cirllo V, Guarino V, Ambrosio L. Design of bioactive electrospun scaffolds for bone tissue engineering. J Appl Biomater Funct Mater. 2012;10(3) Cirllo V, Guarino V, Ambrosio L. Design of bioactive electrospun scaffolds for bone tissue engineering. J Appl Biomater Funct Mater. 2012;10(3)
28.
Zurück zum Zitat • Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5(9):1690–8. Influence 3D-printed ceramic scaffold was evaluated. PubMedCrossRef • Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5(9):1690–8. Influence 3D-printed ceramic scaffold was evaluated. PubMedCrossRef
29.
Zurück zum Zitat Yang J, Wang J, Yuan T, Zhu X, Xiang Z, Fan Y, et al. The enhanced effect of surface microstructured porous titanium on adhesion and osteoblastic differentiation of mesenchymal stem cells. J Mater Sci Mater Med. 2013;24(9):2235–46.PubMedCrossRef Yang J, Wang J, Yuan T, Zhu X, Xiang Z, Fan Y, et al. The enhanced effect of surface microstructured porous titanium on adhesion and osteoblastic differentiation of mesenchymal stem cells. J Mater Sci Mater Med. 2013;24(9):2235–46.PubMedCrossRef
30.
32.
Zurück zum Zitat Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone. 2015;70:19–27.PubMedCrossRef Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone. 2015;70:19–27.PubMedCrossRef
33.
Zurück zum Zitat Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang Y-S, et al. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials. 2014;35(26):7308–25.PubMedPubMedCentralCrossRef Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang Y-S, et al. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials. 2014;35(26):7308–25.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Hadjipanayi E, Schilling AF. Hypoxia-based strategies for angiogenic induction: the dawn of a new era for ischemia therapy and tissue regeneration. Organ. 2013;9(4):261–72. Hadjipanayi E, Schilling AF. Hypoxia-based strategies for angiogenic induction: the dawn of a new era for ischemia therapy and tissue regeneration. Organ. 2013;9(4):261–72.
35.
Zurück zum Zitat Yavropoulou M, Yovos J. The molecular basis of bone mechanotransduction. J Musculoskelet Neuronal Interact. 2016;16(3):221–36.PubMedPubMedCentral Yavropoulou M, Yovos J. The molecular basis of bone mechanotransduction. J Musculoskelet Neuronal Interact. 2016;16(3):221–36.PubMedPubMedCentral
36.
37.
38.
Zurück zum Zitat •• Yong Y, Ming ZD, Feng L, Chun ZW, Hua W. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. Journal of tissue engineering and regenerative medicine. 2016;10(10). EMF was able to influence the fate of progenitor cells. •• Yong Y, Ming ZD, Feng L, Chun ZW, Hua W. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. Journal of tissue engineering and regenerative medicine. 2016;10(10). EMF was able to influence the fate of progenitor cells.
39.
Zurück zum Zitat Huang W, Yang S, Shao J, Li Y-P. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Frontiers in bioscience: a journal and virtual Library. 2007;12:3068.CrossRef Huang W, Yang S, Shao J, Li Y-P. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Frontiers in bioscience: a journal and virtual Library. 2007;12:3068.CrossRef
40.
43.
Zurück zum Zitat Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, et al. PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 2016;11(3):216–25.PubMedCrossRef Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, et al. PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 2016;11(3):216–25.PubMedCrossRef
44.
Zurück zum Zitat Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64.PubMedCrossRef Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64.PubMedCrossRef
45.
Zurück zum Zitat Suzuki A, Guicheux J, Palmer G, Miura Y, Oiso Y, Bonjour J-P, et al. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone. 2002;30(1):91–8.PubMedCrossRef Suzuki A, Guicheux J, Palmer G, Miura Y, Oiso Y, Bonjour J-P, et al. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone. 2002;30(1):91–8.PubMedCrossRef
46.
Zurück zum Zitat Ge C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. 2009;284(47):32533–43.PubMedPubMedCentralCrossRef Ge C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. 2009;284(47):32533–43.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Chen Z, Luo Q, Lin C, Kuang D, Song G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep 2016;6. Chen Z, Luo Q, Lin C, Kuang D, Song G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep 2016;6.
48.
Zurück zum Zitat Marie P. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene. 2003;316:23–32.PubMedCrossRef Marie P. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene. 2003;316:23–32.PubMedCrossRef
49.
Zurück zum Zitat Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone research. 2014;2:14003.PubMedPubMedCentralCrossRef Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone research. 2014;2:14003.PubMedPubMedCentralCrossRef
50.
51.
Zurück zum Zitat Mihai R, Farndon J. Parathyroid disease and calcium metabolism. Br J Anaesth. 2000;85(1):29–43.PubMedCrossRef Mihai R, Farndon J. Parathyroid disease and calcium metabolism. Br J Anaesth. 2000;85(1):29–43.PubMedCrossRef
52.
Zurück zum Zitat Pinheiro PL, Cardoso JC, Power DM, Canário AV. Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken. BMC Evol Biol. 2012;12(1):110.PubMedPubMedCentralCrossRef Pinheiro PL, Cardoso JC, Power DM, Canário AV. Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken. BMC Evol Biol. 2012;12(1):110.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Lupp A, Klenk C, Röcken C, Evert M, Mawrin C, Schulz S. Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol. 2010;162(5):979–86.PubMedCrossRef Lupp A, Klenk C, Röcken C, Evert M, Mawrin C, Schulz S. Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol. 2010;162(5):979–86.PubMedCrossRef
54.
Zurück zum Zitat Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, et al. Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial treatment of postmenopausal osteoporotic women with parathyroid hormone (1-84). Ann Intern Med. 2007;146(5):326–39.PubMedCrossRef Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, et al. Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial treatment of postmenopausal osteoporotic women with parathyroid hormone (1-84). Ann Intern Med. 2007;146(5):326–39.PubMedCrossRef
55.
Zurück zum Zitat Sone T, Fukunaga M, Ono S, Nishiyama T. A small dose of human parathyroid hormone (1-34) increased bone mass in the lumbar vertebrae in patients with senile osteoporosis. Miner Electrolyte Metab. 1994;21(1–3):232–5. Sone T, Fukunaga M, Ono S, Nishiyama T. A small dose of human parathyroid hormone (1-34) increased bone mass in the lumbar vertebrae in patients with senile osteoporosis. Miner Electrolyte Metab. 1994;21(1–3):232–5.
56.
Zurück zum Zitat Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, et al. Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology. 2001;142(9):4047–54.PubMedCrossRef Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, et al. Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology. 2001;142(9):4047–54.PubMedCrossRef
57.
Zurück zum Zitat Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–64.PubMedCrossRef Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–64.PubMedCrossRef
58.
Zurück zum Zitat Åberg T, Cavender A, Gaikwad JS, Bronckers AL, Wang X, Waltimo-Sirén J, et al. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem. 2004;52(1):131–9.PubMedCrossRef Åberg T, Cavender A, Gaikwad JS, Bronckers AL, Wang X, Waltimo-Sirén J, et al. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem. 2004;52(1):131–9.PubMedCrossRef
59.
Zurück zum Zitat Jena N, Martı́n-Seisdedos C, McCue P, Croce CM. BMP7 null mutation in mice: developmental defects in skeleton, kidney, and eye. Exp Cell Res. 1997;230(1):28–37.PubMedCrossRef Jena N, Martı́n-Seisdedos C, McCue P, Croce CM. BMP7 null mutation in mice: developmental defects in skeleton, kidney, and eye. Exp Cell Res. 1997;230(1):28–37.PubMedCrossRef
60.
Zurück zum Zitat Tseng Y-H, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454(7207):1000–4.PubMedPubMedCentralCrossRef Tseng Y-H, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454(7207):1000–4.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol. 2001;235(2):449–66.PubMedCrossRef Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol. 2001;235(2):449–66.PubMedCrossRef
62.
Zurück zum Zitat Dudley AT, Robertson EJ. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn. 1997;208(3):349–62.PubMedCrossRef Dudley AT, Robertson EJ. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn. 1997;208(3):349–62.PubMedCrossRef
63.
Zurück zum Zitat Katagiri T, Boorla S, Frendo J-L, Hogan BL, Karsenty G. Skeletal abnormalities in doubly heterozygous Bmp4 and Bmp7 mice. Dev Genet. 1998;22(4):340–8.PubMedCrossRef Katagiri T, Boorla S, Frendo J-L, Hogan BL, Karsenty G. Skeletal abnormalities in doubly heterozygous Bmp4 and Bmp7 mice. Dev Genet. 1998;22(4):340–8.PubMedCrossRef
64.
Zurück zum Zitat Chen D, Harris M, Rossini G, Dunstan C, Dallas S, Feng J, et al. Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in culturesof fetal rat calvarial osteoblasts. Calcif Tissue Int. 1997;60(3):283–90.PubMedCrossRef Chen D, Harris M, Rossini G, Dunstan C, Dallas S, Feng J, et al. Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in culturesof fetal rat calvarial osteoblasts. Calcif Tissue Int. 1997;60(3):283–90.PubMedCrossRef
65.
Zurück zum Zitat Ma L, Lu M-F, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development. 2005;132(24):5601–11.PubMedCrossRef Ma L, Lu M-F, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development. 2005;132(24):5601–11.PubMedCrossRef
66.
Zurück zum Zitat Wang E, Israel D, Kelly S, Luxenberg D. Bone morphogenetic protein-2 causes commitment and differentiation in C3Hl0T1/2 and 3T3 cells. Growth Factors. 1993;9(1):57–71.PubMedCrossRef Wang E, Israel D, Kelly S, Luxenberg D. Bone morphogenetic protein-2 causes commitment and differentiation in C3Hl0T1/2 and 3T3 cells. Growth Factors. 1993;9(1):57–71.PubMedCrossRef
67.
Zurück zum Zitat Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 2006;12(12):3459–65.PubMedCrossRef Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 2006;12(12):3459–65.PubMedCrossRef
68.
Zurück zum Zitat Lieberman JR, Le LQ, Wu L, Finerman GA, Berk A, Witte ON, et al. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res. 1998;16(3):330–9.PubMedCrossRef Lieberman JR, Le LQ, Wu L, Finerman GA, Berk A, Witte ON, et al. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res. 1998;16(3):330–9.PubMedCrossRef
69.
Zurück zum Zitat Yamamoto N, Akiyama S, Katagiri T, Namiki M, Kurokawa T, Suda T. Smad1 and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem Biophys Res Commun. 1997;238(2):574–80.PubMedCrossRef Yamamoto N, Akiyama S, Katagiri T, Namiki M, Kurokawa T, Suda T. Smad1 and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem Biophys Res Commun. 1997;238(2):574–80.PubMedCrossRef
70.
Zurück zum Zitat Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A. Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development. 1999;126(8):1631–42.PubMed Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A. Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development. 1999;126(8):1631–42.PubMed
71.
Zurück zum Zitat Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Investig. 2001;107(9):1055–61.PubMedPubMedCentralCrossRef Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Investig. 2001;107(9):1055–61.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C et al. Increased bone formation in osteocalcin-deficient mice. 1996. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C et al. Increased bone formation in osteocalcin-deficient mice. 1996.
73.
Zurück zum Zitat Patterson-Buckendahl P, Sowinska A, Yee S, Patel D, Pagkalinawan S, Shahid M, et al. Decreased sensory responses in osteocalcin null mutant mice imply neuropeptide function. Cell Mol Neurobiol. 2012;32(5):879–89.PubMedCrossRef Patterson-Buckendahl P, Sowinska A, Yee S, Patel D, Pagkalinawan S, Shahid M, et al. Decreased sensory responses in osteocalcin null mutant mice imply neuropeptide function. Cell Mol Neurobiol. 2012;32(5):879–89.PubMedCrossRef
74.
Zurück zum Zitat Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.PubMedCrossRef Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.PubMedCrossRef
75.
Zurück zum Zitat Samee N, Geoffroy V, Marty C, Schiltz C, Vieux-Rochas M, Levi G, et al. Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. Am J Pathol. 2008;173(3):773–80.PubMedPubMedCentralCrossRef Samee N, Geoffroy V, Marty C, Schiltz C, Vieux-Rochas M, Levi G, et al. Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. Am J Pathol. 2008;173(3):773–80.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz V, Kronenberg HM, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994;8(3):277–89.PubMedCrossRef Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz V, Kronenberg HM, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994;8(3):277–89.PubMedCrossRef
77.
Zurück zum Zitat Miao D, He B, Lanske B, Bai X-Y, Tong X-K, Hendy GN, et al. Skeletal abnormalities in Pth-null mice are influenced by dietary calcium. Endocrinology. 2004;145(4):2046–53.PubMedCrossRef Miao D, He B, Lanske B, Bai X-Y, Tong X-K, Hendy GN, et al. Skeletal abnormalities in Pth-null mice are influenced by dietary calcium. Endocrinology. 2004;145(4):2046–53.PubMedCrossRef
79.
Zurück zum Zitat Qiu T, Wu X, Zhang F, Clemens TL, Wan M, Cao X. TGF-β type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol. 2010;12(3):224–34.PubMedPubMedCentral Qiu T, Wu X, Zhang F, Clemens TL, Wan M, Cao X. TGF-β type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol. 2010;12(3):224–34.PubMedPubMedCentral
80.
Zurück zum Zitat Greenblatt MB, Shim J-H, Zou W, Sitara D, Schweitzer M, Hu D, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010;120(7):2457–73.PubMedPubMedCentralCrossRef Greenblatt MB, Shim J-H, Zou W, Sitara D, Schweitzer M, Hu D, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010;120(7):2457–73.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, et al. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci. 2013;110(23):9469–74.PubMedPubMedCentralCrossRef Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, et al. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci. 2013;110(23):9469–74.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Gilbert L, He X, Farmer P, Rubin J, Drissi H, Van Wijnen AJ, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2αA) is inhibited by tumor necrosis factor-α. J Biol Chem. 2002;277(4):2695–701.PubMedCrossRef Gilbert L, He X, Farmer P, Rubin J, Drissi H, Van Wijnen AJ, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2αA) is inhibited by tumor necrosis factor-α. J Biol Chem. 2002;277(4):2695–701.PubMedCrossRef
83.
Zurück zum Zitat Tarapore RS, Lim J, Tian C, Pacios S, Xiao W, Reid D, et al. NF-κB has a direct role in inhibiting Bmp-and Wnt-induced matrix protein expression. J Bone Miner Res. 2016;31(1):52–64.PubMedCrossRef Tarapore RS, Lim J, Tian C, Pacios S, Xiao W, Reid D, et al. NF-κB has a direct role in inhibiting Bmp-and Wnt-induced matrix protein expression. J Bone Miner Res. 2016;31(1):52–64.PubMedCrossRef
84.
Zurück zum Zitat Hie M, Tsukamoto I. Increased expression of the receptor for activation of NF-κB and decreased runt-related transcription factor 2 expression in bone of rats with streptozotocin-induced diabetes. Int J Mol Med. 2010;26(4):611–8.PubMed Hie M, Tsukamoto I. Increased expression of the receptor for activation of NF-κB and decreased runt-related transcription factor 2 expression in bone of rats with streptozotocin-induced diabetes. Int J Mol Med. 2010;26(4):611–8.PubMed
85.
Zurück zum Zitat Lacefield WR. Materials characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res. 1999;13(1):21–6.PubMedCrossRef Lacefield WR. Materials characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res. 1999;13(1):21–6.PubMedCrossRef
86.
Zurück zum Zitat •• Hwang J-H, Lee D-H, Byun MR, Kim AR, Kim KM, Park JI, et al. Nanotopological plate stimulates osteogenic differentiation through TAZ activation. Sci Rep. 2017;7(1):3632. Pathway through which topology influences osteogenesis. PubMedPubMedCentralCrossRef •• Hwang J-H, Lee D-H, Byun MR, Kim AR, Kim KM, Park JI, et al. Nanotopological plate stimulates osteogenic differentiation through TAZ activation. Sci Rep. 2017;7(1):3632. Pathway through which topology influences osteogenesis. PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17(2):137–46.PubMedCrossRef Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17(2):137–46.PubMedCrossRef
88.
Zurück zum Zitat Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, et al. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium–aluminum–vanadium alloy surfaces. Biomaterials. 2012;33(35):8986–94.PubMedPubMedCentralCrossRef Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, et al. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium–aluminum–vanadium alloy surfaces. Biomaterials. 2012;33(35):8986–94.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials. 2005;26(9):971–7.PubMedCrossRef Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials. 2005;26(9):971–7.PubMedCrossRef
90.
Zurück zum Zitat Cheng A, Cohen DJ, Boyan BD, Schwartz Z. Laser-sintered constructs with bio-inspired porosity and surface micro/nano-roughness enhance mesenchymal stem cell differentiation and matrix mineralization in vitro. Calcif Tissue Int. 2016;99(6):625–37.PubMedCrossRef Cheng A, Cohen DJ, Boyan BD, Schwartz Z. Laser-sintered constructs with bio-inspired porosity and surface micro/nano-roughness enhance mesenchymal stem cell differentiation and matrix mineralization in vitro. Calcif Tissue Int. 2016;99(6):625–37.PubMedCrossRef
91.
Zurück zum Zitat Chen W, Tian B, Lei Y, Ke Q-F, Zhu Z-A, Guo Y-P. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: fabrication, morphology, cytocompatibility and osteogenic differentiation. Mater Sci Eng C. 2016;67:395–408.CrossRef Chen W, Tian B, Lei Y, Ke Q-F, Zhu Z-A, Guo Y-P. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: fabrication, morphology, cytocompatibility and osteogenic differentiation. Mater Sci Eng C. 2016;67:395–408.CrossRef
92.
Zurück zum Zitat Olivares-Navarrete R, Raines AL, Hyzy SL, Park JH, Hutton DL, Cochran DL, et al. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res. 2012;27(8):1773–83.PubMedCrossRef Olivares-Navarrete R, Raines AL, Hyzy SL, Park JH, Hutton DL, Cochran DL, et al. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res. 2012;27(8):1773–83.PubMedCrossRef
93.
Zurück zum Zitat Olivares-Navarrete R, Hyzy SL, Park JH, Dunn GR, Haithcock DA, Wasilewski CE, et al. Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop. Biomaterials. 2011;32(27):6399–411.PubMedPubMedCentralCrossRef Olivares-Navarrete R, Hyzy SL, Park JH, Dunn GR, Haithcock DA, Wasilewski CE, et al. Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop. Biomaterials. 2011;32(27):6399–411.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Gomes ME, Holtorf HL, Reis RL, Mikos AG. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng. 2006;12(4):801–9.PubMedCrossRef Gomes ME, Holtorf HL, Reis RL, Mikos AG. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng. 2006;12(4):801–9.PubMedCrossRef
95.
Zurück zum Zitat Faghihi F, Eslaminejad MB, Nekookar A, Najar M, Salekdeh G. The effect of purmorphamine and sirolimus on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Biomed Pharmacother. 2013;67(1):31–8.PubMedCrossRef Faghihi F, Eslaminejad MB, Nekookar A, Najar M, Salekdeh G. The effect of purmorphamine and sirolimus on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Biomed Pharmacother. 2013;67(1):31–8.PubMedCrossRef
96.
Zurück zum Zitat Park KW, Waki H, Kim W-K, Davies BS, Young SG, Parhami F, et al. The small molecule phenamil induces osteoblast differentiation and mineralization. Mol Cell Biol. 2009;29(14):3905–14.PubMedPubMedCentralCrossRef Park KW, Waki H, Kim W-K, Davies BS, Young SG, Parhami F, et al. The small molecule phenamil induces osteoblast differentiation and mineralization. Mol Cell Biol. 2009;29(14):3905–14.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Yu W-L, Sun T-W, Qi C, Zhao H-K, Ding Z-Y, Zhang Z-W, et al. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep. 2017;7:srep44129.CrossRef Yu W-L, Sun T-W, Qi C, Zhao H-K, Ding Z-Y, Zhang Z-W, et al. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep. 2017;7:srep44129.CrossRef
98.
Zurück zum Zitat Park S-J, Lee KW, Lim D-S, Lee S. The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev. 2011;21(12):2204–11.PubMedCrossRef Park S-J, Lee KW, Lim D-S, Lee S. The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev. 2011;21(12):2204–11.PubMedCrossRef
99.
Zurück zum Zitat • Du K, Li Z, Fang X, Cao T, Xu Y. Ferulic acid promotes osteogenesis of bone marrow-derived mesenchymal stem cells by inhibiting microRNA-340 to induce β-catenin expression through hypoxia. Eur J Cell Biol. 2017;96(6):496–503. Targeted osteogenesis using ferulic acid and its signaling pathway. PubMedCrossRef • Du K, Li Z, Fang X, Cao T, Xu Y. Ferulic acid promotes osteogenesis of bone marrow-derived mesenchymal stem cells by inhibiting microRNA-340 to induce β-catenin expression through hypoxia. Eur J Cell Biol. 2017;96(6):496–503. Targeted osteogenesis using ferulic acid and its signaling pathway. PubMedCrossRef
100.
Zurück zum Zitat Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, et al. Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers. 2017;9(9):387.CrossRef Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, et al. Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers. 2017;9(9):387.CrossRef
101.
Zurück zum Zitat Huan Z, Chang J. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomater. 2009;5(4):1253–64.PubMedCrossRef Huan Z, Chang J. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomater. 2009;5(4):1253–64.PubMedCrossRef
102.
Zurück zum Zitat Bohner M. Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater. 2010;20(1):3–10. Bohner M. Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater. 2010;20(1):3–10.
103.
Zurück zum Zitat Shelton R, Liu Y, Cooper P, Gbureck U, German M, Barralet J. Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials. 2006;27(14):2874–81.PubMedCrossRef Shelton R, Liu Y, Cooper P, Gbureck U, German M, Barralet J. Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials. 2006;27(14):2874–81.PubMedCrossRef
104.
Zurück zum Zitat Harris C, Cooper L. Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis. J Biomed Mater Res A. 2004;68(4):747–55.PubMedCrossRef Harris C, Cooper L. Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis. J Biomed Mater Res A. 2004;68(4):747–55.PubMedCrossRef
105.
Zurück zum Zitat Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49(3):328–37.PubMedCrossRef Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49(3):328–37.PubMedCrossRef
106.
Zurück zum Zitat Kasten P, Luginbühl R, Van Griensven M, Barkhausen T, Krettek C, Bohner M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix. Biomaterials. 2003;24(15):2593–603.PubMedCrossRef Kasten P, Luginbühl R, Van Griensven M, Barkhausen T, Krettek C, Bohner M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix. Biomaterials. 2003;24(15):2593–603.PubMedCrossRef
107.
Zurück zum Zitat Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res. 2013;1(3):216–48.PubMedPubMedCentralCrossRef Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res. 2013;1(3):216–48.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat • Dong L, Wang S-J, Zhao X-R, Zhu Y-F, Yu J-K. 3D-printed poly (ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep. 2017;7(1):13412. Novel cell-based hydrogel scaffolds. PubMedPubMedCentralCrossRef • Dong L, Wang S-J, Zhao X-R, Zhu Y-F, Yu J-K. 3D-printed poly (ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep. 2017;7(1):13412. Novel cell-based hydrogel scaffolds. PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Zheng P, Yao Q, Mao F, Liu N, Xu Y, Wei B, et al. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Mol Med Rep. 2017;16(4):5078–84.PubMedPubMedCentralCrossRef Zheng P, Yao Q, Mao F, Liu N, Xu Y, Wei B, et al. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Mol Med Rep. 2017;16(4):5078–84.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Murphy C, Kolan K, Li W, Semon J, Day D, Leu M. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. International Journal of Bioprinting. 2017;3(1):1–11.CrossRef Murphy C, Kolan K, Li W, Semon J, Day D, Leu M. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. International Journal of Bioprinting. 2017;3(1):1–11.CrossRef
111.
Zurück zum Zitat Qi X, Pei P, Zhu M, Du X, Xin C, Zhao S, et al. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo. Sci Rep. 2017;7:42556.PubMedPubMedCentralCrossRef Qi X, Pei P, Zhu M, Du X, Xin C, Zhao S, et al. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo. Sci Rep. 2017;7:42556.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Barbeck M, Serra T, Booms P, Stojanovic S, Najman S, Engel E, et al. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components—guidance of the inflammatory response as basis for osteochondral regeneration. Bioactive Mater. 2017;2:208–23.CrossRef Barbeck M, Serra T, Booms P, Stojanovic S, Najman S, Engel E, et al. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components—guidance of the inflammatory response as basis for osteochondral regeneration. Bioactive Mater. 2017;2:208–23.CrossRef
113.
Zurück zum Zitat Kanthan S, Kavitha G, Addi S, Choon D, Kamarul T. Platelet-rich plasma (PRP) enhances bone healing in non-united critical-sized defects: a preliminary study involving rabbit models. Injury. 2011;42(8):782–9.PubMedCrossRef Kanthan S, Kavitha G, Addi S, Choon D, Kamarul T. Platelet-rich plasma (PRP) enhances bone healing in non-united critical-sized defects: a preliminary study involving rabbit models. Injury. 2011;42(8):782–9.PubMedCrossRef
114.
Zurück zum Zitat Latalski M, Elbatrawy YA, Thabet AM, Gregosiewicz A, Raganowicz T, Fatyga M. Enhancing bone healing during distraction osteogenesis with platelet-rich plasma. Injury. 2011;42(8):821–4.PubMedCrossRef Latalski M, Elbatrawy YA, Thabet AM, Gregosiewicz A, Raganowicz T, Fatyga M. Enhancing bone healing during distraction osteogenesis with platelet-rich plasma. Injury. 2011;42(8):821–4.PubMedCrossRef
115.
Zurück zum Zitat • Mcgoldrick R, Chattopadhyay A, Crowe C, Chiou G, Hui K, Farnebo S et al. The tissue engineered tendon bone Interface: in vitro and in vivo synergistic effects of adipo-derived stem cells, platelet rich plasma and extracellular matrix hydrogel. Plast Reconstr Surg. 2017. PRP and extracellular matrix hydrogel promote bone repair. • Mcgoldrick R, Chattopadhyay A, Crowe C, Chiou G, Hui K, Farnebo S et al. The tissue engineered tendon bone Interface: in vitro and in vivo synergistic effects of adipo-derived stem cells, platelet rich plasma and extracellular matrix hydrogel. Plast Reconstr Surg. 2017. PRP and extracellular matrix hydrogel promote bone repair.
Metadaten
Titel
Progress of Regenerative Therapy in Orthopedics
verfasst von
Pearlin
Sunita Nayak
Geetha Manivasagam
Dwaipayan Sen
Publikationsdatum
27.02.2018
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 2/2018
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-018-0428-x

Weitere Artikel der Ausgabe 2/2018

Current Osteoporosis Reports 2/2018 Zur Ausgabe

Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)

Transcriptional Mechanisms of Secondary Fracture Healing

Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)

Metabolic Coupling Between Bone Marrow Adipose Tissue and Hematopoiesis

Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)

Role of Marrow Adipocytes in Regulation of Energy Metabolism and Bone Homeostasis

Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)

Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat

Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)

Marrow Fat—a New Target to Treat Bone Diseases?

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärzte und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders scheint das auf weibliche Kranke zuzutreffen, wie eine Studie zeigt.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.